Yan-Chao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3776913/publications.pdf Version: 2024-02-01

YAN-CHAOLL

#	Article	IF	CITATIONS
1	The neuroinvasive potential of SARSâ€CoV2 may play a role in the respiratory failure of COVIDâ€19 patients. Journal of Medical Virology, 2020, 92, 552-555.	5.0	1,771
2	Neurotropic virus tracing suggests a membranousâ€coatingâ€mediated mechanism for transsynaptic communication. Journal of Comparative Neurology, 2013, 521, 203-212.	1.6	122
3	Coronavirus infection of rat dorsal root ganglia: Ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Research, 2012, 163, 628-635.	2.2	120
4	Response to Commentary on "The neuroinvasive potential of SARSâ€CoVâ€2 may play a role in the respiratory failure of COVIDâ€19 patients― Journal of Medical Virology, 2020, 92, 707-709.	5.0	118
5	Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS oVâ€2 infection. Journal of Medical Virology, 2021, 93, 1304-1313.	5.0	64
6	Pilocarpine-induced epilepsy is associated with actin cytoskeleton reorganization in the mossy fiber-CA3 synapses. Epilepsy Research, 2014, 108, 379-389.	1.6	24
7	Fluorescence and Electron Microscopic Localization of F-actin in the Ependymocytes. Journal of Histochemistry and Cytochemistry, 2009, 57, 741-751.	2.5	22
8	What can cerebrospinal fluid testing and brain autopsies tell us about viral neuroinvasion of SARS oVâ€⊋. Journal of Medical Virology, 2021, 93, 4247-4257.	5.0	22
9	Regionally varying F-actin network in the apical cytoplasm of ependymocytes. Neuroscience Research, 2007, 57, 522-530.	1.9	21
10	The effects of calcineurin inhibitor FK506 on actin cytoskeleton, neuronal survival and glial reactions after pilocarpine-induced status epilepticus in mice. Epilepsy Research, 2018, 140, 138-147.	1.6	17
11	Nonhomogeneous distribution of filamentous actin in the presynaptic terminals on the spinal motoneurons. Journal of Comparative Neurology, 2010, 518, 3184-3192.	1.6	14
12	The temporal and spatial changes of actin cytoskeleton in the hippocampal CA1 neurons following transient global ischemia. Brain Research, 2019, 1720, 146297.	2.2	14
13	Neurological involvement in the respiratory manifestations of COVID-19 patients. Aging, 2021, 13, 4713-4730.	3.1	10
14	The possible impairment of respiratoryâ€related neural loops may be associated with the silent pneumonia induced by SARSâ€CoVâ€2. Journal of Medical Virology, 2020, 92, 2269-2271.	5.0	9
15	The rearrangement of filamentous actin in mossy fiber synapses in pentylenetetrazol-kindled C57BL/6 mice. Epilepsy Research, 2014, 108, 20-28.	1.6	7
16	Dexamethasone ameliorates the damage of hippocampal filamentous actin cytoskeleton but is not sufficient to cease epileptogenesis in pilocarpine induced epileptic mice. Epilepsy Research, 2019, 154, 26-33.	1.6	6
17	Different changes in pre- and postsynaptic components in the hippocampal CA1 subfield after transient global cerebral ischemia. Brain Structure and Function, 2022, 227, 345-360.	2.3	6
18	The temporal and spatial changes of microtubule cytoskeleton in the CA1 stratum radiatum following global transient ischemia. Journal of Chemical Neuroanatomy, 2019, 101, 101682.	2.1	5

Yan-Chao Li

#	Article	IF	CITATIONS
19	The effects of epothilone D on microtubule degradation and delayed neuronal death in the hippocampus following transient global ischemia. Journal of Chemical Neuroanatomy, 2019, 98, 17-26.	2.1	5
20	Postnatal reorganization of F-actin in the central canal of the spinal cord in the rat. Brain Research, 2008, 1239, 100-106.	2.2	3
21	Clarification of the peripherally located F-actin network around the primary afferent neurons. Brain Research, 2011, 1392, 54-61.	2.2	2
22	The unique organization of filamentous actin in the medullary canal of the medulla oblongata. Tissue and Cell, 2017, 49, 336-344.	2.2	0