
Gordon D Airey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3779974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterisation of fatigue damage in asphalt mixtures using X-ray computed tomography. Road Materials and Pavement Design, 2023, 24, 653-671.	4.0	17
2	The composition of the material phase responsible for the self-healing of macro-cracks in asphalt mortar beams. Road Materials and Pavement Design, 2022, 23, 656-665.	4.0	4
3	Application of image analysis tools in Matlab to better estimate the degree of binder coverage in rolling bottles test. Road Materials and Pavement Design, 2022, 23, 601-616.	4.0	5
4	Effects of ageing on the damage tolerance of polymer modified bitumens investigated through the LAS test and fluorescence microscopy. International Journal of Pavement Engineering, 2022, 23, 1083-1094.	4.4	8
5	Rutting analysis of different rubberised stone mastic asphalt mixtures: from binders to mixtures. Road Materials and Pavement Design, 2022, 23, 2098-2114.	4.0	7
6	Temperature Dependency of the Stiffening Effect of Hydrated Lime in Stone Mastic Asphalt (SMA) Mixtures. RILEM Bookseries, 2022, , 1743-1749.	0.4	0
7	Fracture Characterization of Stone Mastic Asphalt (SMA) with Hydrated Lime Through the Semi-circular Bending Test Approach. RILEM Bookseries, 2022, , 935-941.	0.4	0
8	Rheological Properties and Rutting Characterization of Natural Rubber Modified Bitumen. RILEM Bookseries, 2022, , 1595-1602.	0.4	0
9	An Overview of Black Space Evaluation of Performance and Distress Mechanisms in Asphalt Materials. RILEM Bookseries, 2022, , 231-237.	0.4	4
10	Experimental Investigation on Water Loss and Stiffness of CBTM Using Different RA Sources. RILEM Bookseries, 2022, , 11-17.	0.4	3
11	Comparison of the Effects of Hydrated Lime on the Moisture-Induced Damage of Stone Mastic Asphalt (SMA) Mixtures. RILEM Bookseries, 2022, , 465-471.	0.4	0
12	Moisture susceptibility assessment of hydrated lime modified asphalt mixture and surface energy. International Journal of Pavement Engineering, 2022, 23, 599-611.	4.4	4
13	Effect of hydrated lime and other mineral fillers on stiffening and oxidative ageing in bitumen mastic. Construction and Building Materials, 2022, 315, 125789.	7.2	10
14	Black Space Rheological Assessment of Asphalt Material Behavior. Journal of Testing and Evaluation, 2022, 50, 20210205.	0.7	3
15	Renewable binders from waste biomass for road construction: A review on thermochemical conversion technologies and current developments. Construction and Building Materials, 2022, 330, 127076.	7.2	15
16	Micromechanics-Based Viscoelasticity Predictions of Crumb Rubber Modified Bitumen Considering Polymer Network Effects. Transportation Research Record, 2022, 2676, 73-88.	1.9	7
17	Simulation of micro-crack initiation and propagation under repeated load in asphalt concrete using zero-thickness cohesive elements. Construction and Building Materials, 2022, 342, 127934.	7.2	17
18	Environmental effects on the rheological properties of fine warm RAP-foamed bitumen mixtures using SATS conditioning protocol. International Journal of Pavement Engineering, 2021, 22, 1273-1283.	4.4	4

#	Article	IF	CITATIONS
19	Microstructure and rheological response of laboratory-aged SBS-modified bitumens. Road Materials and Pavement Design, 2021, 22, 372-396.	4.0	21
20	Enhancement of curing properties of cold in-place recycling asphalt mixtures by induction heating. International Journal of Pavement Engineering, 2021, 22, 355-368.	4.4	13
21	Sustainable utilization of bauxite residue (Red Mud) as a road material in pavements: A critical review. Construction and Building Materials, 2021, 270, 121419.	7.2	80
22	Performance-related and rheological characterisation of natural rubber modified bitumen. Construction and Building Materials, 2021, 268, 121058.	7.2	9
23	Moisture susceptibility of hydrated lime modified mastics using adhesion test methods and surface free energy techniques. International Journal of Pavement Engineering, 2021, 22, 829-841.	4.4	13
24	Rheological characterisation of cold bitumen emulsion slurries. Road Materials and Pavement Design, 2021, 22, S232-S250.	4.0	3
25	Stiffening Effect of Fillers Based on Rheology and Micromechanics Models. Applied Sciences (Switzerland), 2021, 11, 6521.	2.5	9
26	Modelling the stiffness development in asphalt concrete to obtain fatigue failure criteria. Construction and Building Materials, 2021, 306, 124837.	7.2	5
27	Effect of foaming technique and mixing temperature on the rheological characteristics of fine RAP-foamed bitumen mixtures. Road Materials and Pavement Design, 2020, 21, 2143-2159.	4.0	8
28	Simulating plant produced material in the laboratory to replicate rheological and fatigue properties. Road Materials and Pavement Design, 2020, 21, 253-261.	4.0	7
29	Effect of different viscous rejuvenators on chemical and mechanical behavior of aged and recovered bitumen from RAP. Construction and Building Materials, 2020, 239, 117755.	7.2	27
30	Applicability of time-temperature superposition for laboratory-aged neat and SBS-modified bitumens. Construction and Building Materials, 2020, 263, 120964.	7.2	15
31	Thermo-rheological analysis of WMA-additive modified binders. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	11
32	Multi-Scale Rheo-Mechanical Study of SMA Mixtures Containing Fine Crumb Rubber in a New Dry-Hybrid Technology. Applied Sciences (Switzerland), 2020, 10, 3887.	2.5	5
33	Data Compression Approach for Long-Term Monitoring of Pavement Structures. Infrastructures, 2020, 5, 1.	2.8	5
34	Experimental Exploration of Influence of Recycled Polymer Components on Rutting Resistance and Fatigue Behavior of Asphalt Mixtures. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	16
35	Comparative Evaluation of Moisture Susceptibility Test Methods for Routine Usage in Asphalt Mixture Design. Journal of Testing and Evaluation, 2020, 48, 88-106.	0.7	5
36	Binder and Mixture Fatigue Performance of Plant-Produced Road Surface Course Asphalt Mixtures with High Contents of Reclaimed Asphalt. Sustainability, 2019, 11, 3752.	3.2	7

#	Article	IF	CITATIONS
37	Investigating the Effect of Artificial Ageing on the Creep and Recovery of SBS-Modified Bitumen. MATEC Web of Conferences, 2019, 271, 03009.	0.2	3
38	Intrinsic adhesive and cohesive assessment of the moisture sensitivity of bio-rejuvenated recycled asphalt binders. Road Materials and Pavement Design, 2019, 20, S347-S364.	4.0	15
39	Development of compression pull-off test (CPOT) to assess bond strength of bitumen. Construction and Building Materials, 2019, 207, 412-421.	7.2	16
40	Developing the multiple stress–strain creep recovery (MS-SCR) test. Mechanics of Time-Dependent Materials, 2019, 23, 97-117.	4.4	3
41	Linear viscous approach to predict rut depth in asphalt mixtures. Construction and Building Materials, 2018, 169, 775-793.	7.2	10
42	Moisture sensitivity examination of asphalt mixtures using thermodynamic, direct adhesion peel and compacted mixture mechanical tests. Road Materials and Pavement Design, 2018, 19, 120-138.	4.0	13
43	Structural design of pavements incorporating foamed bitumen mixtures. Proceedings of Institution of Civil Engineers: Construction Materials, 2018, 171, 22-35.	1.1	6
44	Physical and rheological characterization of carbonated bitumen for paving applications. Materials and Design, 2018, 140, 345-356.	7.0	0
45	Effect of ageing on the morphology and creep and recovery of polymer-modified bitumens. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	63
46	The effects of laboratory ageing on rheological and fracture characteristics of different rubberised bitumens. Construction and Building Materials, 2018, 180, 188-198.	7.2	34
47	Mix design considerations of foamed bitumen mixtures with reclaimed asphalt pavement material. International Journal of Pavement Engineering, 2017, 18, 902-915.	4.4	26
48	Moisture damage evaluation of aggregate–bitumen bonds with the respect of moisture absorption, tensile strength and failure surface. Road Materials and Pavement Design, 2017, 18, 833-848.	4.0	21
49	Evaluation of the fracture performance of different rubberised bitumens based on the essential work of fracture. Engineering Fracture Mechanics, 2017, 179, 203-212.	4.3	13
50	New simplified approach for obtaining a reliable plateau value in fatigue analysis of bituminous materials. Engineering Failure Analysis, 2017, 79, 263-273.	4.0	13
51	Linear viscoelastic properties of high reclaimed asphalt content mixes with biobinders. Road Materials and Pavement Design, 2017, 18, 241-251.	4.0	30
52	Evaluation of the degradation of fine asphalt-aggregate mixtures containing high reclaimed asphalt pavement contents. Road Materials and Pavement Design, 2017, 18, 91-107.	4.0	23
53	Laboratory evaluation of Rediset modified bitumen based on rheology and adhesion properties. Construction and Building Materials, 2017, 152, 683-692.	7.2	16
54	Active fillers' effect on <i>in situ</i> performances of foam bitumen recycled mixtures. Road Materials and Pavement Design, 2017, 18, 281-296.	4.0	25

#	Article	IF	CITATIONS
55	Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders. Mechanics of Time-Dependent Materials, 2016, 20, 455-480.	4.4	23
56	Chemical pavement modifications to reduce ice adhesion. Proceedings of the Institution of Civil Engineers: Transport, 2016, 169, 76-87.	0.6	7
57	Development of a tool to assess in-situ curing of Foamed Bitumen Mixtures. Construction and Building Materials, 2016, 124, 55-68.	7.2	9
58	A Comparison of Uniform and 3-D Tyre Contact Pressure Representations Using a Finite Element Method. Transportation Research Procedia, 2016, 14, 2402-2410.	1.5	1
59	LINEAR AND NONLINEAR FRACTIONAL HEREDITARY CONSTITUTIVE LAWS OF ASPHALT MIXTURES. Journal of Civil Engineering and Management, 2016, 22, 882-889.	3.5	28
60	Towards 100% recycling of reclaimed asphalt in road surface courses: binder design methodology and case studies. Journal of Cleaner Production, 2016, 131, 43-51.	9.3	84
61	Discrete element modelling of creep of asphalt mixtures. Geomechanics and Geoengineering, 2016, 11, 64-72.	1.8	6
62	Development of a composite substrate peel test to assess moisture sensitivity of aggregate–bitumen bonds. International Journal of Adhesion and Adhesives, 2016, 68, 133-141.	2.9	14
63	Rubberised bitumen manufacturing assisted by rheological measurements. Road Materials and Pavement Design, 2016, 17, 290-310.	4.0	21
64	Experimental Study of Moisture Sensitivity of Aggregate-Bitumen Bonding Strength Using a New Pull-Off Test. RILEM Bookseries, 2016, , 719-733.	0.4	2
65	Experimental evaluation of cohesive and adhesive bond strength and fracture energy of bitumen-aggregate systems. Materials and Structures/Materiaux Et Constructions, 2016, 49, 2653-2667.	3.1	51
66	Mechanical and structural assessment of laboratory- and field-compacted asphalt mixtures. International Journal of Pavement Engineering, 2016, 17, 50-63.	4.4	63
67	Relative Near Surface Pavement Performance for Dual and Wide-Base Tyre Assemblies Using a Finite Element Method. RILEM Bookseries, 2016, , 757-762.	0.4	0
68	Moisture-Induced Debonding Mechanisms in Asphalt Mixtures. RILEM Bookseries, 2016, , 589-595.	0.4	0
69	Moisture damage assessment using surface energy, bitumen stripping and the SATS moisture conditioning procedure. International Journal of Pavement Engineering, 2015, 16, 411-431.	4.4	32
70	Accelerated swell testing of artificial sulfate bearing lime stabilised cohesive soils. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3635-3655.	3.1	2
71	Influence of aggregate absorption and diffusion properties on moisture damage in asphalt mixtures. Road Materials and Pavement Design, 2015, 16, 404-422.	4.0	36
72	Influence of waxes on adhesion properties of bituminous binders. Construction and Building Materials, 2015, 76, 404-412.	7.2	30

#	Article	IF	CITATIONS
73	Stiffness of cold asphalt mixtures with recycled aggregates from construction and demolition waste. Construction and Building Materials, 2015, 77, 168-178.	7.2	44
74	Chemically modified bitumens with enhanced rheology and adhesion properties to siliceous aggregates. Construction and Building Materials, 2015, 93, 766-774.	7.2	28
75	Influence of aggregate mineralogical composition on water resistance of aggregate–bitumen adhesion. International Journal of Adhesion and Adhesives, 2015, 62, 45-54.	2.9	99
76	An investigation on using pre-treated tyre rubber as a replacement of synthetic polymers for bitumen modification. Road Materials and Pavement Design, 2015, 16, 245-264.	4.0	41
77	Microstructural characterisation of dry mixed rubberised asphalt mixtures. Construction and Building Materials, 2015, 82, 173-183.	7.2	32
78	Binder design of high RAP content hot and warm asphalt mixture wearing courses. Road Materials and Pavement Design, 2015, 16, 460-474.	4.0	34
79	A study into the use of crumb rubber in railway ballast. Construction and Building Materials, 2015, 75, 19-24.	7.2	108
80	Application of Fickian and non-Fickian diffusion models to study moisture diffusion in asphalt mastics. Materials and Structures/Materiaux Et Constructions, 2015, 48, 1461-1474.	3.1	26
81	Moisture-induced strength degradation of aggregate–asphalt mastic bonds. Road Materials and Pavement Design, 2014, 15, 239-262.	4.0	73
82	Laboratory Mix Design of Asphalt Mixture Containing Reclaimed Material. Advances in Materials Science and Engineering, 2014, 2014, 1-11.	1.8	20
83	A dissipated energy comparison to evaluate fatigue resistance using 2-point bending. Journal of Traffic and Transportation Engineering (English Edition), 2014, 1, 49-54.	4.2	17
84	Evaluation of Moisture Sorption and Diffusion Characteristics of Asphalt Mastics Using Manual and Automated Gravimetric Sorption Techniques. Journal of Materials in Civil Engineering, 2014, 26, .	2.9	27
85	Examination of moisture sensitivity of aggregate–bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests. International Journal of Pavement Engineering, 2014, 15, 657-670.	4.4	75
86	Characterisation of micro-structural damage in asphalt mixtures using image analysis. Construction and Building Materials, 2014, 54, 27-38.	7.2	73
87	Observation of reversible moisture damage in asphalt mixtures. Construction and Building Materials, 2014, 60, 73-80.	7.2	50
88	Rheological behavior of bitumen mixed with Trinidad lake asphalt. Construction and Building Materials, 2014, 66, 361-367.	7.2	32
89	Assessing asphalt mixture moisture susceptibility through intrinsic adhesion, bitumen stripping and mechanical damage. Road Materials and Pavement Design, 2014, 15, 131-152.	4.0	81
90	Toward more realistic viscosity measurements of tyre rubber–bitumen blends. Construction and Building Materials, 2014, 67, 270-278.	7.2	24

#	Article	IF	CITATIONS
91	An investigation into the effects of accelerated curing on Cold Recycled Bituminous Mixes. , 2014, , 1177-1188.		14
92	Application of surface free energy techniques to evaluate bitumen-aggregate bonding strength and bituminous mixture moisture sensitivity. Proceedings of Institution of Civil Engineers: Construction Materials, 2014, 167, 214-226.	1.1	12
93	Laboratory Mix Design Procedure for Foamed Bitumen Mixtures. Transportation Research Record, 2014, 2444, 1-10.	1.9	13
94	End-performance evaluation of thiourea-modified bituminous binders through viscous flow and linear viscoelasticy testing. Rheologica Acta, 2013, 52, 145-154.	2.4	10
95	Discrete element modelling of uniaxial constant strain rate tests on asphalt mixtures. Granular Matter, 2013, 15, 163-174.	2.2	18
96	Moisture damage in asphalt mixtures using the modified SATS test and image analysis. Construction and Building Materials, 2013, 43, 165-173.	7.2	39
97	Fundamental characterisation of reclaimed asphalts: the importance of testing homogeneous specimens. Road Materials and Pavement Design, 2013, 14, 120-131.	4.0	8
98	Modelling the rheological properties of bituminous binders using the 2S2P1D Model. Construction and Building Materials, 2013, 38, 395-406.	7.2	110
99	Modelling the rheological properties of bituminous binders using mathematical equations. Construction and Building Materials, 2013, 40, 174-188.	7.2	113
100	Evaluation of Stiffness and Fatigue Using 2 Point Bending and Indirect Tensile Fatigue Tests. , 2013, , .		3
101	The role of ettringite in the deterioration of artificial lime stabilised soils: a microstructural study. Road Materials and Pavement Design, 2013, 14, 586-614.	4.0	10
102	Tyre rubber-modified bitumens development: the effect of varying processing conditions. Road Materials and Pavement Design, 2013, 14, 888-900.	4.0	80
103	Asphalt damage characterisation from cyclic test and X-ray computed tomography. Proceedings of the Institution of Civil Engineers: Transport, 2013, 166, 203-213.	0.6	7
104	Optimising the moisture durability SATS conditioning parameters for universal asphalt mixture application. International Journal of Pavement Engineering, 2012, 13, 433-450.	4.4	24
105	A Comparative Study of Phase Angle Predictive Equations Using Bituminous Binder Data. Arabian Journal for Science and Engineering, 2012, 37, 1571-1583.	1.1	7
106	Stress Intensity Factors at the Tip of a Surface Initiated Crack Caused by Different Contact Pressure Distributions. Procedia, Social and Behavioral Sciences, 2012, 48, 733-742.	0.5	6
107	Manufacturing Terminal and Field Bitumen-Tyre Rubber Blends: The Importance of Processing Conditions. Procedia, Social and Behavioral Sciences, 2012, 53, 485-494.	0.5	53
108	The Effects Non-uniform Contact Pressure Distribution Has on Surface Distress of Flexible Pavements Using a Finite Element Method. RILEM Bookseries, 2012, , 347-357.	0.4	2

#	Article	IF	CITATIONS
109	Effect of Moisture Conditioning on Fatigue Properties of Sulphur Modified Asphalt Mixtures. RILEM Bookseries, 2012, , 793-803.	0.4	6
110	The Influence of Mineral Fillers on Mastic Aging Properties. , 2011, , .		12
111	Numerical implementation and validation of a nonlinear viscoelastic and viscoplastic model for asphalt mixes. International Journal of Pavement Engineering, 2011, 12, 433-447.	4.4	41
112	Rheology of polyacrylate binders produced via catalytic chain transfer polymerization as an alternative to bitumen in road pavement materials. European Polymer Journal, 2011, 47, 1300-1314.	5.4	17
113	Development of an automatic torque test to measure the shear bond strength between asphalt. Construction and Building Materials, 2011, 25, 623-629.	7.2	31
114	Modelling the linear viscoelastic rheological properties of bituminous binders. Construction and Building Materials, 2011, 25, 2171-2189.	7.2	158
115	Moisture Susceptibility of High and Low Compaction Dry Process Crumb Rubber–Modified Asphalt Mixtures. Transportation Research Record, 2010, 2180, 121-129.	1.9	41
116	Shear bond strength between asphalt layers for laboratory prepared samples and field cores. Construction and Building Materials, 2009, 23, 2251-2258.	7.2	72
117	Effect of Compaction Mode on the Mechanical Performance and Variability of Asphalt Mixtures. Journal of Transportation Engineering, 2009, 135, 839-851.	0.9	28
118	Rheological properties of polyacrylates used as synthetic road binders. Rheologica Acta, 2008, 47, 751-763.	2.4	38
119	The effect of asphalt mixture gradation and compaction energy on aggregate degradation. Construction and Building Materials, 2008, 22, 972-980.	7.2	73
120	The influence of aggregate, filler and bitumen on asphalt mixture moisture damage. Construction and Building Materials, 2008, 22, 2015-2024.	7.2	175
121	Nonlinear viscoelastic analysis of unaged and aged asphalt binders. Construction and Building Materials, 2008, 22, 2170-2179.	7.2	86
122	Rheological characteristics of synthetic road binders. Fuel, 2008, 87, 1763-1775.	6.4	91
123	Probabilistic Analysis of Fracture in Asphalt Mixtures Caused by Moisture Damage. Transportation Research Record, 2008, 2057, 28-36.	1.9	59
124	Linear Viscoelastic Behaviour of Polyacrylate Binders and Bitumen Blends. Road Materials and Pavement Design, 2008, 9, 13-35.	4.0	14
125	Effects of Pressure and Aging in SATS Test. Journal of Transportation Engineering, 2007, 133, 618-624.	0.9	16
126	Advanced constitutive modelling of bituminous materials. International Journal of Pavement Engineering, 2006, 7, 153-165.	4.4	8

#	Article	IF	CITATIONS
127	A Dissipated Energy Approach to Fatigue Evaluation. Road Materials and Pavement Design, 2006, 7, 47-69.	4.0	136
128	Special Issue on Asphalt Technology <i>EATA 2006</i> . Road Materials and Pavement Design, 2006, 7, 263-263.	4.0	0
129	A Dissipated Energy Approach to Fatigue Evaluation. Road Materials and Pavement Design, 2006, 7, 47-69.	4.0	18
130	Rheological and fracture characteristics of low penetration grade bitumen. Road Materials and Pavement Design, 2004, 5, 107-131.	4.0	7
131	Crumb Rubber and Bitumen Interaction as a Function of Crude Source and Bitumen Viscosity. Road Materials and Pavement Design, 2004, 5, 453-475.	4.0	27
132	Styrene butadiene styrene polymer modification of road bitumens. Journal of Materials Science, 2004, 39, 951-959.	3.7	225
133	Combined bituminous binder and mixture linear rheological properties. Construction and Building Materials, 2004, 18, 535-548.	7.2	106
134	Linear Rheological Behavior of Bituminous Paving Materials. Journal of Materials in Civil Engineering, 2004, 16, 212-220.	2.9	75
135	Fundamental Binder and Practical Mixture Evaluation of Polymer Modified Bituminous Materials. International Journal of Pavement Engineering, 2004, 5, 137-151.	4.4	96
136	Aggregate Orientation and Segregation in Laboratory-Compacted Asphalt Samples. Transportation Research Record, 2004, 1891, 8-15.	1.9	70
137	Crumb Rubber and Bitumen Interaction as a Function of Crude Source and Bitumen Viscosity. Road Materials and Pavement Design, 2004, 5, 453-475.	4.0	4
138	Rheological properties of styrene butadiene styrene polymer modified road bitumens⋆. Fuel, 2003, 82, 1709-1719.	6.4	624
139	Linear Viscoelastic Performance of Asphaltic Materials. Road Materials and Pavement Design, 2003, 4, 269-292.	4.0	25
140	State of the Art Report on Ageing Test Methods for Bituminous Pavement Materials. International Journal of Pavement Engineering, 2003, 4, 165-176.	4.4	240
141	Absorption of Bitumen into Crumb Rubber Using the Basket Drainage Method. International Journal of Pavement Engineering, 2003, 4, 105-119.	4.4	140
142	Viscoelastic linearity limits for bituminous materials. Materials and Structures/Materiaux Et Constructions, 2003, 36, 643-647.	3.1	8
143	Creep Testing of Bitumens Using the Dynamic Shear Rheometer. International Journal of Pavement Engineering, 2002, 3, 107-116.	4.4	11
144	Use of Black Diagrams to Identify Inconsistencies in Rheological Data. Road Materials and Pavement Design, 2002, 3, 403-424.	4.0	199

#	Article	IF	CITATIONS
145	State of the Art Report on Moisture Sensitivity Test Methods for Bituminous Pavement Materials. Road Materials and Pavement Design, 2002, 3, 355-372.	4.0	87
146	Properties of Polymer Modified Bitumen after Rubber-Bitumen Interaction. Journal of Materials in Civil Engineering, 2002, 14, 344-354.	2.9	100
147	Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Construction and Building Materials, 2002, 16, 473-487.	7.2	339
148	State of the Art Report on Moisture Sensitivity Test Methods for Bituminous Pavement Materials. Road Materials and Pavement Design, 2002, 3, 355-372.	4.0	7
149	Use of Black Diagrams to Identify Inconsistencies in Rheological Data. Road Materials and Pavement Design, 2002, 3, 403-424.	4.0	137
150	Evaluación del efecto rejuvenecedor de bio-materiales sobre ligantes para mezclas con alto contenido de asfalto recuperado. Materiales De Construccion, 1957, 7, 130.	0.7	6
151	Use of Imaging Techniques for Viewing the Internal Structure of Rubberised Asphalt Mixtures. Applied Mechanics and Materials, 0, 695, 8-11.	0.2	6