Julian Romero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3783021/publications.pdf

Version: 2024-02-01

41344 62596 7,588 84 49 80 citations h-index g-index papers 85 85 85 5306 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A peripheral CB2 cannabinoid receptor mechanism suppresses chemotherapy-induced peripheral neuropathy: evidence from a CB2 reporter mouse. Pain, 2022, 163, 834-851.	4.2	17
2	Amygdalar CB2 cannabinoid receptor mediates fear extinction deficits promoted by orexin-A/hypocretin-1. Biomedicine and Pharmacotherapy, 2022, 149, 112925.	5.6	11
3	Cannabinoid CB2 Receptors Modulate Microglia Function and Amyloid Dynamics in a Mouse Model of Alzheimer's Disease. Frontiers in Pharmacology, 2022, 13, .	3.5	10
4	Signaling through the type 2 cannabinoid receptor regulates the severity of acute and chronic graft-versus-host disease. Blood, 2021, 137, 1241-1255.	1.4	11
5	Inactivation of the CB ₂ receptor accelerated the neuropathological deterioration in TDPâ€43 transgenic mice, a model of amyotrophic lateral sclerosis. Brain Pathology, 2021, 31, e12972.	4.1	13
6	Potentiation of amyloid beta phagocytosis and amelioration of synaptic dysfunction upon FAAH deletion in a mouse model of Alzheimer's disease. Journal of Neuroinflammation, 2021, 18, 223.	7.2	11
7	Development of High-Specificity Fluorescent Probes to Enable Cannabinoid Type 2 Receptor Studies in Living Cells. Journal of the American Chemical Society, 2020, 142, 16953-16964.	13.7	31
8	Cannabinoid CB2R receptors are upregulated with corneal injury and regulate the course of corneal wound healing. Experimental Eye Research, 2019, 182, 74-84.	2.6	22
9	Role of interleukin 1-beta in the inflammatory response in a fatty acid amide hydrolase-knockout mouse model of Alzheimer's disease. Biochemical Pharmacology, 2018, 157, 202-209.	4.4	11
10	Cannabinoid CB2 receptors in the mouse brain: relevance for Alzheimerâ \in [™] s disease. Journal of Neuroinflammation, 2018, 15, 158.	7.2	98
11	Revisiting cannabinoid receptor 2 expression and function in murine retina. Neuropharmacology, 2018, 141, 21-31.	4.1	15
12	Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system. Biochemical Pharmacology, 2018, 157, 67-84.	4.4	75
13	Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies. Neurobiology of Disease, 2015, 79, 41-50.	4.4	34
14	Endocannabinoids and Neurodegenerative Disorders: Parkinson's Disease, Huntington's Chorea, Alzheimer's Disease, and Others. Handbook of Experimental Pharmacology, 2015, 231, 233-259.	1.8	94
15	Endocannabinoid regulation of amyloid-induced neuroinflammation. Neurobiology of Aging, 2015, 36, 3008-3019.	3.1	29
16	A restricted population of CB $\langle sub \rangle 1 \langle sub \rangle$ cannabinoid receptors with neuroprotective activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8257-8262.	7.1	136
17	Endocannabinoid-Hydrolysing Enzymes in the Post-Mortem Cerebellum of Humans Affected by Hereditary Autosomal Dominant Ataxias. Pathobiology, 2014, 81, 149-159.	3.8	13
18	Changes in <scp>CB₁</scp> and <scp>CB₂</scp> receptors in the postâ€mortem cerebellum of humans affected by spinocerebellar ataxias. British Journal of Pharmacology, 2014, 171, 1472-1489.	5.4	53

#	Article	IF	Citations
19	Mechanisms of cannabidiol neuroprotection in hypoxic–ischemic newborn pigs: Role of 5HT1A and CB2 receptors. Neuropharmacology, 2013, 71, 282-291.	4.1	182
20	βâ^'Amyloid exacerbates inflammation in astrocytes lacking fatty acid amide hydrolase through a mechanism involving PPARâ€Î±, PPARâ€Î³ and TRPV1, but not CB ₁ or CB ₂ receptors. British Journal of Pharmacology, 2012, 166, 1474-1489.	5.4	65
21	Prospects for cannabinoid therapies in basal ganglia disorders. British Journal of Pharmacology, 2011, 163, 1365-1378.	5.4	98
22	Cannabidiol reduces lipopolysaccharide-induced vascular changes and inflammation in the mouse brain: an intravital microscopy study. Journal of Neuroinflammation, 2011, 8, 5.	7.2	92
23	Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. Brain, 2011, 134, 119-136.	7.6	178
24	The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic–ischemic brain damage in mice is mediated by CB2 and adenosine receptors. Neurobiology of Disease, 2010, 37, 434-440.	4.4	222
25	The endocannabinoid system and amyloid-related diseases. Experimental Neurology, 2010, 224, 66-73.	4.1	16
26	The endocannabinoid system in neuropathological states. International Review of Psychiatry, 2009, 21, 172-180.	2.8	30
27	The activation of cannabinoid CB2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages. Brain Research, 2009, 1283, 148-154.	2.2	117
28	Cannabinoid CB ₂ receptor agonists protect the striatum against malonate toxicity: Relevance for Huntington's disease. Glia, 2009, 57, 1154-1167.	4.9	165
29	Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain, 2009, 132, 3152-3164.	7.6	323
30	Cannabinoids and Neurodegenerative Diseases. CNS and Neurological Disorders - Drug Targets, 2009, 8, 440-450.	1.4	21
31	Cannabinoid CB ₂ receptors in human brain inflammation. British Journal of Pharmacology, 2008, 153, 277-285.	5.4	244
32	Glial expression of cannabinoid CB2 receptors and fatty acid amide hydrolase are beta amyloid–linked events in Down's syndrome. Neuroscience, 2008, 151, 104-110.	2.3	70
33	Colocalization of CB1 receptors with L1 and GAP-43 in forebrain white matter regions during fetal rat brain development: Evidence for a role of these receptors in axonal growth and guidance. Neuroscience, 2008, 153, 687-699.	2.3	16
34	Cannabinoid CB ₁ Receptors Are Expressed by Parietal Cells of the Human Gastric Mucosa. Journal of Histochemistry and Cytochemistry, 2008, 56, 511-516.	2.5	22
35	The CB2 Cannabinoid Receptor Controls Myeloid Progenitor Trafficking. Journal of Biological Chemistry, 2008, 283, 13320-13329.	3.4	141
36	Neuroprotective Effects of the Nonpsychoactive Cannabinoid Cannabidiol in Hypoxic-Ischemic Newborn Piglets. Pediatric Research, 2008, 64, 653-658.	2.3	125

#	Article	IF	Citations
37	Neuroinflammation and the Glial Endocannabinoid System. , 2008, , 331-359.		O
38	The Cannabinoid Agonist Win55212 Reduces Brain Damage in an In Vivo Model of Hypoxic-Ischemic Encephalopathy in Newborn Rats. Pediatric Research, 2007, 62, 255-260.	2.3	69
39	Cannabinoid CB ₁ and CB ₂ Receptors and Fatty Acid Amide Hydrolase Are Specific Markers of Plaque Cell Subtypes in Human Multiple Sclerosis. Journal of Neuroscience, 2007, 27, 2396-2402.	3.6	243
40	The Seek of Neuroprotection: Introducing Cannabinoids. Recent Patents on CNS Drug Discovery, 2007, 2, 131-9.	0.9	42
41	Cannabinoid CB2 receptor: a new target for controlling neural cell survival?. Trends in Pharmacological Sciences, 2007, 28, 39-45.	8.7	331
42	The Endocannabinoid System and Alzheimer's Disease. Molecular Neurobiology, 2007, 36, 75-81.	4.0	43
43	Characterization of the Neuroprotective Effect of the Cannabinoid Agonist WIN-55212 in an In Vitro Model of Hypoxic-Ischemic Brain Damage in Newborn Rats. Pediatric Research, 2006, 60, 169-173.	2.3	97
44	Functional neuroanatomy of the endocannabinoid system. Pharmacology Biochemistry and Behavior, 2005, 81, 239-247.	2.9	96
45	A Glial Endogenous Cannabinoid System Is Upregulated in the Brains of Macaques with Simian Immunodeficiency Virus-Induced Encephalitis. Journal of Neuroscience, 2005, 25, 2530-2536.	3.6	145
46	Cannabinoids in neurodegeneration and neuroprotection., 2005,, 79-109.		32
47	Circulating endogenous cannabinoid anandamide and portal, systemic and renal hemodynamics in cirrhosis. Liver International, 2004, 24, 477-483.	3.9	73
48	Cannabinoid CB ₂ receptors are expressed by perivascular microglial cells in the human brain: An immunohistochemical study. Synapse, 2004, 53, 208-213.	1.2	273
49	Role of the endocannabinoid system in Alzheimer's disease: New perspectives. Life Sciences, 2004, 75, 1907-1915.	4.3	66
50	Effects of perinatal exposure to î"9-tetrahydrocannabinol on operant morphine-reinforced behavior. Pharmacology Biochemistry and Behavior, 2003, 75, 577-584.	2.9	38
51	Neuroprotection by the cannabinoid agonist WIN-55212 in an in vivo newborn rat model of acute severe asphyxia. Molecular Brain Research, 2003, 114, 132-139.	2.3	49
52	Cannabinoid CB ₂ Receptors and Fatty Acid Amide Hydrolase Are Selectively Overexpressed in Neuritic Plaque-Associated Glia in Alzheimer's Disease Brains. Journal of Neuroscience, 2003, 23, 11136-11141.	3.6	547
53	Fatty acid amide hydrolase localization in the human central nervous system: an immunohistochemical study. Molecular Brain Research, 2002, 100, 85-93.	2.3	78
54	The endogenous cannabinoid system and the basal ganglia. , 2002, 95, 137-152.		126

#	Article	IF	Citations
55	Blockade of cannabinoid CB ₁ receptor function protects against <i>inâ€fvivo</i> disseminating brain damage following NMDAâ€nduced excitotoxicity. Journal of Neurochemistry, 2002, 82, 154-158.	3.9	76
56	Role of the superior colliculus in the motor effects of cannabinoids and dopamine. Brain Research, 2000, 853, 207-214.	2.2	15
57	Activational role of cannabinoids on movement. European Journal of Pharmacology, 2000, 391, 269-274.	3.5	178
58	Unilateral 6-hydroxydopamine lesions of nigrostriatal dopaminergic neurons increased CB1 receptor mRNA levels in the caudate-putamen. Life Sciences, 2000, 66, 485-494.	4.3	100
59	Enhancement of Anandamide Formation in the Limbic Forebrain and Reduction of Endocannabinoid Contents in the Striatum of Δ ⁹ â€₹etrahydrocannabinolâ€₹olerant Rats. Journal of Neurochemistry, 2000, 74, 1627-1635.	3.9	144
60	Unilateral 6-Hydroxydopamine Lesions of Nigrostriatal Dopaminergic Neurons Increased Cannabinoid CB1 Receptor mRNA Levels in the Rat Striatum: Possible Therapeutic Implications., 2000,, 301-305.		0
61	Perinatal \hat{l} " 9 -Tetrahydrocannabinol Exposure Augmented the Magnitude of Motor Inhibition Caused by GABA B , but not GABA A , Receptor Agonists in Adult Rats. Neurotoxicology and Teratology, 1999, 21, 277-283.	2.4	47
62	Pharmacological and biochemical interactions between opioids and cannabinoids. Trends in Pharmacological Sciences, 1999, 20, 287-294.	8.7	364
63	Cannabinoid receptor binding and mRNA levels in several brain regions of adult male and female rats perinatally exposed to Δ9-tetrahydrocannabinol. Drug and Alcohol Dependence, 1999, 55, 127-136.	3.2	29
64	Cannabinoid receptor and WIN-55,212-2-stimulated [35S]GTPÎ ³ S binding and cannabinoid receptor mRNA levels in several brain structures of adult male rats chronically exposed to R-methanandamide. Neurochemistry International, 1999, 34, 473-482.	3.8	23
65	Time-dependent differences of repeated administration with î"9-tetrahydrocannabinol in proenkephalin and cannabinoid receptor gene expression and G-protein activation by l¼-opioid and CB1-cannabinoid receptors in the caudate–putamen. Molecular Brain Research, 1999, 67, 148-157.	2.3	61
66	Extrapyramidal and neuroendocrine effects of AM404, an inhibitor of the carrier-mediated transport of anandamide. Life Sciences, 1999, 65, 327-336.	4.3	51
67	Role of endocannabinoids in brain development. Life Sciences, 1999, 65, 725-736.	4.3	100
68	Identification of Endocannabinoids and Cannabinoid CB ₁ Receptor mRNA in the Pituitary Gland. Neuroendocrinology, 1999, 70, 137-145.	2.5	78
69	Cannabinoid Receptor and WIN-55,212-2-Stimulated [³⁵ S]GTPγS Binding and Cannabinoid Receptor mRNA Levels in the Basal Ganglia and the Cerebellum of Adult Male Rats Chronically Exposed to Δ ^{-Tetrahydrocannabinol. Journal of Molecular Neuroscience, 1998, 11, 109-120.}	2.3	36
70	Effects of cannabinoids on prolactin and gonadotrophin secretion: involvement of changes in hypothalamic \hat{l}^3 -aminobutyric acid (GABA) inputs. Biochemical Pharmacology, 1998, 56, 1331-1338.	4.4	51
71	Time-course of the cannabinoid receptor down-regulation in the adult rat brain caused by repeated exposure to ?9-tetrahydrocannabinol. Synapse, 1998, 30, 298-308.	1.2	111
72	Autoradiographic analysis of cannabinoid receptor binding and cannabinoid agonist-stimulated [35S]CTPl ³ S binding in morphine-dependent mice. Drug and Alcohol Dependence, 1998, 50, 241-249.	3.2	34

#	Article	IF	CITATIONS
73	Chronic administration of cannabinoids regulates proenkephalin mRNA levels in selected regions of the rat brain. Molecular Brain Research, 1998, 55, 126-132.	2.3	82
74	Loss of cannabinoid receptor binding and messenger RNA levels and cannabinoid agonist-stimulated [35s]guanylyl-5′-O-(thio)-triphosphate binding in the basal ganglia of aged rats. Neuroscience, 1998, 84, 1075-1083.	2.3	80
75	Changes in cannabinoid receptor binding and mRNA levels in several brain regions of aged rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1998, 1407, 205-214.	3.8	59
76	Cannabinoid receptor binding did not vary in several hypothalamic nuclei after hypothalamic deafferentation. Life Sciences, 1998, 63, 351-356.	4.3	31
77	Time course of the effects of different cannabimimetics on prolactin and gonadotrophin secretion: Evidence for the presence of CB1 receptors in hypothalamic structures and their involvement in the effects of cannabimimetics. Biochemical Pharmacology, 1997, 53, 1919-1927.	4.4	84
78	THE ACTIVATION OF CANNABINOID RECEPTORS IN STRIATONIGRAL GABAERGIC NEURONS INHIBITED GABA UPTAKE. Life Sciences, 1997, 62, 351-363.	4.3	83
79	Effects of chronic exposure to î"9-tetrahydrocannabinol on cannabinoid receptor binding and mRNA levels in several rat brain regions. Molecular Brain Research, 1997, 46, 100-108.	2.3	138
80	Extrapyramidal effects of methanandamide, an analog of anandamide, the endogenous CB1, receptor ligand. Life Sciences, 1996, 58, 1249-1257.	4.3	57
81	Involvement of GABAB receptors in the motor inhibition produced by agonists of brain cannabinoid receptors. Behavioural Pharmacology, 1996, 7, 299.	1.7	46
82	Changes in rat brain cannabinoid binding sites after acute or chronic exposure to their endogenous agonist, anandamide, or to \hat{l} '9-tetrahydrocannabinol. Pharmacology Biochemistry and Behavior, 1995, 51, 731-737.	2.9	100
83	Time-course of the effects of anandamide, the putative endogenous cannabinoid receptor ligand, on extrapyramidal function. Brain Research, 1995, 694, 223-232.	2.2	77
84	The endogenous cannabinoid receptor ligand, anandamide, inhibits the motor behavior: role of nigrostriatal dopaminergic neurons. Life Sciences, 1995, 56, 2033-2040.	4.3	93