John A Capobianco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3780604/publications.pdf

Version: 2024-02-01

102 papers 12,401 citations

47006 47 h-index 100 g-index

105 all docs $\begin{array}{c} 105 \\ \\ \text{docs citations} \end{array}$

105 times ranked 9373 citing authors

#	Article	IF	CITATIONS
1	On the photostability and luminescence of dye-sensitized upconverting nanoparticles using modified IR820 dyes. Nanoscale Advances, 2022, 4, 608-618.	4.6	12
2	Modulating Photo- and Radioluminescence in Tb(III) Cluster-Based Metal–Organic Frameworks. , 2022, 4, 1025-1031.	_	19
3	Growing Gold Nanostars on SiO2 Nanoparticles: Easily Accessible, NIR Active Core–Shell Nanostructures from PVP/DMF Reduction. Chemistry, 2022, 4, 647-654.	2.2	1
4	Investigating the reactive oxygen species production of Rose Bengal and Merocyanine 540-loaded radioluminescent nanoparticles. Nanoscale Advances, 2021, 3, 1375-1381.	4.6	14
5	Synthesis and fundamental studies of a photoresponsive oligonucleotide-upconverting nanoparticle covalent conjugate. Materials Chemistry Frontiers, 2021, 5, 4690-4699.	5.9	1
6	Reconstructing the Surface Structure of NaREF ₄ Upconversion Nanocrystals with a Novel K ⁺ Treatment. Chemistry of Materials, 2021, 33, 2548-2556.	6.7	5
7	Low-Temperature-Induced Controllable Transversal Shell Growth of NaLnF4 Nanocrystals. Nanomaterials, 2021, 11, 654.	4.1	1
8	BaYF ₅ :Yb ³⁺ ,Tm ³⁺ Upconverting Nanoparticles with Improved Population of the Visible and Near-Infrared Emitting States: Implications for Bioimaging. ACS Applied Nano Materials, 2021, 4, 5301-5308.	5.0	16
9	Energy Migration Control of Multimodal Emissions in an Er ³⁺ â€Doped Nanostructure for Information Encryption and Deepâ€Learning Decoding. Angewandte Chemie - International Edition, 2021, 60, 23790-23796.	13.8	67
10	Energy Migration Control of Multimodal Emissions in an Er ³⁺ â€Doped Nanostructure for Information Encryption and Deepâ€Learning Decoding. Angewandte Chemie, 2021, 133, 23983-23989.	2.0	11
11	Lanthanide-Doped Nanoparticles in Biological Imaging and Bioassays. Springer Series on Fluorescence, 2021, , 93-128.	0.8	2
12	Lifetime of the ³ H ₄ Electronic State in Tm ³⁺ -Doped Upconverting Nanoparticles for NIR Nanothermometry. Journal of Physical Chemistry B, 2021, 125, 13132-13136.	2.6	9
13	On a local (de-)trapping model for highly doped Pr ³⁺ radioluminescent and persistent luminescent nanoparticles. Nanoscale, 2020, 12, 20759-20766.	5.6	13
14	Thermal properties of lipid bilayers derived from the transient heating regime of upconverting nanoparticles. Nanoscale, 2020, 12, 24169-24176.	5.6	18
15	The Key Role of Intrinsic Lifetime Dynamics from Upconverting Nanosystems in Multiemission Particle Velocimetry. Advanced Materials, 2020, 32, e2002266.	21.0	10
16	Multiemission Particle Velocimetry: The Key Role of Intrinsic Lifetime Dynamics from Upconverting Nanosystems in Multiemission Particle Velocimetry (Adv. Mater. 42/2020). Advanced Materials, 2020, 32, 2070316.	21.0	0
17	Evaluation of Lanthanide-Doped Upconverting Nanoparticles for in Vitro and in Vivo Applications. ACS Applied Bio Materials, 2020, 3, 4358-4369.	4.6	18
18	Wavelength-Selective Nonlinear Imaging and Photo-Induced Cell Damage by Dielectric Harmonic Nanoparticles. ACS Nano, 2020, 14, 4087-4095.	14.6	13

#	Article	IF	CITATIONS
19	Optically Stimulated Nanodosimeters with High Storage Capacity. Nanomaterials, 2019, 9, 1127.	4.1	26
20	Frontispiece: Intrinsic Time‶unable Emissions in Core–Shell Upconverting Nanoparticle Systems. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
21	Thermal Properties of Lipid Bilayers Determined Using Upconversion Nanothermometry. Advanced Functional Materials, 2019, 29, 1905474.	14.9	96
22	Frontispiz: Intrinsic Timeâ€Tunable Emissions in Core–Shell Upconverting Nanoparticle Systems. Angewandte Chemie, 2019, 131, .	2.0	0
23	Cellular Uptake, Cytotoxicity and Trafficking of Supported Lipid-Bilayer-Coated Lanthanide Upconverting Nanoparticles in Alveolar Lung Cancer Cells. ACS Applied Bio Materials, 2019, 2, 4527-4536.	4.6	12
24	Intrinsic Timeâ€Tunable Emissions in Core–Shell Upconverting Nanoparticle Systems. Angewandte Chemie, 2019, 131, 9844-9853.	2.0	2
25	Intrinsic Timeâ€Tunable Emissions in Core–Shell Upconverting Nanoparticle Systems. Angewandte Chemie - International Edition, 2019, 58, 9742-9751.	13.8	24
26	Recent insights into upconverting nanoparticles: spectroscopy, modeling, and routes to improved luminescence. Nanoscale, 2019, 11, 12015-12029.	5.6	83
27	Luminescence dynamics and enhancement of the UV and visible emissions of Tm ³⁺ in LiYF ₄ :Yb ³⁺ ,Tm ³⁺ upconverting nanoparticles. Nanoscale Advances, 2019, 1, 4492-4500.	4.6	18
28	Perspective: lanthanide-doped upconverting nanoparticles. Methods and Applications in Fluorescence, 2019, 7, 012004.	2.3	26
29	Radioluminescence studies of colloidal oleate-capped \hat{l}^2 -Na(Gd,Lu)F ₄ :Ln ³⁺ nanoparticles (Ln = Ce, Eu, Tb). Nanoscale, 2018, 10, 7821-7832.	5.6	30
30	Smart Self-Assembled Nanosystem Based on Water-Soluble Pillararene and Rare-Earth-Doped Upconversion Nanoparticles for pH-Responsive Drug Delivery. ACS Applied Materials & Eamp; Interfaces, 2018, 10, 4910-4920.	8.0	104
31	A NIR-responsive azobenzene-based supramolecular hydrogel using upconverting nanoparticles. Chemical Communications, 2018, 54, 5847-5850.	4.1	31
32	Double-Sensitive Drug Release System Based on MnO ₂ Assembled Upconversion Nanoconstruct for Double-Model Guided Chemotherapy. ACS Applied Nano Materials, 2018, 1, 1648-1656.	5.0	23
33	The effects of lanthanide-doped upconverting nanoparticles on cancer cell biomarkers. Nanoscale, 2018, 10, 14464-14471.	5.6	16
34	Dual Activity of Rose Bengal Functionalized to Albumin-Coated Lanthanide-Doped Upconverting Nanoparticles: Targeting and Photodynamic Therapy. ACS Applied Materials & Diterfaces, 2018, 10, 26947-26953.	8.0	62
35	A Route to Triggered Delivery via Photocontrol of Lipid Bilayer Properties Using Lanthanide Upconversion Nanoparticles. ACS Applied Nano Materials, 2018, 1, 5345-5354.	5.0	27
36	Absolute upconversion quantum yields of blue-emitting LiYF ₄ :Yb ³⁺ ,Tm ³⁺ upconverting nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 22556-22562.	2.8	66

#	Article	IF	CITATIONS
37	Counting the Photons: Determining the Absolute Storage Capacity of Persistent Phosphors. Materials, 2017, 10, 867.	2.9	47
38	Photoluminescent nanoplatforms in biomedical applications. Advances in Physics: X, 2016, 1, 194-225.	4.1	18
39	Formation of a Supported Lipid Bilayer on Faceted LiYF ₄ :Tm ³⁺ /Yb ³⁺ Upconversion Nanoparticles. Particle and Particle Systems Characterization, 2016, 33, 865-870.	2.3	26
40	Near-IR Triggered Photon Upconversion. Fundamental Theories of Physics, 2015, 47, 273-347.	0.3	9
41	Persistent and Photostimulated Red Emission in CaS:Eu ²⁺ ,Dy ³⁺ Nanophosphors. Advanced Optical Materials, 2015, 3, 551-557.	7.3	146
42	Photon upconversion nanomaterials. Chemical Society Reviews, 2015, 44, 1299-1301.	38.1	312
43	The Fluoride Host: Nucleation, Growth, and Upconversion of Lanthanideâ€Doped Nanoparticles. Advanced Optical Materials, 2015, 3, 482-509.	7.3	128
44	Intense NIR emissions at 0.8 μm, 1.47 μm, and 1.53 μm from colloidal LiYbF ₄ :Ln ³⁺ 17577-17583.	· (Ln) Tj ET 2.8	[Qq0 0 0 rgB] 11
45	Near infrared light mediated release of doxorubicin using upconversion nanoparticles. Chemical Communications, 2015, 51, 8477-8479.	4.1	47
46	Upconverting nanoparticles: assessing the toxicity. Chemical Society Reviews, 2015, 44, 1561-1584.	38.1	520
47	The near-IR photo-stimulated luminescence of CaS:Eu2+/Dy3+nanophosphors. Journal of Materials Chemistry C, 2014, 2, 228-231.	5.5	70
48	Lanthanideâ€Doped Upconverting Nanoparticles: Harvesting Light for Solar Cells. ChemSusChem, 2013, 6, 1308-1311.	6.8	35
49	A highly sensitive luminescent lectin sensor based on an \hat{l}_{\pm} -d-mannose substituted Tb3+ antenna complex. Dalton Transactions, 2013, 42, 9453.	3.3	13
50	Enhancing the color purity of the green upconversion emission from Er3+/Yb3+-doped GdVO4 nanocrystals via tuning of the sensitizer concentration. Journal of Materials Chemistry C, 2013, 1, 6536.	5.5	55
51	Imaging: High Relaxivities and Strong Vascular Signal Enhancement for NaGdF4Nanoparticles Designed for Dual MR/Optical Imaging (Adv. Healthcare Mater. 11/2013). Advanced Healthcare Materials, 2013, 2, 1477-1477.	7.6	4
52	Structure of NaYF ₄ Upconverting Nanoparticles: A Multinuclear Solid-State NMR and DFT Computational Study. Journal of Physical Chemistry C, 2013, 117, 25733-25741.	3.1	32
53	High Relaxivities and Strong Vascular Signal Enhancement for NaGdF ₄ Nanoparticles Designed for Dual MR/Optical Imaging. Advanced Healthcare Materials, 2013, 2, 1478-1488.	7.6	63
54	Response to "Critical Growth Temperature of Aqueous CdTe Quantum Dots is Nonâ€negligible for their Application as Nanothermometersâ€. Small, 2013, 9, 3198-3200.	10.0	8

#	Article	IF	CITATIONS
55	Enhancing upconverted white light in Tm^3+/Yb^3+/Ho^3+-doped GdVO_4 nanocrystals via incorporation of Li^+ ions. Optics Express, 2012, 20, 111.	3.4	87
56	High Resolution Fluorescence Imaging of Cancers Using Lanthanide Ion-Doped Upconverting Nanocrystals. Cancers, 2012, 4, 1067-1105.	3.7	53
57	Bio-functionalization of ligand-free upconverting lanthanide doped nanoparticles for bio-imaging and cell targeting. Nanoscale, 2012, 4, 3647.	5.6	94
58	Lanthanide-Doped Na _{<i>x</i>} ScF _{3+<i>x</i>} Nanocrystals: Crystal Structure Evolution and Multicolor Tuning. Journal of the American Chemical Society, 2012, 134, 8340-8343.	13.7	315
59	Photoswitching of bis-spiropyran using near-infrared excited upconverting nanoparticles. Chemical Communications, 2012, 48, 7244.	4.1	55
60	Water dispersible ultra-small multifunctional KGdF4:Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. Journal of Materials Chemistry, 2011, 21, 16589.	6.7	161
61	NIR-to-NIR Two-Photon Excited CaF ₂ :Tm ³⁺ ,Yb ³⁺ Nanoparticles: Multifunctional Nanoprobes for Highly Penetrating Fluorescence Bio-Imaging. ACS Nano, 2011, 5, 8665-8671.	14.6	381
62	Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly Luminescent Lanthanide-Doped Upconverting Nanoparticles. Nano Letters, 2011, 11, 835-840.	9.1	714
63	CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging. Small, 2011, 7, 1774-1778.	10.0	127
64	Upconversion in Er3+-doped Gd2O3 nanocrystals prepared by propellant synthesis and flame spray pyrolysis. Materials Research Bulletin, 2010, 45, 927-932.	5 . 2	17
65	Temperature Sensing Using Fluorescent Nanothermometers. ACS Nano, 2010, 4, 3254-3258.	14.6	1,284
66	Nanoparticles for highly efficient multiphoton fluorescence bioimaging. Optics Express, 2010, 18, 23544.	3 . 4	77
67	Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition. Journal of Materials Chemistry, 2010, 20, 7543.	6.7	98
68	CdSe Quantum Dots for Two-Photon Fluorescence Thermal Imaging. Nano Letters, 2010, 10, 5109-5115.	9.1	276
69	Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er ³⁺ , Yb ³⁺ upconverting nanoparticles. Nanoscale, 2010, 2, 495-498.	5 . 6	179
70	Luminescence resonance energy transfer from an upconverting nanoparticle to a fluorescent phycobiliprotein. Nanoscale, 2010, 2, 1185.	5.6	29
71	The Activeâ€Core/Activeâ€Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanideâ€Doped Nanoparticles. Advanced Functional Materials, 2009, 19, 2924-2929.	14.9	677
72	Colloidal Tm ³⁺ /Yb ³⁺ â€Doped LiYF ₄ Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Lowâ€Energy Excitation. Advanced Materials, 2009, 21, 4025-4028.	21.0	400

#	Article	IF	CITATIONS
73	Sensitized Ce ³⁺ and Gd ³⁺ Ultraviolet Emissions by Tm ³⁺ in Colloidal LiYF ₄ Nanocrystals. Chemistry - A European Journal, 2009, 15, 9660-9663.	3.3	63
74	Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF ₄ :Ho ³⁺ /Yb ³⁺ Nanoparticles. Chemistry of Materials, 2009, 21, 717-723.	6.7	357
75	Structural and optical investigation of colloidal Ln3+/Yb3+ co-doped KY3F10 nanocrystals. Journal of Materials Chemistry, 2009, 19, 3149.	6.7	84
76	Near-Infrared-to-Blue Upconversion in Colloidal BaYF ₅ :Tm ³⁺ , Yb ³⁺ Nanocrystals. Chemistry of Materials, 2009, 21, 1847-1851.	6.7	230
77	Bright White Upconversion Emission from Tm ³⁺ /Yb ³⁺ /Er ³⁺ -Doped Lu ₃ Ga ₅ O ₁₂ Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 17745-17749.	3.1	148
78	Lanthanide-doped fluoride nanoparticles: luminescence, upconversion, and biological applications. International Journal of Nanotechnology, 2008, 5, 1306.	0.2	108
79	Synthesis of Colloidal Upconverting NaYF ₄ :  Er ³⁺ /Yb ³⁺ and Tm ³⁺ /Yb ³⁺ Monodisperse Nanocrystals. Nano Letters, 2007, 7, 847-852.	9.1	693
80	Synthesis, Characterization, and Spectroscopy of NaGdF4:  Ce3+, Tb3+/NaYF4 Core/Shell Nanoparticles. Chemistry of Materials, 2007, 19, 3358-3360.	6.7	153
81	Synthesis of Colloidal Upconverting NaYF4Nanocrystals Doped with Er3+, Yb3+and Tm3+, Yb3+via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors. Journal of the American Chemical Society, 2006, 128, 7444-7445.	13.7	978
82	A theoretical study of trivalent lanthanide ion microsolvation in water clusters from first principles. International Journal of Mass Spectrometry, 2005, 241, 283-294.	1.5	21
83	Structural Investigation and Anti-Stokes Emission of Scandium Oxide Nanocrystals Activated with Trivalent Erbium. Journal of the Electrochemical Society, 2005, 152, H19.	2.9	12
84	A Spectroscopic Analysis of Blue and Ultraviolet Upconverted Emissions from Gd3Ga5O12:Tm3+, Yb3+Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 17400-17405.	2.6	177
85	Wet chemical synthesis and luminescence properties of erbium-doped nanocrystalline yttrium oxide. Journal of Materials Research, 2004, 19, 3398-3407.	2.6	16
86	Optical spectroscopy of lanthanide ions in Al2O3–Nb2O5–TeO2 glasses. Optical Materials, 2004, 25, 215-222.	3.6	32
87	Nanostructured Lanthanide-Doped Lu2O3Obtained by Propellant Synthesis. Chemistry of Materials, 2004, 16, 1330-1335.	6.7	47
88	Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals. Journal of Applied Physics, 2004, 96, 661-667.	2.5	514
89	Superoxide Dismutase Targets NO from GSNO to Cysî ² 93 of Oxyhemoglobin in Concentrated but Not Dilute Solutions of the Protein. Journal of the American Chemical Society, 2003, 125, 14370-14378.	13.7	47
90	Effect of Yb3+ Codoping on the Upconversion Emission in Nanocrystalline Y2O3:Er3+. Journal of Physical Chemistry B, 2003, 107, 1107-1112.	2.6	232

#	Article	IF	CITATIONS
91	Luminescence Spectroscopy and Near-Infrared to Visible Upconversion of Nanocrystalline Gd3Ga5O12:Er3+. Journal of Physical Chemistry B, 2003, 107, 10747-10752.	2.6	60
92	Concentration-Dependent Near-Infrared to Visible Upconversion in Nanocrystalline and Bulk Y2O3:Er3+. Chemistry of Materials, 2003, 15, 2737-2743.	6.7	290
93	Heme Nitrosylation of Deoxyhemoglobin byS-Nitrosoglutathione Requires Copper. Journal of Biological Chemistry, 2002, 277, 24135-24141.	3.4	20
94	980 nm excited upconversion in an Er-doped ZnO–TeO2 glass. Applied Physics Letters, 2002, 80, 1752-1754.	3.3	167
95	Fluorescence line-narrowing spectroscopy of a sodium phosphotantalate glass doped with Eu3+. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 587-596.	0.6	1
96	Enhancement of Red Emission (4F9/2 â†' 4l15/2) via Upconversion in Bulk and Nanocrystalline Cubic Y2O3:Er3+. Journal of Physical Chemistry B, 2002, 106, 1181-1187.	2.6	272
97	NIR to Visible Upconversion in Nanocrystalline and Bulk Lu2O3:Er3+. Journal of Physical Chemistry B, 2002, 106, 5622-5628.	2.6	123
98	Metal Chelators Inhibit S-Nitrosation of Cys \hat{l}^2 93 in Oxyhemoglobin. Journal of the American Chemical Society, 2001, 123, 1782-1783.	13.7	34
99	Electron paramagnetic resonance of Er3+ doped in YVO4: hyperfine parameters. Chemical Physics, 1999, 240, 313-318.	1.9	8
100	Notes. Trace element content of northern Ontario peat. Environmental Science &	10.0	19
101	Geochemistry of a subarctic salt marsh environment. Marine Geology, 1980, 37, 231-240.	2.1	1
102	Metal content of Sphagnum mosses from two Northern Canadian bog ecosystems. Water, Air, and Soil Pollution, 1978, 10, 215-220.	2.4	43