Gary Lewin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3779651/publications.pdf

Version: 2024-02-01

		17440	13771
156	17,944	63	129
papers	citations	h-index	g-index
177	175	275	1 4001
175	175	175	14291
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The naked truth: a comprehensive clarification and classification of current â€~myths' in naked moleâ€rat biology. Biological Reviews, 2022, 97, 115-140.	10.4	62
2	Immune competence and spleen size scale with colony status in the naked mole-rat. Open Biology, 2022, 12, 210292.	3.6	6
3	SPFH protein cage—Âone ring to rule them all. Cell Research, 2022, 32, 117-118.	12.0	8
4	USH2A is a Meissner's corpuscle protein necessary for normal vibration sensing in mice and humans. Nature Neuroscience, 2021, 24, 74-81.	14.8	52
5	A Sweet Story of Metabolic Innovation in the Naked Mole-Rat. Advances in Experimental Medicine and Biology, 2021, 1319, 271-286.	1.6	9
6	Hearing and Vocalizations in the Naked Mole-Rat. Advances in Experimental Medicine and Biology, 2021, 1319, 157-195.	1.6	10
7	A Role for STOML3 in Olfactory Sensory Transduction. ENeuro, 2021, 8, ENEURO.0565-20.2021.	1.9	8
8	African Naked Mole-Rats Demonstrate Extreme Tolerance to Hypoxia and Hypercapnia. Advances in Experimental Medicine and Biology, 2021, 1319, 255-269.	1.6	25
9	The Somatosensory World of the African Naked Mole-Rat. Advances in Experimental Medicine and Biology, 2021, 1319, 197-220.	1.6	10
10	Cultural transmission of vocal dialect in the naked mole-rat. Science, 2021, 371, 503-507.	12.6	67
11	Collagen Organization Within the Cartilage of Trpv4 â^'/â^' Mice Studied with Twoâ€Photon Microscopy and Polarized Second Harmonic Generation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 504-514.	1.5	2
12	SUMOylation of Enzymes and Ion Channels in Sensory Neurons Protects against Metabolic Dysfunction, Neuropathy, and Sensory Loss in Diabetes. Neuron, 2020, 107, 1141-1159.e7.	8.1	27
13	William D. Willis, Jr, MD, PhD Memorial Lecture: The evolutionary history of nerve growth factor and nociception. Pain, 2020, 161, S36-S47.	4.2	5
14	The Sensory Coding of Warm Perception. Neuron, 2020, 106, 830-841.e3.	8.1	119
15	Independent evolution of pain insensitivity in African mole-rats: origins and mechanisms. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 313-325.	1.6	9
16	TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration. ELife, 2020, 9, .	6.0	43
17	Rapid molecular evolution of pain insensitivity in multiple African rodents. Science, 2019, 364, 852-859.	12.6	57
18	Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability. Neuron, 2018, 97, 806-822.e10.	8.1	119

#	Article	IF	CITATIONS
19	Mechanoelectrical transduction in chondrocytes. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 481-488.	1.9	41
20	VoltageÂgating of mechanosensitive PIEZO channels. Nature Communications, 2018, 9, 1096.	12.8	118
21	The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice. Science Translational Medicine, 2018, 10, .	12.4	247
22	The neural circuits of thermal perception. Current Opinion in Neurobiology, 2018, 52, 98-106.	4.2	37
23	The Absence of Sensory Axon Bifurcation Affects Nociception and Termination Fields of Afferents in the Spinal Cord. Frontiers in Molecular Neuroscience, 2018, 11, 19.	2.9	27
24	Maf links Neuregulin1 signaling to cholesterol synthesis in myelinating Schwann cells. Genes and Development, 2018, 32, 645-657.	5.9	22
25	Specialized mechanoreceptor systems in rodent glabrous skin. Journal of Physiology, 2018, 596, 4995-5016.	2.9	66
26	Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science, 2017, 356, 307-311.	12.6	503
27	Lipidome determinants of maximal lifespan in mammals. Scientific Reports, 2017, 7, 5.	3.3	60
28	Small-molecule inhibition of STOML3 oligomerization reverses pathological mechanical hypersensitivity. Nature Neuroscience, 2017, 20, 209-218.	14.8	59
29	Congenital deafness is associated with specific somatosensory deficits in adolescents. Scientific Reports, 2017, 7, 4251.	3.3	9
30	Genetic Tracing of Cav3.2 T-Type Calcium Channel Expression in the Peripheral Nervous System. Frontiers in Molecular Neuroscience, 2017, 10, 70.	2.9	31
31	Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. ELife, 2017, 6, .	6.0	190
32	A Molecular Signature of Myalgia in Myotonic Dystrophy 2. EBioMedicine, 2016, 7, 205-211.	6.1	16
33	Hypofunctional TrkA Accounts for the Absence of Pain Sensitization in the African Naked Mole-Rat. Cell Reports, 2016, 17, 748-758.	6.4	51
34	Fxyd2 regulates Al̂´- and C-fiber mechanosensitivity and is required for the maintenance of neuropathic pain. Scientific Reports, 2016, 6, 36407.	3.3	22
35	Measurement of Vibration Detection Threshold and Tactile Spatial Acuity in Human Subjects. Journal of Visualized Experiments, 2016 , , .	0.3	6
36	A Probabilistic Model for Estimating the Depth and Threshold Temperature of C-fiber Nociceptors. Scientific Reports, 2015, 5, 17670.	3.3	7

#	Article	IF	Citations
37	Photoswitchable fatty acids enable optical control of TRPV1. Nature Communications, 2015, 6, 7118.	12.8	126
38	GABA Blocks Pathological but Not Acute TRPV1 Pain Signals. Cell, 2015, 160, 759-770.	28.9	119
39	Sensory mechanotransduction at membrane-matrix interfaces. Pflugers Archiv European Journal of Physiology, 2015, 467, 121-132.	2.8	36
40	ASICs and mammalian mechanoreceptor function. Neuropharmacology, 2015, 94, 80-86.	4.1	55
41	PIEZO2 is required for mechanotransduction in human stem cell–derived touch receptors. Nature Neuroscience, 2015, 18, 10-16.	14.8	102
42	Water-Induced Finger Wrinkles Do Not Affect Touch Acuity or Dexterity in Handling Wet Objects. PLoS ONE, 2014, 9, e84949.	2. 5	13
43	Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination. Genes and Development, 2014, 28, 290-303.	5.9	76
44	Subunitâ€specific inhibition of acid sensing ion channels by stomatinâ€like protein 1. Journal of Physiology, 2014, 592, 557-569.	2.9	13
45	Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature, 2014, 516, 121-125.	27.8	660
46	Inhibition of c-Kit signaling is associated with reduced heat and cold pain sensitivity in humans. Pain, 2014, 155, 1222-1228.	4.2	10
47	Nerve Growth Factor and Nociception: From Experimental Embryology to New Analgesic Therapy. Handbook of Experimental Pharmacology, 2014, 220, 251-282.	1.8	63
48	Proâ€neurotrophins, sortilin, and nociception. European Journal of Neuroscience, 2014, 39, 363-374.	2.6	44
49	A somatosensory circuit for cooling perception in mice. Nature Neuroscience, 2014, 17, 1560-1566.	14.8	72
50	Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nature Communications, 2014, 5, 3520.	12.8	229
51	Natural Selection and Pain Meet at a Sodium Channel. Science, 2013, 342, 428-429.	12.6	4
52	Hairy Sensation. Physiology, 2013, 28, 142-150.	3.1	66
53	Stomatinâ€domain protein interactions with acidâ€sensing ion channels modulate nociceptor mechanosensitivity. Journal of Physiology, 2013, 591, 5555-5574.	2.9	45
54	Abstract 215: Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1 , 2013, , .		0

#	Article	IF	CITATIONS
55	A Genetic Basis for Mechanosensory Traits in Humans. PLoS Biology, 2012, 10, e1001318.	5.6	61
56	A stomatin dimer modulates the activity of acid-sensing ion channels. EMBO Journal, 2012, 31, 3635-3646.	7.8	72
57	The Transcription Factor c-Maf Controls Touch Receptor Development and Function. Science, 2012, 335, 1373-1376.	12.6	147
58	KCNQ4 K+ channels tune mechanoreceptors for normal touch sensation in mouse and man. Nature Neuroscience, 2012, 15, 138-145.	14.8	95
59	Regulation of ASIC channels by a stomatin/STOML3 complex located in a mobile vesicle pool in sensory neurons. Open Biology, 2012, 2, 120096.	3.6	38
60	Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nature Medicine, 2012, 18, 1232-1238.	30.7	159
61	Specific paucity of unmyelinated Câ€fibers in cutaneous peripheral nerves of the African nakedâ€mole rat: Comparative analysis using six species of bathyergidae. Journal of Comparative Neurology, 2012, 520, 2785-2803.	1.6	27
62	Stomatin-domain proteins. European Journal of Cell Biology, 2012, 91, 240-245.	3.6	100
63	$\widehat{\text{Gl}}$ ±q/11 signaling tonically modulates nociceptor function and contributes to activity-dependent sensitization. Pain, 2012, 153, 184-196.	4.2	31
64	Presynaptically Localized Cyclic GMP-Dependent Protein Kinase 1 Is a Key Determinant of Spinal Synaptic Potentiation and Pain Hypersensitivity. PLoS Biology, 2012, 10, e1001283.	5.6	82
65	The Molecular and Cellular Identity of Peripheral Osmoreceptors. Neuron, 2011, 69, 332-344.	8.1	141
66	Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nature Neuroscience, 2011, 14, 54-61.	14.8	157
67	The Ca _v 3.2 Tâ€type calcium channel regulates temporal coding in mouse mechanoreceptors. Journal of Physiology, 2011, 589, 2229-2243.	2.9	49
68	The Molecular Basis of Acid Insensitivity in the African Naked Mole-Rat. Science, 2011, 334, 1557-1560.	12.6	123
69	Laminin-332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons. Nature Neuroscience, 2011, 14, 993-1000.	14.8	66
70	Peripheral calcium-permeable AMPA receptors regulate chronic inflammatory pain in mice. Journal of Clinical Investigation, 2011, 121, 1608-1623.	8.2	53
71	Ultraviolet-B-induced mechanical hyperalgesia: A role for peripheral sensitisation. Pain, 2010, 150, 141-152.	4.2	57
72	Absence of Histamine-Induced Itch in the African Naked Mole-Rat and "Rescue―by Substance P. Molecular Pain, 2010, 6, 1744-8069-6-29.	2.1	35

#	Article	IF	Citations
73	Evidence for a protein tether involved in somatic touch. EMBO Journal, 2010, 29, 855-867.	7.8	84
74	RAPID REPORT: An <i>in vivo</i> tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors. Journal of Physiology, 2010, 588, 1695-1707.	2.9	28
75	Functional Neurokinin and NMDA Receptor Activity in an Animal Naturally Lacking Substance P: The Naked Mole-Rat. PLoS ONE, 2010, 5, e15162.	2.5	20
76	Naked Mole Rats: Their Extraordinary Sensory World. , 2010, , 505-512.		1
77	Nociceptors: a phylogenetic view. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 1089-1106.	1.6	190
78	Peripheral sensitisation of nociceptors via Gâ€proteindependent potentiation of mechanotransduction currents. Journal of Physiology, 2009, 587, 3493-3503.	2.9	54
79	Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. EMBO Journal, 2009, 28, 1479-1491.	7.8	83
80	Blind and naked, but oh so cool: The subterranean world of the naked moleâ€rat. FASEB Journal, 2009, 23, 416.4.	0.5	0
81	Stretching it for pain. Pain, 2008, 137, 3-4.	4.2	3
82	Speed and Temperature Dependences of Mechanotransduction in Afferent Fibers Recorded From the Mouse Saphenous Nerve. Journal of Neurophysiology, 2008, 100, 2771-2783.	1.8	51
83	Selective Inflammatory Pain Insensitivity in the African Naked Mole-Rat (Heterocephalus glaber). PLoS Biology, 2008, 6, e13.	5.6	157
84	Nociceptive Tuning by Stem Cell Factor/c-Kit Signaling. Neuron, 2007, 56, 893-906.	8.1	61
85	Stomatin and Sensory Neuron Mechanotransduction. Journal of Neurophysiology, 2007, 98, 3802-3808.	1.8	44
86	Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nature Neuroscience, 2007, 10, 1449-1457.	14.8	244
87	A stomatin-domain protein essential for touch sensation in the mouse. Nature, 2007, 445, 206-209.	27.8	225
88	The high threshold mechanotransducer: A status report. Pain, 2006, 120, 3-7.	4.2	40
89	Mechanosensitive currents in the neurites of cultured mouse sensory neurones. Journal of Physiology, 2006, 577, 815-828.	2.9	156
90	A role for T-type Ca2+ channels in mechanosensation. Cell Calcium, 2006, 40, 165-174.	2.4	21

#	Article	IF	CITATIONS
91	Chapter 13 Finding Sensory Neuron Mechanotransduction Components. Current Topics in Membranes, 2006, , 379-414.	0.9	1
92	The sensory mechanotransduction ion channel ASIC2 (acid sensitive ion channel 2) is regulated by neurotrophin availability. Neuroscience, 2005, 131, 499-511.	2.3	43
93	Role of T-Type Calcium Current in Identified D-Hair Mechanoreceptor Neurons Studied In Vitro. Journal of Neuroscience, 2004, 24, 8480-8484.	3.6	66
94	A plethora of painful molecules. Current Opinion in Neurobiology, 2004, 14, 443-449.	4.2	39
95	Mechanosensation and pain. Journal of Neurobiology, 2004, 61, 30-44.	3.6	200
96	The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. Gastroenterology, 2004, 127, 1739-1747.	1.3	138
97	The AMPA Receptor Subunits GluR-A and GluR-B Reciprocally Modulate Spinal Synaptic Plasticity and Inflammatory Pain. Neuron, 2004, 44, 637-650.	8.1	188
98	Identification of Caveolae-like Structures on the Surface of Intact Cells Using Scanning Force Microscopy. Journal of Membrane Biology, 2003, 194, 97-108.	2.1	12
99	A T-type calcium channel required for normal function of a mammalian mechanoreceptor. Nature Neuroscience, 2003, 6, 724-730.	14.8	136
100	cGMP-mediated signalling via cGKI \hat{l}_{\pm} is required for the guidance and connectivity of sensory axons. BMC News and Views, 2003, 3, .	0.0	0
101	cGMP-mediated signaling via cGKl $\hat{l}\pm$ is required for the guidance and connectivity of sensory axons. Journal of Cell Biology, 2002, 159, 489-498.	5.2	116
102	Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Genes and Development, 2002, 16, 633-645.	5.9	84
103	The Homeodomain Factor Lbx1 Distinguishes Two Major Programs of Neuronal Differentiation in the Dorsal Spinal Cord. Neuron, 2002, 34, 551-562.	8.1	343
104	The DRASIC Cation Channel Contributes to the Detection of Cutaneous Touch and Acid Stimuli in Mice. Neuron, 2002, 35, 407.	8.1	0
105	Neurotrophin-4. Current Biology, 2002, 12, 1401-1404.	3.9	59
106	GFR α 2/neurturin signalling regulates noxious heat transduction in isolectin B ₄ â€binding mouse sensory neurons. Journal of Physiology, 2002, 545, 43-50.	2.9	55
107	BDNF but not NT-4 is required for normal flexion reflex plasticity and function. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8107-8112.	7.1	77
108	The DRASIC Cation Channel Contributes to the Detection of Cutaneous Touch and Acid Stimuli in Mice. Neuron, 2001, 32, 1071-1083.	8.1	569

#	Article	IF	Citations
109	Lack of Neurotrophin-4 Causes Selective Structural and Chemical Deficits in Sympathetic Ganglia and Their Preganglionic Innervation. Journal of Neuroscience, 2001, 21, 3073-3084.	3.6	35
110	Selective activation of nociceptors by P2X receptor agonists in normal and inflamed rat skin. Journal of Physiology, 2001, 534, 437-445.	2.9	107
111	Neurotrophins, nociceptors and pain. Current Opinion in Anaesthesiology, 2000, 13, 573-576.	2.0	21
112	The mammalian sodium channel BNC1 is required for normal touch sensation. Nature, 2000, 407, 1007-1011.	27.8	469
113	Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8140-8145.	7.1	348
114	A new role for neurotrophins: involvement of brainâ€derived neurotrophic factor and neurotrophinâ€4 in hair cycle control. FASEB Journal, 1999, 13, 395-410.	0.5	93
115	Cellular Sources of Enhanced Brain-Derived Neurotrophic Factor Production in a Mouse Model of Allergic Inflammation Notice to Professional Recruitment and Announcement Advertisers. American Journal of Respiratory Cell and Molecular Biology, 1999, 21, 537-546.	2.9	152
116	Neurotrophins: A Link between Airway Inflammation and Airway Smooth Muscle Contractility in Asthma?. International Archives of Allergy and Immunology, 1999, 118, 163-165.	2.1	63
117	Stability and plasticity of primary afferent projections following nerve regeneration and central degeneration. European Journal of Neuroscience, 1999, 11, 457-468.	2.6	52
118	Abundant Production of Brain-Derived Neurotrophic Factor by Adult Visceral Epithelia. American Journal of Pathology, 1999, 155, 1183-1193.	3.8	245
119	Stomatin, a MEC-2 Like Protein, Is Expressed by Mammalian Sensory Neurons. Molecular and Cellular Neurosciences, 1999, 13, 391-404.	2.2	62
120	Isolectin B ₄ -Positive and -Negative Nociceptors Are Functionally Distinct. Journal of Neuroscience, 1999, 19, 6497-6505.	3.6	418
121	A role for BDNF in mechanosensation. Nature Neuroscience, 1998, 1, 42-46.	14.8	168
122	BDNF overexpression induces differential increases among subsets of sympathetic innervation in murine back skin. European Journal of Neuroscience, 1998, 10, 3276-3283.	2.6	26
123	Neurotrophin-3 Involvement in the Regulation of Hair Follicle Morphogenesis. Journal of Investigative Dermatology, 1998, 111, 279-285.	0.7	55
124	Point Mutation in trkB Causes Loss of NT4-Dependent Neurons without Major Effects on Diverse BDNF Responses. Neuron, 1998, 21, 335-345.	8.1	180
125	A New Role for Neurotrophin-3. American Journal of Pathology, 1998, 153, 785-799.	3.8	81
126	TrkB and Neurotrophin-4 Are Important for Development and Maintenance of Sympathetic Preganglionic Neurons Innervating the Adrenal Medulla. Journal of Neuroscience, 1998, 18, 7272-7284.	3.6	44

#	Article	IF	CITATIONS
127	Neurotrophins Live or Let Die: Does p75NTR Decide?. Neuron, 1997, 18, 187-190.	8.1	202
128	Receptive Properties of Mouse Sensory Neurons Innervating Hairy Skin. Journal of Neurophysiology, 1997, 78, 1841-1850.	1.8	330
129	Receptive Properties of Embryonic Chick Sensory Neurons Innervating Skin. Journal of Neurophysiology, 1997, 78, 2560-2568.	1.8	32
130	Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature, 1997, 389, 725-730.	27.8	659
131	Specific Subtypes of Cutaneous Mechanoreceptors Require Neurotrophin-3 Following Peripheral Target Innervation. Neuron, 1996, 16, 287-295.	8.1	213
132	Physiology of the Neurotrophins. Annual Review of Neuroscience, 1996, 19, 289-317.	10.7	1,840
133	Maintenance of Modality-specific Connections in the Spinal Cord after Neonatal Nerve Growth Factor Deprivation. European Journal of Neuroscience, 1996, 8, 1677-1684.	2.6	15
134	Neurotrophic factors and pain. Seminars in Neuroscience, 1995, 7, 227-232.	2.2	20
135	Regulation of cutaneous C-fiber heat nociceptors by nerve growth factor in the developing rat. Journal of Neurophysiology, 1994, 71, 941-949.	1.8	112
136	NMDA receptors and activity-dependent tuning of the receptive fields of spinal cord neurons. Nature, 1994, 369, 482-485.	27.8	32
137	Peripheral and Central Mechanisms of NGF-induced Hyperalgesia. European Journal of Neuroscience, 1994, 6, 1903-1912.	2.6	481
138	An ultrastructural size principle. Neuroscience, 1994, 58, 441-446.	2.3	142
139	Muscle Afferents Innervating Skin Form Somatotopically Appropriate Connections in the Adult Rat Dorsal Horn. European Journal of Neuroscience, 1993, 5, 1083-1092.	2.6	14
140	Nerve growth factor and nociception. Trends in Neurosciences, 1993, 16, 353-359.	8.6	487
141	Altered expression of nerve growth factor in the skin of transgenic mice leads to changes in response to mechanical stimuli. Neuroscience, 1993, 56, 789-792.	2.3	112
142	Regulation of myelinated nociceptor function by nerve growth factor in neonatal and adult rats. Brain Research Bulletin, 1993, 30, 245-249.	3.0	31
143	Central hyperexcitability triggered by noxious inputs. Current Opinion in Neurobiology, 1993, 3, 602-610.	4.2	329
144	Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. Journal of Neuroscience, 1993, 13, 2136-2148.	3.6	525

#	Article	IF	CITATION
145	Sensory Neurons: Simulations of Experiments on Single Nerve Fibers and Brain Cells of Sensory Systems. Version 1.0.Richard R. Fay. Quarterly Review of Biology, 1993, 68, 482-483.	0.1	O
146	On the role of nerve growth factor in the development of myelinated nociceptors. Journal of Neuroscience, 1992, 12, 1896-1905.	3.6	144
147	Neonatal Anti-NGF Treatment Reduces the AÎ- and C-Fibre Evoked Vasodilator Responses in Rat Skin: Evidence That Nociceptor Afferents Mediate Antidromic Vasodilatation. European Journal of Neuroscience, 1992, 4, 1213-1218.	2.6	34
148	Regulation of Afferent Connectivity in the Adult Spinal Cord by Nerve Growth Factor. European Journal of Neuroscience, 1992, 4, 700-707.	2.6	105
149	Removing constraints on neural sprouting. Current Biology, 1992, 2, 259-261.	3.9	5
150	The consequences of long-term topical capsaicin application in the rat. Pain, 1991, 44, 301-310.	4.2	74
151	Physiological properties of primary sensory neurons appropriately and inappropriately innervating skin in the adult rat. Journal of Neurophysiology, 1991, 66, 1205-1217.	1.8	58
152	Physiological properties of primary sensory neurons appropriately and inappropriately innervating skeletal muscle in adult rats. Journal of Neurophysiology, 1991, 66, 1218-1231.	1.8	46
153	Requirement for nerve growth factor in the development of myelinated nociceptors in vivo. Nature, 1991, 350, 500-502.	27.8	214
154	Dorsal Horn Plasticity Following Re-routeing of Peripheral Nerves: Evidence for Tissue-Specific Neurotrophic Influences from the Periphery. European Journal of Neuroscience, 1991, 3, 1112-1122.	2.6	17
155	Increase of blood flow in skin and spinal cord following activation of small diameter primary afferents. Brain Research, 1990, 509, 145-149.	2.2	20
156	Quantitative analysis of peptide levels and neurogenic extravasation following regeneration of afferents to appropriate and inappropriate targets. Neuroscience, 1989, 33, 67-73.	2.3	50