Giuseppe Liotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3777889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An experimental comparison of four graph drawing algorithms. Computational Geometry: Theory and Applications, 1997, 7, 303-325.	0.3	132
2	Drawing graphs with right angle crossings. Theoretical Computer Science, 2011, 412, 5156-5166.	0.5	98
3	An annotated bibliography on 1-planarity. Computer Science Review, 2017, 25, 49-67.	10.2	89
4	Spirality and Optimal Orthogonal Drawings. SIAM Journal on Computing, 1998, 27, 1764-1811.	0.8	75
5	Straight-Line Drawings on Restricted Integer Grids in Two and Three Dimensions. Journal of Graph Algorithms and Applications, 2003, 7, 363-398.	0.4	75
6	Graph Visualization Techniques for Web Clustering Engines. IEEE Transactions on Visualization and Computer Graphics, 2007, 13, 294-304.	2.9	63
7	A Survey on Graph Drawing Beyond Planarity. ACM Computing Surveys, 2020, 52, 1-37.	16.1	60
8	Right angle crossing graphs and 1-planarity. Discrete Applied Mathematics, 2013, 161, 961-969.	0.5	52
9	Visual Analysis of Large Graphs Using (X,Y)-Clustering and Hybrid Visualizations. IEEE Transactions on Visualization and Computer Graphics, 2011, 17, 1587-1598.	2.9	50
10	Curve-constrained drawings of planar graphs. Computational Geometry: Theory and Applications, 2005, 30, 1-23.	0.3	44
11	On the Parameterized Complexity of Layered Graph Drawing. Algorithmica, 2008, 52, 267-292.	1.0	42
12	Fáry's Theorem for 1-Planar Graphs. Lecture Notes in Computer Science, 2012, , 335-346.	1.0	42
13	Recognizing and drawing IC-planar graphs. Theoretical Computer Science, 2016, 636, 1-16.	0.5	40
14	Robust Proximity Queries: An Illustration of Degree-Driven Algorithm Design. SIAM Journal on Computing, 1998, 28, 864-889.	0.8	38
15	Selected Open Problems in Graph Drawing. Lecture Notes in Computer Science, 2004, , 515-539.	1.0	35
16	Upward Spirality and Upward Planarity Testing. SIAM Journal on Discrete Mathematics, 2010, 23, 1842-1899.	0.4	35
17	Drawing colored graphs on colored points. Theoretical Computer Science, 2008, 408, 129-142.	0.5	34
18	A linear time algorithm for testing maximal 1-planarity of graphs with a rotation system. Theoretical Computer Science, 2013, 513, 65-76.	0.5	34

#	Article	IF	CITATIONS
19	SIMULTANEOUS EMBEDDING OF OUTERPLANAR GRAPHS, PATHS, AND CYCLES. International Journal of Computational Geometry and Applications, 2007, 17, 139-160.	0.3	33
20	Turn-regularity and optimal area drawings of orthogonal representations. Computational Geometry: Theory and Applications, 2000, 16, 53-93.	0.3	32
21	Network visualization for financial crime detection. Journal of Visual Languages and Computing, 2014, 25, 433-451.	1.8	32
22	An advanced network visualization system for financial crime detection. , 2011, , .		31
23	A Linear-Time Algorithm for Testing Outer-1-Planarity. Algorithmica, 2015, 72, 1033-1054.	1.0	31
24	A Fixed-Parameter Approach to 2-Layer Planarization. Algorithmica, 2006, 45, 159-182.	1.0	30
25	A characterization of complete bipartite RAC graphs. Information Processing Letters, 2010, 110, 687-691.	0.4	30
26	Proximity drawability: A survey extended abstract. Lecture Notes in Computer Science, 1995, , 328-339.	1.0	28
27	Book Embeddability of Series–Parallel Digraphs. Algorithmica, 2006, 45, 531-547.	1.0	27
28	Area, Curve Complexity, and Crossing Resolution ofÂNon-Planar Graph Drawings. Theory of Computing Systems, 2011, 49, 565-575.	0.7	27
29	2-Layer Right Angle Crossing Drawings. Algorithmica, 2014, 68, 954-997.	1.0	27
30	A visual analytics system to support tax evasion discovery. Decision Support Systems, 2018, 110, 71-83.	3.5	26
31	Combining Network Visualization and Data Mining for Tax Risk Assessment. IEEE Access, 2020, 8, 16073-16086.	2.6	26
32	Universal Sets of n Points for One-bend Drawings ofÂPlanar Graphs with n Vertices. Discrete and Computational Geometry, 2010, 43, 272-288.	0.4	25
33	On RAC drawings of 1-planar graphs. Theoretical Computer Science, 2017, 689, 48-57.	0.5	25
34	Algorithm animation over the World Wide Web. , 1996, , .		24
35	ON EMBEDDING A GRAPH ON TWO SETS OF POINTS. International Journal of Foundations of Computer Science, 2006, 17, 1071-1094.	0.8	24
36	Computing straight-line 3D grid drawings of graphs in linear volume. Computational Geometry: Theory and Applications, 2005, 32, 26-58.	0.3	23

#	Article	IF	CITATIONS
37	k-colored Point-set Embeddability of Outerplanar Graphs. Journal of Graph Algorithms and Applications, 2008, 12, 29-49.	0.4	22
38	Area requirement of graph drawings with few crossings per edge. Computational Geometry: Theory and Applications, 2013, 46, 909-916.	0.3	21
39	The Crossing-Angle Resolution in Graph Drawing. , 2013, , 167-184.		21
40	Ortho-polygon Visibility Representations of Embedded Graphs. Algorithmica, 2018, 80, 2345-2383.	1.0	20
41	Straight-Line Drawings on Restricted Integer Grids in Two and Three Dimensions. Lecture Notes in Computer Science, 2002, , 328-342.	1.0	19
42	Drawing Colored Graphs with Constrained Vertex Positions and Few Bends per Edge. Algorithmica, 2010, 57, 796-818.	1.0	19
43	The strength of weak proximity. Journal of Discrete Algorithms, 2006, 4, 384-400.	0.7	18
44	L-visibility drawings of IC-planar graphs. Information Processing Letters, 2016, 116, 217-222.	0.4	18
45	Large graph visualizations using a distributed computing platform. Information Sciences, 2017, 381, 124-141.	4.0	18
46	Proximity constraints and representable trees (extended abstract). Lecture Notes in Computer Science, 1995, , 340-351.	1.0	18
47	Topology-Driven Force-Directed Algorithms. Lecture Notes in Computer Science, 2011, , 165-176.	1.0	18
48	Upward straight-line embeddings of directed graphs into point sets. Computational Geometry: Theory and Applications, 2010, 43, 219-232.	0.3	17
49	Planar and Plane Slope Number of Partial 2-Trees. Lecture Notes in Computer Science, 2013, , 412-423.	1.0	17
50	Diagram Server. Journal of Visual Languages and Computing, 1995, 6, 275-298.	1.8	16
51	Voronoi drawings of trees. Computational Geometry: Theory and Applications, 2003, 24, 147-178.	0.3	16
52	On the Planar Split Thickness of Graphs. Algorithmica, 2018, 80, 977-994.	1.0	16
53	A Distributed Multilevel Force-Directed Algorithm. IEEE Transactions on Parallel and Distributed Systems, 2019, 30, 754-765.	4.0	16
54	Computing Orthogonal Drawings in a Variable Embedding Setting. Lecture Notes in Computer Science, 1998, , 80-89.	1.0	16

#	Article	IF	CITATIONS
55	Drawing Outer 1-planar Graphs with Few Slopes. Journal of Graph Algorithms and Applications, 2015, 19, 707-741.	0.4	16
56	Area requirement of visibility representations of trees. Information Processing Letters, 1997, 62, 81-88.	0.4	14
57	Orthogonal drawings of graphs with vertex and edge labels. Computational Geometry: Theory and Applications, 2005, 32, 71-114.	0.3	14
58	Point-set embeddings of trees with given partial drawings. Computational Geometry: Theory and Applications, 2009, 42, 664-676.	0.3	14
59	Planar and Quasi-Planar Simultaneous Geometric Embedding. Computer Journal, 2015, 58, 3126-3140.	1.5	14
60	Optimal Orthogonal Drawings of Planar 3-Graphs in Linear Time. , 2020, , 806-825.		14
61	Drawing outerplanar minimum weight triangulations. Information Processing Letters, 1996, 57, 253-260.	0.4	12
62	Experimental studies on graph drawing algorithms. Software - Practice and Experience, 2000, 30, 1235-1284.	2.5	12
63	Geometric Simultaneous Embeddings of a Graph and a Matching. Journal of Graph Algorithms and Applications, 2011, 15, 79-96.	0.4	12
64	Simultaneous visibility representations of plane st-graphs using L-shapes. Theoretical Computer Science, 2016, 645, 100-111.	0.5	11
65	Drawing subcubic planar graphs with four slopes and optimal angular resolution. Theoretical Computer Science, 2018, 714, 51-73.	0.5	11
66	NodeTrix Planarity Testing with Small Clusters. Algorithmica, 2019, 81, 3464-3493.	1.0	11
67	HV-planarity: Algorithms and complexity. Journal of Computer and System Sciences, 2019, 99, 72-90.	0.9	11
68	Simple k-planar graphs are simple (k + 1)-quasiplanar. Journal of Combinatorial Theory Series B, 2020, 142, 1-35.	0.6	11
69	Proximity drawings of outerplanar graphs (extended abstract). Lecture Notes in Computer Science, 1997, , 286-302.	1.0	11
70	Colored Simultaneous Geometric Embeddings andÂUniversal Pointsets. Algorithmica, 2011, 60, 569-592.	1.0	10
71	On partitioning the edges of 1-plane graphs. Theoretical Computer Science, 2017, 662, 59-65.	0.5	10
72	<mml:math <br="" display="inline" id="mml44" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll" altimg="si2.gif"><mml:mn>1</mml:mn></mml:math> -page and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml45" display="inline" overflow="scroll" altimg="si1.gif"><mml:mn>2</mml:mn>-page drawings with bounded number of crossings per edge. European Journal of Combinatorics, 2018, 68, 24-37.</mml:math 	0.5	10

#	Article	IF	CITATIONS
73	On Representing Graphs by Touching Cuboids. Lecture Notes in Computer Science, 2013, , 187-198.	1.0	10
74	Orthogonal planarity testing of bounded treewidth graphs. Journal of Computer and System Sciences, 2022, 125, 129-148.	0.9	10
75	The Mocha algorithm animation system. , 1996, , .		9
76	Embedding problems for paths with direction constrained edges. Theoretical Computer Science, 2002, 289, 897-917.	0.5	9
77	The Partial Visibility Representation Extension Problem. Algorithmica, 2018, 80, 2286-2323.	1.0	9
78	Bend-Minimum Orthogonal Drawings in Quadratic Time. Lecture Notes in Computer Science, 2018, , 481-494.	1.0	9
79	A Graph Drawing Application to Web Site Traffic Analysis. Journal of Graph Algorithms and Applications, 2011, 15, 229-251.	0.4	9
80	The Planar Slope Number of Subcubic Graphs. Lecture Notes in Computer Science, 2014, , 132-143.	1.0	9
81	Graph Visualization and Data Mining. , 2006, , 35-63.		8
82	Vertex angle and crossing angle resolution of leveled tree drawings. Information Processing Letters, 2012, 112, 630-635.	0.4	8
83	Hamiltonian orthogeodesic alternating paths. Journal of Discrete Algorithms, 2012, 16, 34-52.	0.7	8
84	Bounds on the crossing resolution of complete geometric graphs. Discrete Applied Mathematics, 2012, 160, 132-139.	0.5	8
85	Techniques for Edge Stratification of Complex Graph Drawings. Journal of Visual Languages and Computing, 2014, 25, 533-543.	1.8	8
86	Partial edge drawing: Homogeneity is more important than crossings and ink. , 2016, , .		8
87	New results on edge partitions of 1-plane graphs. Theoretical Computer Science, 2018, 713, 78-84.	0.5	8
88	Embedding-Preserving Rectangle Visibility Representations of Nonplanar Graphs. Discrete and Computational Geometry, 2018, 60, 345-380.	0.4	8
89	Visual querying and analysis of temporal fiscal networks. Information Sciences, 2019, 505, 406-421.	4.0	8
90	Drawing Bipartite Graphs on Two Curves. Lecture Notes in Computer Science, 2007, , 380-385.	1.0	8

#	Article	IF	CITATIONS
91	Drawing Colored Graphs on Colored Points. Lecture Notes in Computer Science, 2007, , 102-113.	1.0	8
92	Embeddability Problems for Upward Planar Digraphs. Lecture Notes in Computer Science, 2009, , 242-253.	1.0	8
93	The drawability problem for minimum weight triangulations. Theoretical Computer Science, 2002, 270, 261-286.	0.5	7
94	Visual analysis of financial crimes. , 2010, , .		7
95	The Shape of Orthogonal Cycles in Three Dimensions. Discrete and Computational Geometry, 2012, 47, 461-491.	0.4	7
96	A Linear-Time Algorithm for Testing Outer-1-Planarity. Lecture Notes in Computer Science, 2013, , 71-82.	1.0	7
97	Straight-Line Drawability of a Planar Graph Plus an Edge. Lecture Notes in Computer Science, 2015, , 301-313.	1.0	7
98	On the Relationship Between k-Planar and k-Quasi-Planar Graphs. Lecture Notes in Computer Science, 2017, , 59-74.	1.0	7
99	Right Angle Crossing Graphs and 1-Planarity. Lecture Notes in Computer Science, 2012, , 148-153.	1.0	7
100	Large Angle Crossing Drawings of Planar Graphs in Subquadratic Area. Lecture Notes in Computer Science, 2012, , 200-209.	1.0	7
101	A Topology-Driven Approach to the Design of Web Meta-search Clustering Engines. Lecture Notes in Computer Science, 2005, , 106-116.	1.0	7
102	Matched Drawings of Planar Graphs. Lecture Notes in Computer Science, 2008, , 183-194.	1.0	7
103	Beyond Outerplanarity. Lecture Notes in Computer Science, 2018, , 546-559.	1.0	7
104	Radial drawings of graphs: Geometric constraints and trade-offs. Journal of Discrete Algorithms, 2008, 6, 109-124.	0.7	6
105	Visual analysis of large graphs using (X,Y)-clustering and hybrid visualizations. , 2010, , .		6
106	CONSTRAINED POINT-SET EMBEDDABILITY OF PLANAR GRAPHS. International Journal of Computational Geometry and Applications, 2010, 20, 577-600.	0.3	6
107	Low ply graph drawing. , 2015, , .		6
108	Universal Slope Sets for 1-Bend Planar Drawings. Algorithmica, 2019, 81, 2527-2556.	1.0	6

#	Article	IF	CITATIONS
109	On the edge-length ratio of outerplanar graphs. Theoretical Computer Science, 2019, 770, 88-94.	0.5	6
110	Edge partitions of optimal 2-plane and 3-plane graphs. Discrete Mathematics, 2019, 342, 1038-1047.	0.4	6
111	Graph Planarity by Replacing Cliques with Paths. Algorithms, 2020, 13, 194.	1.2	6
112	Infinite Trees and the Future. Lecture Notes in Computer Science, 1999, , 379-391.	1.0	6
113	NodeTrix Planarity Testing with Small Clusters. Lecture Notes in Computer Science, 2018, , 479-491.	1.0	6
114	Visual Analysis of One-to-Many Matched Graphs. Lecture Notes in Computer Science, 2009, , 133-144.	1.0	6
115	The Hamiltonian Augmentation Problem and Its Applications to Graph Drawing. Lecture Notes in Computer Science, 2010, , 35-46.	1.0	6
116	Point-Set Embeddability of 2-Colored Trees. Lecture Notes in Computer Science, 2013, , 291-302.	1.0	6
117	Computing Radial Drawings on the Minimum Number of Circles. Journal of Graph Algorithms and Applications, 2005, 9, 365-389.	0.4	6
118	GD-Workbench: A system for prototyping and testing graph drawing algorithms. Lecture Notes in Computer Science, 1996, , 111-122.	1.0	5
119	A note on 3D orthogonal drawings with direction constrained edges. Information Processing Letters, 2004, 90, 97-101.	0.4	5
120	WhatsOnWeb+ : An Enhanced Visual Search Clustering Engine. , 2008, , .		5
121	Volume requirements of 3D upward drawings. Discrete Mathematics, 2009, 309, 1824-1837.	0.4	5
122	Drawing a tree as a minimum spanning tree approximation. Journal of Computer and System Sciences, 2012, 78, 491-503.	0.9	5
123	(k,Âp)-Planarity: A Relaxation of Hybrid Planarity. Lecture Notes in Computer Science, 2019, , 148-159.	1.0	5
124	Rectilinear Planarity Testing of Plane Series-Parallel Graphs in Linear Time. Lecture Notes in Computer Science, 2020, , 436-449.	1.0	5
125	Overlapping Cluster Planarity. Journal of Graph Algorithms and Applications, 2008, 12, 267-291.	0.4	5
126	On the Complexity of HV-rectilinear Planarity Testing. Lecture Notes in Computer Science, 2014, , 343-354.	1.0	5

#	Article	IF	CITATIONS
127	Ortho-Polygon Visibility Representations of 3-Connected 1-Plane Graphs. Lecture Notes in Computer Science, 2018, , 524-537.	1.0	5
128	Sketched Representations and Orthogonal Planarity of Bounded Treewidth Graphs. Lecture Notes in Computer Science, 2019, , 379-392.	1.0	5
129	Orthogonal Drawings of Cycles in 3D Space. Lecture Notes in Computer Science, 2001, , 272-283.	1.0	4
130	Optimal and suboptimal robust algorithms for proximity graphs. Computational Geometry: Theory and Applications, 2003, 25, 35-49.	0.3	4
131	Graph visualization techniques for conceptual Web site traffic analysis. , 2010, , .		4
132	Upward-rightward planar drawings. , 2014, , .		4
133	Profiling distributed graph processing systems through visual analytics. Future Generation Computer Systems, 2018, 87, 43-57.	4.9	4
134	Visibility representations of boxes in 2.5 dimensions. Computational Geometry: Theory and Applications, 2018, 72, 19-33.	0.3	4
135	Simultaneous FPQ-ordering and hybrid planarity testing. Theoretical Computer Science, 2021, 874, 59-79.	0.5	4
136	Colored Point-Set Embeddings of Acyclic Graphs. Lecture Notes in Computer Science, 2018, , 413-425.	1.0	4
137	2-Layer Right Angle Crossing Drawings. Lecture Notes in Computer Science, 2011, , 156-169.	1.0	4
138	Approximate Proximity Drawings. Lecture Notes in Computer Science, 2012, , 166-178.	1.0	4
139	Matched Drawings of Planar Graphs. Journal of Graph Algorithms and Applications, 2009, 13, 423-445.	0.4	4
140	Visual Analysis of One-To-Many Matched Graphs. Journal of Graph Algorithms and Applications, 2010, 14, 97-119.	0.4	4
141	k-Colored Point-Set Embeddability of Outerplanar Graphs. Lecture Notes in Computer Science, 2007, , 318-329.	1.0	4
142	Beyond aÂVisuocentric Way of a Visual Web Search Clustering Engine: The Sonification of WhatsOnWeb. Lecture Notes in Computer Science, 2010, , 351-357.	1.0	4
143	1-bend upward planar slope number of SP-digraphs. Computational Geometry: Theory and Applications, 2020, 90, 101628.	0.3	4
144	Quasi-upward Planar Drawings withÂMinimum Curve Complexity. Lecture Notes in Computer Science, 2021, , 195-209.	1.0	4

#	Article	IF	CITATIONS
145	Volume Requirements of 3D Upward Drawings. Lecture Notes in Computer Science, 2006, , 101-110.	1.0	3
146	A visual sonificated web search clustering engine. Cognitive Processing, 2009, 10, 286-289.	0.7	3
147	Planar Drawings with Few Slopes of Halin Graphs and Nested Pseudotrees. Lecture Notes in Computer Science, 2021, , 271-285.	1.0	3
148	Ortho-polygon visibility representations of 3-connected 1-plane graphs. Theoretical Computer Science, 2021, 863, 40-52.	0.5	3
149	Orthogonal 3D Shapes of Theta Graphs. Lecture Notes in Computer Science, 2002, , 142-149.	1.0	3
150	Drawable and forbidden minimum weight triangulations. Lecture Notes in Computer Science, 1997, , 1-12.	1.0	3
151	The Partial Visibility Representation Extension Problem. Lecture Notes in Computer Science, 2016, , 266-279.	1.0	3
152	On Graphs Supported by Line Sets. Lecture Notes in Computer Science, 2011, , 177-182.	1.0	3
153	Ortho-Polygon Visibility Representations of Embedded Graphs. Lecture Notes in Computer Science, 2016, , 280-294.	1.0	3
154	Visibility Representations of Boxes in 2.5 Dimensions. Lecture Notes in Computer Science, 2016, , 251-265.	1.0	3
155	Turning Cliques into Paths to Achieve Planarity. Lecture Notes in Computer Science, 2018, , 67-74.	1.0	3
156	On the curve complexity of 3-colored point-set embeddings. Theoretical Computer Science, 2020, 846, 114-140.	0.5	3
157	Overlapping cluster planarity. , 2007, , .		2
158	Universal point sets for 2-coloured trees. Information Processing Letters, 2012, 112, 346-350.	0.4	2
159	Lower and Upper Bounds for Long Induced Paths in 3-Connected Planar Graphs. Lecture Notes in Computer Science, 2013, , 213-224.	1.0	2
160	3D proportional contact representations of graphs. , 2014, , .		2
161	Polyline drawings with topological constraints. Theoretical Computer Science, 2020, 809, 250-264.	0.5	2
162	Stable visualization of connected components in dynamic graphs. Information Visualization, 2021, 20, 3-19.	1.2	2

#	Article	IF	CITATIONS
163	1-Bend Upward Planar Drawings of SP-Digraphs. Lecture Notes in Computer Science, 2016, , 123-130.	1.0	2
164	Radial Drawings of Graphs: Geometric Constraints and Trade-Offs. Lecture Notes in Computer Science, 2007, , 355-366.	1.0	2
165	Universal Sets of n Points for 1-Bend Drawings of Planar Graphs with n Vertices. , 2007, , 345-351.		2
166	Hamiltonian Orthogeodesic Alternating Paths. Lecture Notes in Computer Science, 2011, , 170-181.	1.0	2
167	Drawing Outer 1-planar Graphs with Few Slopes. Lecture Notes in Computer Science, 2014, , 174-185.	1.0	2
168	(k,p)-planarity: A relaxation of hybrid planarity. Theoretical Computer Science, 2021, 896, 19-30.	0.5	2
169	How to Embed a Path onto Two Sets of Points. Lecture Notes in Computer Science, 2006, , 111-116.	1.0	2
170	WhatsOnWeb: Using Graph Drawing to Search the Web. Lecture Notes in Computer Science, 2006, , 480-491.	1.0	2
171	Geometric Simultaneous Embeddings of a Graph and a Matching. Lecture Notes in Computer Science, 2010, , 183-194.	1.0	2
172	Drawing a Tree as a Minimum Spanning Tree Approximation. Lecture Notes in Computer Science, 2010, , 61-72.	1.0	2
173	On Point-Sets That Support Planar Graphs. Lecture Notes in Computer Science, 2012, , 64-74.	1.0	2
174	Exploring Complex Drawings via Edge Stratification. Lecture Notes in Computer Science, 2013, , 304-315.	1.0	2
175	1-Page and 2-Page Drawings with Bounded Number of Crossings per Edge. Lecture Notes in Computer Science, 2016, , 38-51.	1.0	2
176	Edge Partitions of Optimal 2-plane and 3-plane Graphs. Lecture Notes in Computer Science, 2018, , 27-39.	1.0	2
177	On the Edge-Length Ratio of 2-Trees. Lecture Notes in Computer Science, 2020, , 85-98.	1.0	2
178	Storyline Visualizations with Ubiquitous Actors. Lecture Notes in Computer Science, 2020, , 324-332.	1.0	2
179	Simultaneous FPQ-Ordering and Hybrid Planarity Testing. Lecture Notes in Computer Science, 2020, , 617-626.	1.0	2
180	Placing Arrows in Directed Graph Layouts: Algorithms and Experiments. Computer Graphics Forum, 2022, 41, 364-376.	1.8	2

#	Article	IF	CITATIONS
181	Matched drawability of graph pairs and of graph triples. Computational Geometry: Theory and Applications, 2010, 43, 611-634.	0.3	1
182	Upward Topological Book Embeddings of DAGs. SIAM Journal on Discrete Mathematics, 2011, 25, 479-489.	0.4	1
183	Approximate proximity drawings. Computational Geometry: Theory and Applications, 2013, 46, 604-614.	0.3	1
184	On the robustness of the Drosophila neural network. , 2013, , .		1
185	PROXIMITY DRAWINGS OF HIGH-DEGREE TREES. International Journal of Computational Geometry and Applications, 2013, 23, 213-230.	0.3	1
186	Planar and Quasi Planar Simultaneous Geometric Embedding. Lecture Notes in Computer Science, 2014, , 52-63.	1.0	1
187	Area-Thickness Trade-Offs for Straight-Line Drawings of Planar Graphs. Computer Journal, 2017, 60, 135-142.	1.5	1
188	2-Colored Point-Set Embeddings of Partial 2-Trees. Lecture Notes in Computer Science, 2021, , 247-259.	1.0	1
189	1-Bend RAC Drawings of 1-Planar Graphs. Lecture Notes in Computer Science, 2016, , 335-343.	1.0	1
190	Heuristics for the Maximum 2-layer RAC Subgraph Problem. Lecture Notes in Computer Science, 2012, , 211-216.	1.0	1
191	The Approximate Rectangle of Influence Drawability Problem. Lecture Notes in Computer Science, 2013, , 114-125.	1.0	1
192	Drawing Colored Graphs with Constrained Vertex Positions and Few Bends per Edge. Lecture Notes in Computer Science, 2008, , 315-326.	1.0	1
193	Point-Set Embedding of Trees with Edge Constraints. Lecture Notes in Computer Science, 2008, , 113-124.	1.0	1
194	Matched Drawability of Graph Pairs and of Graph Triples. Lecture Notes in Computer Science, 2009, , 322-333.	1.0	1
195	Constrained Point-Set Embeddability of Planar Graphs. Lecture Notes in Computer Science, 2009, , 360-371.	1.0	1
196	Drawings of Graphs. Discrete Mathematics and Its Applications, 2013, , 1239-1290.	0.1	1
197	Recognizing and Drawing IC-Planar Graphs. Lecture Notes in Computer Science, 2015, , 295-308.	1.0	1
198	The QuaSEFE Problem. Lecture Notes in Computer Science, 2019, , 268-275.	1.0	1

#	Article	IF	CITATIONS
199	VAIM: Visual Analytics for Influence Maximization. Lecture Notes in Computer Science, 2020, , 115-123.	1.0	1
200	Influence Maximization With Visual Analytics. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 3428-3440.	2.9	1
201	Minimum Weight Drawings of Maximal Triangulations. Lecture Notes in Computer Science, 2001, , 338-349 <mmil:math <="" altimg="si2.gif" overflow="scroll" td="" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd"><td>1.0</td><td>Ο</td></mmil:math>	1.0	Ο
202	xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.5	0
203	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:re="http://www.elsevier.com/x Special Issue on the 28th European Workshop on Computational Geometry, Guest Editors' Foreword. Computational Geometry: Theory and Applications, 2014, 47, 459.	0.3	0
204	The Approximate Rectangle of Influence Drawability Problem. Algorithmica, 2015, 72, 620-655.	1.0	0
205	Colored anchored visibility representations in 2D and 3D space. Computational Geometry: Theory and Applications, 2020, 89, 101592.	0.3	0
206	Visual Analytics for Financial Crime Detection at the University of Perugia. Lecture Notes in Computer Science, 2021, , 195-200.	1.0	0
207	2-colored point-set embeddings of partial 2-trees. Theoretical Computer Science, 2021, 896, 31-45.	0.5	0
208	Hamiltonian-with-Handles Graphs and the k-Spine Drawability Problem. Lecture Notes in Computer Science, 2005, , 262-272.	1.0	0
209	Universal Pointsets for 2-Coloured Trees. Lecture Notes in Computer Science, 2011, , 365-370.	1.0	0
210	A Model of Web-Based Follow-Up to Reduce Assistive Technology Abandonment. Lecture Notes in Computer Science, 2014, , 674-682.	1.0	0
211	Alternating Paths and Cycles of Minimum Length. Lecture Notes in Computer Science, 2015, , 383-394.	1.0	0
212	Packing Trees into 1-Planar Graphs. Lecture Notes in Computer Science, 2020, , 81-93.	1.0	0
213	Edge Partitions and Visibility Representations of 1-planar Graphs. , 2020, , 89-107.		Ο
214	On Edge-Length Ratios of Partial 2-Trees. International Journal of Computational Geometry and Applications, 2021, 31, 141-162.	0.3	0
215	Universal Slope Sets for Upward Planar Drawings. Algorithmica, 0, , .	1.0	Ο