Christopher Macosko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3780512/publications.pdf

Version: 2024-02-01

200 papers

14,807 citations

20759 60 h-index 117 g-index

205 all docs

205 docs citations

205 times ranked 12277 citing authors

#	Article	IF	CITATIONS
1	Linear, Graft, and Beyond: Multiblock Copolymers as Next-Generation Compatibilizers. Jacs Au, 2022, 2, 310-321.	3.6	41
2	Degradation and Breakdown of Polymer/Graphene Composites under Strong Electric Field. Journal of Composites Science, 2022, 6, 139.	1.4	1
3	Improved Polypropylene Thermoformability through Polyethylene Layering. ACS Applied Materials & amp; Interfaces, 2022, 14, 34134-34142.	4.0	2
4	Evaluating <scp>PE</scp> / <scp>PLA</scp> interfacial tension using ternary immiscible polymer blends. Journal of Applied Polymer Science, 2021, 138, 50623.	1.3	7
5	Effects of a Layered Morphology on Drip Suppression in Burning Polymers. ACS Applied Polymer Materials, 2021, 3, 1664-1674.	2.0	8
6	Molecular Dynamics-Based Cohesive Law for Epoxy–Graphene Interfaces. Tribology Letters, 2021, 69, 1.	1.2	9
7	Robust networks of interfacial localized graphene in cocontinuous polymer blends. Journal of Rheology, 2021, 65, 1139-1153.	1.3	12
8	Imprinting Graphene on Polymer Substrates via Coextrusion. Industrial & Engineering Chemistry Research, 2020, 59, 15929-15935.	1.8	1
9	PET/Graphene Compatibilization for Different Aspect Ratio Graphenes via Trimellitic Anhydride Functionalization. ACS Omega, 2020, 5, 3228-3239.	1.6	16
10	Rheology of polymer multilayers: Slip in shear, hardening in extension. Journal of Rheology, 2019, 63, 751-761.	1.3	24
11	Accelerating the Coupling of Maleated Polyolefins with Polyesters via Tin Compounds. Macromolecules, 2019, 52, 8359-8366.	2.2	3
12	Polymer/Graphene Composites via Spinodal Decomposition of Miscible Polymer Blends. Macromolecules, 2019, 52, 7625-7637.	2.2	28
13	Higher-Order Structure in Amorphous Poly(ethylene terephthalate)/Graphene Nanocomposites and Its Correlation with Bulk Mechanical Properties. ACS Omega, 2019, 4, 1228-1237.	1.6	18
14	Effect of primary particle size and aggregate size of modified graphene oxide on toughening of unsaturated polyester resin. Polymer Composites, 2019, 40, 3886-3894.	2.3	1
15	Strategies for interfacial localization of graphene/polyethyleneâ€based cocontinuous blends for electrical percolation. AICHE Journal, 2019, 65, e16579.	1.8	23
16	Raman imaging of surface and sub-surface graphene oxide in fiber reinforced polymer nanocomposites. Carbon, 2019, 143, 793-801.	5.4	16
17	Nanoparticles in Glass Fiberâ€Reinforced Polyester Composites: Comparing Toughening Effects of Modified Graphene Oxide and Coreâ€Shell Rubber. Polymer Composites, 2019, 40, E1512-E1524.	2.3	15
18	Can nanoparticle toughen fiber-reinforced thermosetting polymers?. Journal of Materials Science, 2019, 54, 4471-4483.	1.7	31

#	Article	IF	CITATIONS
19	Effect of Graphene on Polypropylene/Maleic Anhydride- <i>graft</i> -Ethylene–Vinyl Acetate (PP/EVA- <i>g</i> -MA) Blend: Mechanical, Thermal, Morphological, and Rheological Properties. Industrial & Engineering Chemistry Research, 2018, 57, 7834-7845.	1.8	31
20	Role of Crystallization on Polyolefin Interfaces: An Improved Outlook for Polyolefin Blends. Macromolecules, 2018, 51, 2506-2516.	2.2	56
21	Effects of Inorganic Fillers on Toughening of Vinyl Ester Resins by Modified Graphene Oxide. Industrial & Description of Chemistry Research, 2018, 57, 4592-4599.	1.8	16
22	Toughening polylactide with a catalyzed epoxyâ€acid interfacial reaction. Polymer Engineering and Science, 2018, 58, 28-36.	1.5	9
23	Kinetic Control of Graphene Localization in Co-continuous Polymer Blends via Melt Compounding. Langmuir, 2018, 34, 1073-1083.	1.6	74
24	Reactive compatibilization of poly(lactic acid)/polystyrene blends and its application to preparation of hierarchically porous poly(lactic acid). Polymer, 2018, 134, 104-116.	1.8	34
25	Adapting a Capillary Rheometer for Research on Polymer Melt Interfaces. Industrial & Engineering Chemistry Research, 2018, 57, 14106-14113.	1.8	5
26	Polyethylene Terephthalate/Trimellitic Anhydride Modified Graphene Nanocomposites. ACS Applied Nano Materials, 2018, 1, 6301-6311.	2.4	21
27	Capillary Coatings: Flow and Drying Dynamics in Open Microchannels. Langmuir, 2018, 34, 7624-7639.	1.6	26
28	Combining polyethylene and polypropylene: Enhanced performance with PE/ <i>i</i> i> PP multiblock polymers. Science, 2017, 355, 814-816.	6.0	393
29	Dynamics of Capillary-Driven Flow in 3D Printed Open Microchannels. Langmuir, 2017, 33, 2949-2964.	1.6	34
30	Subâ€Micrometer Zeolite Films on Goldâ€Coated Silicon Wafers with Singleâ€Crystalâ€Like Dielectric Constant and Elastic Modulus. Advanced Functional Materials, 2017, 27, 1700864.	7.8	11
31	Polymer Day: Outreach Experiments for High School Students. Journal of Chemical Education, 2017, 94, 1629-1638.	1.1	31
32	Localizing graphene at the interface of cocontinuous polymer blends: Morphology, rheology, and conductivity of cocontinuous conductive polymer composites. Journal of Rheology, 2017, 61, 575-587.	1.3	107
33	Rheological characterization and thermal modeling of polyolefins for process design and tailored interfaces. AIP Conference Proceedings, 2017, , .	0.3	2
34	Long chain branching of PLA. AIP Conference Proceedings, 2017, , .	0.3	0
35	Unsaturated polyester resin toughening with very low loadings of GO derivatives. Polymer, 2017, 110, 149-157.	1.8	75
36	Modified-Graphene-Oxide-Containing Styrene Masterbatches for Thermosets. Industrial & Engineering Chemistry Research, 2017, 56, 11443-11450.	1.8	10

#	Article	IF	CITATIONS
37	Modeling the intrinsic viscosity of polydisperse disks. Journal of Rheology, 2017, 61, 997-1006.	1.3	3
38	Titelbild: Openâ€Pore Twoâ€Dimensional MFI Zeolite Nanosheets for the Fabrication of Hydrocarbonâ€Isomerâ€Selective Membranes on Porous Polymer Supports (Angew. Chem. 25/2016). Angewandte Chemie, 2016, 128, 7123-7123.	1.6	0
39	Rouse–Bueche theory and the calculation of the monomeric friction coefficient in a filled system. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1437-1442.	2.4	5
40	Reactive Compatibilization of Poly(ethylene terephthalate) and High-Density Polyethylene Using Amino-Telechelic Polyethylene. Macromolecules, 2016, 49, 8988-8994.	2.2	40
41	Fluorine-Enriched Melt-Blown Fibers from Polymer Blends of Poly(butylene terephthalate) and a Fluorinated Multiblock Copolyester. ACS Applied Materials & Samp; Interfaces, 2016, 8, 754-761.	4.0	33
42	Controlling the Morphology of Immiscible Cocontinuous Polymer Blends via Silica Nanoparticles Jammed at the Interface. Macromolecules, 2016, 49, 3911-3918.	2.2	85
43	Poly(urea ester): A family of biodegradable polymers with high melting temperatures. Journal of Polymer Science Part A, 2016, 54, 3795-3799.	2.5	15
44	Openâ€Pore Twoâ€Dimensional MFI Zeolite Nanosheets for the Fabrication of Hydrocarbonâ€Isomerâ€Selective Membranes on Porous Polymer Supports. Angewandte Chemie - International Edition, 2016, 55, 7184-7187.	7.2	100
45	Openâ€Pore Twoâ€Dimensional MFI Zeolite Nanosheets for the Fabrication of Hydrocarbonâ€Isomerâ€Selective Membranes on Porous Polymer Supports. Angewandte Chemie, 2016, 128, 7300-7303.	1.6	9
46	Zeolite Membranes: Oriented MFI Membranes by Gel-Less Secondary Growth of Sub-100 nm MFI-Nanosheet Seed Layers (Adv. Mater. 21/2015). Advanced Materials, 2015, 27, 3339-3339.	11.1	0
47	Immiscible blend morphology after shear and elongation. AIP Conference Proceedings, 2015, , .	0.3	1
48	Effect of extensional viscosity on cocontinuity of immiscible polymer blends. Journal of Rheology, 2015, 59, 1397-1417.	1.3	45
49	Oriented MFI Membranes by Gelâ€Less Secondary Growth of Subâ€100 nm MFIâ€Nanosheet Seed Layers. Advanced Materials, 2015, 27, 3243-3249.	11.1	182
50	Evaluating sag resistance with a multinotched applicator: correlation with surface flow measurements and practical recommendations. Journal of Coatings Technology Research, 2015, 12, 809-817.	1.2	8
51	Dynamics and rheology of nonpolar bijels. Soft Matter, 2015, 11, 5282-5293.	1.2	75
52	Sag in drying coatings: Prediction and real time measurement with particle tracking. Progress in Organic Coatings, 2015, 86, 49-58.	1.9	10
53	Interfacial Tension Measurement and Micellization in a Polymer Blend with Copolymer Surfactant: A False Critical Micelle Concentration. Macromolecules, 2015, 48, 8154-8168.	2.2	13
54	Stabilization of PE/PEO Cocontinuous Blends by Interfacial Nanoclays. Macromolecules, 2015, 48, 4631-4644.	2.2	78

#	Article	IF	CITATIONS
55	2D Zeolite Coatings: Langmuir–Schaefer Deposition of 3 nm Thick MFI Zeolite Nanosheets. Angewandte Chemie - International Edition, 2015, 54, 6571-6575.	7.2	67
56	Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy. Molecular Pharmaceutics, 2015, 12, 4329-4335.	2.3	30
57	Epoxy Toughening with Low Graphene Loading. Advanced Functional Materials, 2015, 25, 575-585.	7.8	301
58	Accelerating Reactive Compatibilization of PE/PLA Blends by an Interfacially Localized Catalyst. ACS Macro Letters, 2015, 4, 30-33.	2.3	52
59	Does Graphene Change <i>T</i> _g of Nanocomposites?. Macromolecules, 2014, 47, 8311-8319.	2.2	119
60	Thermoplastic polyurethane elastomers from bio-based poly (\hat{l} -decalactone) diols. Polymer Chemistry, 2014, 5, 3231-3237.	1.9	49
61	AFM Probing of Polymer/Nanofiller Interfacial Adhesion and Its Correlation with Bulk Mechanical Properties in a Poly(ethylene terephthalate) Nanocomposite. Langmuir, 2014, 30, 12950-12959.	1.6	22
62	Influence of Functionalized Graphene Sheets on Modulus and Glass Transition of PMMA. Macromolecules, 2014, 47, 7674-7676.	2.2	29
63	Rheology of compatibilized immiscible blends with droplet-matrix and cocontinuous morphologies during coarsening. Journal of Rheology, 2014, 58, 1935-1953.	1.3	41
64	Formation of curcumin nanoparticles by flash nanoprecipitation from emulsions. Journal of Colloid and Interface Science, 2014, 434, 65-70.	5.0	36
65	A simple route towards graphene oxide frameworks. Materials Horizons, 2014, 1, 139-145.	6.4	60
66	Melt crystallization of poly(ethylene terephthalate): Comparing addition of graphene vs. carbon nanotubes. Polymer, 2014, 55, 2077-2085.	1.8	74
67	Reactive coupling between immiscible polymer chains: Acceleration by compressive flow. AICHE Journal, 2013, 59, 3391-3402.	1.8	19
68	Functionalized linear low-density polyethylene by ring-opening metathesis polymerization. Polymer Chemistry, 2013, 4, 1193-1198.	1.9	25
69	Nanofibers from Melt Blown Fiber-in-Fiber Polymer Blends. ACS Macro Letters, 2013, 2, 301-305.	2.3	84
70	Adhesion between polyethylenes and different types of polypropylenes. Polymer Journal, 2012, 44, 939-945.	1.3	13
71	An aqueous pathway to polymeric foaming with nanoclay. Green Chemistry, 2012, 14, 766.	4.6	7
72	Rheological and morphological study of cocontinuous polymer blends during coarsening. Journal of Rheology, 2012, 56, 1315-1334.	1.3	54

#	Article	IF	CITATIONS
73	Porous Films via PE/PEO Cocontinuous Blends. Macromolecules, 2012, 45, 6036-6044.	2.2	52
74	Amino-Functionalized Polyethylene for Enhancing the Adhesion between Polyolefins and Polyurethanes. Industrial & Engineering Chemistry Research, 2011, 50, 3274-3279.	1.8	27
75	Effect of Thermally Reduced Graphene Sheets on the Phase Behavior, Morphology, and Electrical Conductivity in Poly[$(\hat{l}\pm$ -methyl styrene)-co-(acrylonitrile)/poly(methyl-methacrylate) Blends. ACS Applied Materials & Diterfaces, 2011, 3, 3172-3180.	4.0	66
76	Flow accelerates adhesion between functional polyethylene and polyurethane. AICHE Journal, 2011, 57, 3496-3506.	1.8	31
77	Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods. Polymer, 2011, 52, 1837-1846.	1.8	358
78	Graphene/Polymer Nanocomposites. Macromolecules, 2010, 43, 6515-6530.	2.2	2,979
79	Annealing of Cocontinuous Polymer Blends: Effect of Block Copolymer Molecular Weight and Architecture. Macromolecules, 2010, 43, 5024-5032.	2.2	61
80	Direct Measurement of Interface Anisotropy of Bicontinuous Structures via 3D Image Analysis. Langmuir, 2010, 26, 14284-14293.	1.6	21
81	Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chemistry of Materials, 2010, 22, 3441-3450.	3.2	1,242
82	Polymer-polymer interfacial slip by direct visualization and by stress reduction. Journal of Rheology, 2010, 54, 1207-1218.	1.3	32
83	A new model for the coarsening of cocontinuous morphologies. Soft Matter, 2010, 6, 2637.	1.2	44
84	Models for adhesion at weak polymer interfaces. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2313-2319.	2.4	7
85	Processing-property relationships of polycarbonate/graphene composites. Polymer, 2009, 50, 3797-3809.	1.8	610
86	Characterizing Interface Shape Evolution in Immiscible Polymer Blends via 3D Image Analysis. Langmuir, 2009, 25, 9392-9404.	1.6	58
87	Polymer-polymer interfacial slip in multilayered films. Journal of Rheology, 2009, 53, 893-915.	1.3	73
88	Coarsening of PS/SAN Blends with Cocontinuous Morphology Studied with 3D Image Analysis. Macromolecular Symposia, 2009, 283-284, 348-353.	0.4	3
89	Morphology and Properties of Polyester/Exfoliated Graphite Nanocomposites. Macromolecules, 2008, 41, 3317-3327.	2.2	395
90	Mechanical Properties of Linear Lowâ€density Polyethylene (LLDPE)/clay Nanocomposites: Estimation of Aspect Ratio and İnterfacial Strength by Composite Models. Journal of Macromolecular Science - Physics, 2008, 47, 608-619.	0.4	49

#	Article	IF	Citations
91	Deformation and Rheology of Co-Continuous Blends. AIP Conference Proceedings, 2008, , .	0.3	O
92	Morphology and Rheology of Cocontinuous Blends. AIP Conference Proceedings, 2008, , .	0.3	1
93	Impact of Rheology on Meltblown Polymer Nanofibers. AIP Conference Proceedings, 2008, , .	0.3	1
94	Synchrotron X-ray Microtomography for 3D Imaging of Polymer Blends. Macromolecules, 2007, 40, 2029-2035.	2.2	57
95	Synthesis of lamellar isobutyl silicates and dispersion in polypropylene melts. Journal of Applied Polymer Science, 2007, 105, 1456-1465.	1.3	3
96	Polymer–polymer mutual diffusion via rheology of coextruded multilayers. AICHE Journal, 2007, 53, 978-985.	1.8	25
97	Dispersing organoclay in polystyrene melts: Roles of stress and diffusion. Central South University, 2007, 14, 196-201.	0.5	6
98	Interfacial slip reduces polymer-polymer adhesion during coextrusion. Journal of Rheology, 2006, 50, 41-57.	1.3	60
99	Direct Correlation Between Adhesion Promotion and Coupling Reaction at Immiscible Polymer-Polymer Interfaces. Journal of Adhesion, 2006, 82, 887-902.	1.8	20
100	Rheology of highly concentrated anionic surfactants. Rheologica Acta, 2006, 45, 891-898.	1.1	11
101	Reactions at polymer–polymer interfaces for blend compatibilization. Progress in Polymer Science, 2005, 30, 939-947.	11.8	212
102	Development of discrete nanopores. II. Comparison between layered films and blends of polyolefins. Journal of Applied Polymer Science, 2005, 95, 708-718.	1.3	3
103	Block copolymer compatibilization of cocontinuous polymer blends. Polymer, 2005, 46, 183-191.	1.8	137
104	Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene. Polymer Engineering and Science, 2005, 45, 1487-1497.	1.5	18
105	Interfacial Morphology Development during PS/PMMA Reactive Coupling. Macromolecules, 2005, 38, 6586-6591.	2.2	55
106	Nanoclayâ€Modified Rigid Polyurethane Foam. Journal of Macromolecular Science - Physics, 2005, 44, 897-908.	0.4	147
107	Comparison of methods for the detection of cocontinuity in poly(ethylene oxide)/polystyrene blends. Polymer Engineering and Science, 2004, 44, 714-727.	1.5	62
108	Strain hardening in polypropylenes and its role in extrusion foaming. Polymer Engineering and Science, 2004, 44, 2090-2100.	1.5	231

#	Article	IF	Citations
109	Development of discrete nanopores I: Tension of polypropylene/ polyethylene copolymer blends. Journal of Applied Polymer Science, 2004, 91, 3642-3650.	1.3	14
110	Structure and Rheology of Hydrogen Bond Reinforced Liquid Crystals. Chemistry of Materials, 2004, 16, 3045-3055.	3.2	44
111	Coupling Reactions of End- vs Mid-Functional Polymers. Macromolecules, 2004, 37, 2563-2571.	2.2	68
112	Effect of Thermodynamic Interactions on Reactions at Polymer/Polymer Interfaces. Macromolecules, 2003, 36, 7212-7219.	2.2	59
113	Adhesion between Immiscible Polymers Correlated with Interfacial Entanglements. Macromolecules, 2003, 36, 2808-2815.	2.2	94
114	Compatibilized blends of thermoplastic polyurethane (TPU) and polypropylene. Macromolecular Symposia, 2003, 198, 221-232.	0.4	35
115	Role of Block Copolymers on Suppression of Droplet Coalescence. Macromolecules, 2002, 35, 7845-7855.	2.2	177
116	Slip at polymer–polymer interfaces: Rheological measurements on coextruded multilayers. Journal of Rheology, 2002, 46, 145-167.	1.3	191
117	Modeling of coalescence in polymer blends. AICHE Journal, 2002, 48, 7-14.	1.8	73
118	Reactivity of common functional groups with urethanes: Models for reactive compatibilization of thermoplastic polyurethane blends. Journal of Polymer Science Part A, 2002, 40, 2310-2328.	2.5	105
119	Interfacial crosslinking and diffusion via extensional rheometry. Polymer Engineering and Science, 2002, 42, 1-9.	1.5	11
120	Block Copolymers in Homopolymer Blends:Â Interface vs Micelles. Macromolecules, 2001, 34, 8663-8668.	2.2	93
121	Interfacial Energy and Adhesion between Acrylic Pressure Sensitive Adhesives and Release Coatings. Journal of Adhesion, 2001, 77, 95-123.	1.8	15
122	Phase transition and elasticity of protein-based hydrogels. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 229-242.	1.9	40
123	Synthesis ofend- andmid-Phthalic Anhydride Functional Polymers by Atom Transfer Radical Polymerization. Macromolecules, 2001, 34, 7941-7951.	2.2	28
124	Swelling Behavior of \hat{l}^3 -Irradiation Cross-Linked Elastomeric Polypentapeptide-Based Hydrogels. Macromolecules, 2001, 34, 4114-4123.	2.2	74
125	Improving polymer blend dispersion in mini-mixers. Polymer Engineering and Science, 2001, 41, 118-130.	1.5	105
126	A comparison of boundary element and finite element methods for modeling axisymmetric polymeric drop deformation. International Journal for Numerical Methods in Fluids, 2001, 37, 837-864.	0.9	14

#	Article	IF	CITATIONS
127	The Influence of Block Copolymers on Silica-Filled Polyisoprene. Materials Research Society Symposia Proceedings, 2000, 661, KK7.3.1.	0.1	1
128	Anionic synthesis and detection of fluorescence-labeled polymers with a terminal anhydride group. Journal of Polymer Science Part A, 2000, 38, 2177-2185.	2.5	18
129	Coalescence in polymer blends during shearing. AICHE Journal, 2000, 46, 229-238.	1.8	91
130	Reaction injection molding process of glass fiber reinforced polyurethane composites. Polymer Engineering and Science, 2000, 40, 2205-2216.	1.5	18
131	Block Copolymer Based Pressure Sensitive Adhesives Modified with PPO for Increased Service Temperatures. Journal of Adhesion, 2000, 73, 65-85.	1.8	2
132	The Reactive Formation of Diblock Copolymer at a Polymer/Polymer Interface and its Effect on Interfacial Structure. Materials Research Society Symposia Proceedings, 2000, 629, 1.	0.1	1
133	Adhesion Enhancement Via Crystalline-Embedded Entanglements in Melt-Processed Layered Structures. Materials Research Society Symposia Proceedings, 2000, 629, 1.	0.1	0
134	Coalescence in blends of thermoplastic polyurethane with polyolefins. Polymer Engineering and Science, 1999, 39, 1022-1034.	1.5	41
135	Interfacial Reaction Induced Roughening in Polymer Blends. Macromolecules, 1999, 32, 106-110.	2.2	102
136	Sol-gel polycondensation kinetic modeling: Methylethoxysilanes. AICHE Journal, 1998, 44, 1141-1156.	1.8	54
137	Urea hard segment morphology in flexible polyurethane foam. , 1998, 36, 573-581.		37
138	Nonlinear shear and extensional rheology of long-chain randomly branched polybutadiene. Journal of Rheology, 1998, 42, 1303-1327.	1.3	95
139	Imaging Open-Cell Polyurethane Foam via Confocal Microscopy. ACS Symposium Series, 1997, , 165-177.	0.5	8
140	Flow-Induced Reactive Self-Assembly. Macromolecules, 1997, 30, 1243-1246.	2.2	83
141	Effect of Silicone Surfactant on Air Flow of Flexible Polyurethane Foams. ACS Symposium Series, 1997, , 130-142.	0.5	5
142	Extensional viscosity from entrance pressure drop measurements. Rheologica Acta, 1997, 36, 144-151.	1.1	68
143	Can extensional viscosity be measured with opposed-nozzle devices?. Rheologica Acta, 1997, 36, 429-448.	1.1	76
144	Microstructure of triblock copolymers in asphalt oligomers. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2857-2877.	2.4	64

#	Article	IF	CITATIONS
145	Copolymerization kinetics of a model siloxane system. Journal of Polymer Science Part A, 1997, 35, 1293-1302.	2.5	17
146	Structure development in cyanate ester polymerization. Polymer International, 1997, 44, 237-247.	1.6	27
147	Hydrolysis and blistering of cyanate ester networks. Journal of Applied Polymer Science, 1997, 64, 107-113.	1.3	43
148	Microstructure of triblock copolymers in asphalt oligomers. , 1997, 35, 2857.		1
149	Can extensional viscosity be measured with opposed-nozzle devices?. Rheologica Acta, 1997, 36, 429-448.	1.1	9
150	Transient extensional viscosity from a rotational shear rheometer using fiberâ€windup technique. Journal of Rheology, 1996, 40, 473-481.	1.3	31
151	Sol-Gel Kinetics for the Preparation of Inorganic/Organic Siloxane Copolymers. Materials Research Society Symposia Proceedings, 1996, 435, 113.	0.1	5
152	Simultaneous measurement of viscoelastic changes and cell opening during processing of flexible polyurethane foam. Rheologica Acta, 1996, 35, 656-666.	1.1	40
153	Influence of normal stress difference on polymer drop deformation. Polymer Engineering and Science, 1996, 36, 1647-1655.	1.5	134
154	Wetting of fiber mats for composites manufacturing: I. Visualization experiments. AICHE Journal, 1995, 41, 2261-2273.	1.8	70
155	Wetting of fiber mats for composites manufacturing: II. Air entrapment model. AICHE Journal, 1995, 41, 2274-2281.	1.8	37
156	Milligrams to kilograms: An evaluation of mixers for reactive polymer blending. Polymer Engineering and Science, 1995, 35, 100-114.	1.5	71
157	Tandem GC/MS: A useful tool for studying end-capping reactions of oligo(styryl)lithium anions. Journal of Polymer Science Part A, 1995, 33, 1957-1967.	2.5	7
158	Kinetics of amine-cyclic anhydride reactions in moderately polar solutions. Journal of Polymer Science Part A, 1995, 33, 2165-2174.	2.5	27
159	Transmission electron microscopy of saturated hydrocarbon block copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 247-252.	2.4	65
160	Rheological and Mechanical Properties of Filled Rubber: Silica-Silicone. Rubber Chemistry and Technology, 1994, 67, 820-833.	0.6	36
161	Model experiments for the interfacial reaction between polymers during reactive polymer blending. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 205-213.	2.4	75
162	Heat transfer and cure in pultrusion: Model and experimental verification. AICHE Journal, 1993, 39, 1228-1241.	1.8	40

#	Article	IF	CITATIONS
163	The recirculating screw mixer: A new small-volume mixer for the polymer laboratory. Polymer Engineering and Science, 1993, 33, 1065-1078.	1.5	7
164	Effect of reinforcing fillers on the rheology of polymer melts. Journal of Rheology, 1992, 36, 1165-1182.	1.3	258
165	Kinetic model for crosslinking free radical polymerization including diffusion limitations. Journal of Applied Polymer Science, 1992, 44, 1711-1729.	1.3	86
166	Thermal, mechanical, and fracture properties of copolyureas formed by reaction injection molding: Effects of hard segment structure. Journal of Applied Polymer Science, 1991, 42, 1023-1039.	1.3	11
167	Calculation of average molecular properties during nonlinear, living copolymerization. Die Makromolekulare Chemie, 1991, 192, 377-404.	1.1	14
168	Monte Carlo description of Af homopolymerization: Diffusional effects. Journal of Chemical Physics, 1991, 95, 2097-2108.	1.2	52
169	Reaction Kinetics and Injection Molding of Liquid Silicone Rubber. Rubber Chemistry and Technology, 1991, 64, 218-233.	0.6	14
170	Chemorheology relations for epoxy-amine crosslinking. Journal of Polymer Science, Part B: Polymer Physics, 1990, 28, 691-709.	2.4	45
171	Modeling strategy for systems with both stepwise and chainwise chemistry: Amine-epoxy networks with etherification. Journal of Polymer Science, Part B: Polymer Physics, 1990, 28, 2585-2606.	2.4	24
172	Interfacial Interactions in Silica Reinforced Silicones. Materials Research Society Symposia Proceedings, 1989, 170, 303.	0.1	7
173	DSC and 13C-NMR studies of the imidazole-accelerated reaction between epoxides and phenols. Journal of Applied Polymer Science, 1989, 38, 1253-1269.	1.3	49
174	Phase separation during fast (RIM) polyâ€urethane polymerization. Makromolekulare Chemie Macromolecular Symposia, 1989, 25, 23-44.	0.6	21
175	Microdispersive interfacial mixing in fast polymerizations. AICHE Journal, 1988, 34, 1057-1064.	1.8	19
176	Network parameters for crosslinking of chains with length and site distribution. Journal of Polymer Science, Part B: Polymer Physics, 1988, 26, 1-54.	2.4	68
177	Molecular weight relations for crosslinking of chains with length and site distribution. Journal of Polymer Science, Part B: Polymer Physics, 1987, 25, 2441-2469.	2.4	46
178	Kinetics of isocyanate amine reactions. Journal of Applied Polymer Science, 1987, 34, 2409-2432.	1.3	45
179	Rheological changes during crosslinking. British Polymer Journal, 1985, 17, 239-245.	0.7	64
180	Polymerization of dicyclopentadiene: A new reaction injection molding system. Journal of Applied Polymer Science, 1985, 30, 2787-2803.	1.3	45

#	Article	IF	CITATIONS
181	Rheometers for molten plastics: A practical guide to testing and property measurement, John M. Dealy, Van Nostrand, 1982, 272 Pages,\$37.00. AICHE Journal, 1985, 31, 346-346.	1.8	O
182	Heat Transfer and Property Development in Liquid Silicone Rubber Molding. Rubber Chemistry and Technology, 1985, 58, 436-448.	0.6	9
183	Viscosity Rise during Free Radical Crosslinking Polymerization with Inhibition. Journal of Rheology, 1985, 29, 259-272.	1.3	45
184	The influence of impingement mixing on striation thickness distribution and properties in fast polyurethane polymerization. Polymer Engineering and Science, 1982, 22, 388-392.	1.5	72
185	Stress relaxation and dynamic viscoelastic properties of end-linked poly(dimethyl siloxane) networks containing unattached poly(dimethyl siloxane). Journal of Polymer Science, Polymer Physics Edition, 1981, 19, 1745-1757.	1.0	25
186	Impingement mixing in reaction injection molding. Polymer Engineering and Science, 1980, 20, 868-874.	1.5	85
187	Kinetics and conversion monitoring in a RIM themoplastic polyurethane system. Journal of Applied Polymer Science, 1980, 25, 2317-2329.	1.3	38
188	Plastics process engineering. James L. Throne. 944 pp. Marcel Dekker, 1979,\$65.00. AICHE Journal, 1980, 26, 331-331.	1.8	0
189	Calculation of molecular parameters for stepwise polyfunctional polymerization. Polymer Engineering and Science, 1979, 19, 272-283.	1.5	126
190	Conversion and Composition Profiles in Polyurethane Reaction Molding. ACS Symposium Series, 1979, , 149-179.	0.5	7
191	Curing and heat transfer in polyurethane reaction molding. Polymer Engineering and Science, 1978, 18, 382-387.	1.5	53
192	Kinetics and energetics of a fast polyurethane cure. Journal of Applied Polymer Science, 1977, 21, 2029-2039.	1.3	103
193	A forced torsional oscillator for dynamic mechanical measurements. Polymer Engineering and Science, 1977, 17, 32-37.	1.5	25
194	Rheological changes during a urethane network polymerization. Polymer Engineering and Science, 1976, 16, 803-810.	1.5	124
195	Heat transfer and curing in polymer reaction molding. AICHE Journal, 1976, 22, 268-276.	1.8	79
196	Analysis of the normal stress extruder. AICHE Journal, 1974, 20, 67-73.	1.8	8
197	Mechanical equilibrium for eccentric rotating disks. AICHE Journal, 1974, 20, 600-602.	1.8	9
198	Viscous dissipation in die flows. AICHE Journal, 1974, 20, 785-795.	1.8	81

#	Article	lF	CITATIONS
199	Rheology of network forming systems. Polymer Engineering and Science, 1973, 13, 236-240.	1.5	105
200	Tensile yield energy in glassy polymers. Polymer Engineering and Science, 1972, 12, 444-449.	1.5	15