
Jianfeng Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3781270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharmaceutica Sinica B, 2022, 12, 378-393.	12.0	63
2	Nano delivery of simvastatin targets liver sinusoidal endothelial cells to remodel tumor microenvironment for hepatocellular carcinoma. Journal of Nanobiotechnology, 2022, 20, 9.	9.1	40
3	A chlorogenic acid-loaded hyaluronic acid-based hydrogel facilitates anti-inflammatory and pro-healing effects for diabetic wounds. Journal of Drug Delivery Science and Technology, 2022, 70, 103232.	3.0	5
4	Formulation of two lipid-based membrane–core nanoparticles for FOLFOX combination therapy. Nature Protocols, 2022, 17, 1818-1831.	12.0	10
5	Nano co-delivery of Plumbagin and Dihydrotanshinone I reverses immunosuppressive TME of liver cancer. Journal of Controlled Release, 2022, 348, 250-263.	9.9	36
6	Nanodelivery of immunogenic cell death-inducers for cancer immunotherapy. Drug Discovery Today, 2021, 26, 651-662.	6.4	23
7	Role of Hyaluronic Acids and Potential as Regenerative Biomaterials in Wound Healing. ACS Applied Bio Materials, 2021, 4, 311-324.	4.6	40
8	Targeting epigenetic modifiers to reprogramme macrophages in non-resolving inflammation-driven atherosclerosis. European Heart Journal Open, 2021, 1, .	2.3	9
9	A folate-targeted PEGylated cyclodextrin-based nanoformulation achieves co-delivery of docetaxel and siRNA for colorectal cancer. International Journal of Pharmaceutics, 2021, 606, 120888.	5.2	23
10	Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing. Materials Today Bio, 2021, 12, 100139.	5.5	32
11	Two nanoformulations induce reactive oxygen species and immunogenetic cell death for synergistic chemo-immunotherapy eradicating colorectal cancer and hepatocellular carcinoma. Molecular Cancer, 2021, 20, 10.	19.2	70
12	Tackling TAMs for Cancer Immunotherapy: It's Nano Time. Trends in Pharmacological Sciences, 2020, 41, 701-714.	8.7	60
13	Icaritin Exacerbates Mitophagy and Synergizes with Doxorubicin to Induce Immunogenic Cell Death in Hepatocellular Carcinoma. ACS Nano, 2020, 14, 4816-4828.	14.6	205
14	Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Theranostics, 2020, 10, 3099-3117.	10.0	70
15	Nano Codelivery of Oxaliplatin and Folinic Acid Achieves Synergistic Chemo-Immunotherapy with 5-Fluorouracil for Colorectal Cancer and Liver Metastasis. ACS Nano, 2020, 14, 5075-5089.	14.6	144
16	Membrane-core nanoparticles for cancer nanomedicine. Advanced Drug Delivery Reviews, 2020, 156, 23-39.	13.7	53
17	A Low Molecular Weight Hyaluronic Acid Derivative Accelerates Excisional Wound Healing by Modulating Pro-Inflammation, Promoting Epithelialization and Neovascularization, and Remodeling Collagen. International Journal of Molecular Sciences, 2019, 20, 3722.	4.1	46
18	The Application of Pre-clinical Animal Models to Optimise Nanoparticulate Drug Delivery for Hepatocellular Carcinoma. Pharmaceutical Nanotechnology, 2019, 6, 221-231.	1.5	4

JIANFENG GUO

#	Article	IF	CITATIONS
19	Bioconjugated Gold Nanoparticles Enhance siRNA Delivery in Prostate Cancer Cells. Methods in Molecular Biology, 2019, 1974, 291-301.	0.9	30
20	>Development of anisamide-targeted PEGylated gold nanorods to deliver epirubicin for chemo-photothermal therapy in tumor-bearing mice. International Journal of Nanomedicine, 2019, Volume 14, 1817-1833.	6.7	26
21	Anisamide-targeted PEGylated gold nanoparticles designed to target prostate cancer mediate: Enhanced systemic exposure of siRNA, tumour growth suppression and a synergistic therapeutic response in combination with paclitaxel in mice. European Journal of Pharmaceutics and Biopharmaceutics. 2019. 137. 56-67.	4.3	43
22	The potential for clinical translation of antibody-targeted nanoparticles in the treatment of acute myeloid leukaemia. Journal of Controlled Release, 2018, 286, 154-166.	9.9	19
23	Antibody-Targeted Cyclodextrin-Based Nanoparticles for siRNA Delivery in the Treatment of Acute Myeloid Leukemia: Physicochemical Characteristics, <i>in Vitro</i> Mechanistic Studies, and <i>ex Vivo</i> Patient Derived Therapeutic Efficacy. Molecular Pharmaceutics, 2017, 14, 940-952.	4.6	56
24	Targeted Drug Delivery via Folate Receptors for the Treatment of Brain Cancer: Can the Promise Deliver?. Journal of Pharmaceutical Sciences, 2017, 106, 3413-3420.	3.3	36
25	Formulation and Evaluation of Anisamide-Targeted Amphiphilic Cyclodextrin Nanoparticles To Promote Therapeutic Gene Silencing in a 3D Prostate Cancer Bone Metastases Model. Molecular Pharmaceutics, 2017, 14, 42-52.	4.6	44
26	Gold nanoparticles enlighten the future of cancer theranostics. International Journal of Nanomedicine, 2017, Volume 12, 6131-6152.	6.7	202
27	Folate-targeted amphiphilic cyclodextrin.siRNA nanoparticles for prostate cancer therapy exhibit PSMA mediated uptake, therapeutic gene silencing in vitro and prolonged circulation in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2341-2351.	3.3	48
28	Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. International Journal of Pharmaceutics, 2016, 509, 16-27.	5.2	68
29	Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. International Journal of Pharmaceutics, 2016, 511, 1058-1069.	5.2	30
30	Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Advanced Drug Delivery Reviews, 2016, 106, 367-380.	13.7	83
31	7-formyl-10-methylisoellipticine, a novel ellipticine derivative, induces mitochondrial reactive oxygen species (ROS) and shows anti-leukaemic activity in mice. Investigational New Drugs, 2016, 34, 15-23.	2.6	18
32	Anisamide-targeted gold nanoparticles for siRNA delivery in prostate cancer – synthesis, physicochemical characterisation and in vitro evaluation. Journal of Materials Chemistry B, 2016, 4, 2242-2252.	5.8	45
33	RNA interference for multiple myeloma therapy: targeting signal transduction pathways. Expert Opinion on Therapeutic Targets, 2016, 20, 107-121.	3.4	16
34	Positively charged, surfactant-free gold nanoparticles for nucleic acid delivery. RSC Advances, 2015, 5, 17862-17871.	3.6	28
35	The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Biomaterials, 2015, 66, 53-66.	11.4	90
36	Biomimetic gold nanocomplexes for gene knockdown: Will gold deliver dividends for small interfering RNA nanomedicines?. Nano Research, 2015, 8, 3111-3140.	10.4	22

JIANFENG GUO

#	Article	IF	CITATIONS
37	Evaluation of the physicochemical properties and the biocompatibility of polyethylene glycol-conjugated gold nanoparticles: A formulation strategy for siRNA delivery. Colloids and Surfaces B: Biointerfaces, 2015, 135, 604-612.	5.0	36
38	The role of transcription factors in prostate cancer and potential for future RNA interference therapy. Expert Opinion on Therapeutic Targets, 2014, 18, 633-649.	3.4	44
39	Biomimetic nanoparticles for siRNA delivery in the treatment of leukaemia. Biotechnology Advances, 2014, 32, 1396-1409.	11.7	38
40	Delivering RNAi therapeutics with non-viral technology: a promising strategy for prostate cancer?. Trends in Molecular Medicine, 2013, 19, 250-261.	6.7	36
41	Amphiphilic polyallylamine based polymeric micelles for siRNA delivery to the gastrointestinal tract: In vitro investigations. International Journal of Pharmaceutics, 2013, 447, 150-157.	5.2	28
42	Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials, 2012, 33, 7775-7784.	11.4	115
43	Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-l-lysine nanocarrier to suppress prostate cancer growth in mice. European Journal of Pharmaceutical Sciences, 2012, 45, 521-532.	4.0	79
44	Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics?. Biotechnology Advances, 2011, 29, 402-417.	11.7	98
45	Mechanistic studies on the uptake and intracellular trafficking of novel cyclodextrin transfection complexes by intestinal epithelial cells. International Journal of Pharmaceutics, 2011, 413, 174-183.	5.2	73
46	Therapeutic targeting in the silent era: advances in non-viral siRNA delivery. Molecular BioSystems, 2010, 6, 1143-61.	2.9	53