Yi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3779873/publications.pdf

Version: 2024-02-01

1125743 759233 13 341 12 13 citations h-index g-index papers 14 14 14 233 citing authors all docs docs citations times ranked

#	Article	lF	CITATIONS
1	Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles. Science of the Total Environment, 2020, 725, 138387.	8.0	73
2	Bok choy (Brassica rapa) grown in copper oxide nanoparticles-amended soils exhibits toxicity in a phenotype-dependent manner: Translocation, biodistribution and nutritional disturbance. Journal of Hazardous Materials, 2020, 398, 122978.	12.4	45
3	Evaluation of the Effects of Nanomaterials on Rice (<i>Oryza sativa</i> L.) Responses: Underlining the Benefits of Nanotechnology for Agricultural Applications. ACS Agricultural Science and Technology, 2021, 1, 44-54.	2.3	31
4	Therapeutic Delivery of Nanoscale Sulfur to Suppress Disease in Tomatoes: In Vitro Imaging and Orthogonal Mechanistic Investigation. ACS Nano, 2022, 16, 11204-11217.	14.6	28
5	Factors affecting fate and transport of engineered nanomaterials in terrestrial environments. Current Opinion in Environmental Science and Health, 2018, 6, 47-53.	4.1	26
6	Effects of different surface-coated nTiO2 on full-grown carrot plants: Impacts on root splitting, essential elements, and Ti uptake. Journal of Hazardous Materials, 2021, 402, 123768.	12.4	25
7	Soil and foliar exposure of soybean (Glycine max) to Cu: Nanoparticle coating-dependent plant responses. NanoImpact, 2022, 26, 100406.	4.5	22
8	Differential physiological and biochemical impacts of nano vs micron Cu at two phenological growth stages in bell pepper (Capsicum annuum) plant. NanoImpact, 2019, 14, 100161.	4.5	18
9	Metabolomic analysis reveals dose-dependent alteration of maize (Zea mays L.) metabolites and mineral nutrient profiles upon exposure to zerovalent iron nanoparticles. NanoImpact, 2021, 23, 100336.	4.5	18
10	Impact of engineered nanomaterials on rice (Oryza sativa L.): A critical review of current knowledge. Environmental Pollution, 2022, 297, 118738.	7.5	18
11	Soil-aged nano titanium dioxide effects on full-grown carrot: Dose and surface-coating dependent improvements on growth and nutrient quality. Science of the Total Environment, 2021, 774, 145699.	8.0	15
12	Growth, Gas Exchange, and Mineral Nutrients of Ornamental Grasses Irrigated with Saline Water. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 1840-1846.	1.0	15
13	Interaction of nanomaterials in secondary metabolites accumulation, photosynthesis, and nitrogen fixation in plant systems. Comprehensive Analytical Chemistry, 2019, 84, 55-74.	1.3	7