Zsolt Berner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3776578/publications.pdf

Version: 2024-02-01

71102 98798 4,641 83 41 67 citations h-index g-index papers 83 83 83 4465 docs citations times ranked citing authors all docs

Article	IF	CITATIONS
Arsenic enrichment in groundwater of West Bengal, India: geochemical evidence for mobilization of As under reducing conditions. Applied Geochemistry, 2003, 18, 1417-1434.	3.0	242
Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology, 2007, 35, 483.	4.4	216
Impact of irrigation with As rich groundwater on soil and crops: A geochemical case study in West Bengal Delta Plain, India. Applied Geochemistry, 2005, 20, 1890-1906.	3.0	202
Apatite (U–Th–Sm)/He thermochronology of rapidly cooled samples: The effect of He implantation. Earth and Planetary Science Letters, 2009, 285, 105-114.	4.4	184
The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: enhanced productivity and/or better preservation?. Cretaceous Research, 2007, 28, 597-612.	1.4	178
Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 2007, 315, 47-53.	9.4	162
Removal of arsenic from aqueous solution by natural siderite and hematite. Applied Geochemistry, 2007, 22, 1039-1051.	3.0	148
Time-Dependent Increase of Traffic-Emitted Platinum-Group Elements (PGE) in Different Environmental Compartments. Environmental Science & Environmenta	10.0	140
Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environmental Pollution, 2011, 159, 876-883.	7.5	120
Role of competing ions in the mobilization of Âarsenic in groundwater of Bengal Basin: Insight from surface complexation modeling. Water Research, 2014, 55, 30-39.	11.3	110
Evolution of the marine stable carbon-isotope record during the early Cretaceous: A focus on the late Hauterivian and Barremian in the Tethyan realm. Earth and Planetary Science Letters, 2006, 242, 254-271.	4.4	107
Geochemical processes underlying a sharp contrast in groundwater arsenic concentrations in a village on the Red River delta, Vietnam. Applied Geochemistry, 2008, 23, 3143-3154.	3.0	107
Trace analysis of platinum in biological samples: a comparison between sector field ICP-MS and adsorptive cathodic stripping voltammetry following different digestion procedures. Analytica Chimica Acta, 2001, 439, 203-209.	5.4	104
Characterization of late Campanian and Maastrichtian planktonic foraminiferal depth habitats and vital activities based on stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 202, 1-29.	2.3	104
Late Quaternary palaeoclimatic reconstruction from the lacustrine sediments of the Sambhar playa core, Thar Desert margin, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 233, 252-270.	2.3	101
Progressive palaeoenvironmental change during the Late Barremian–Early Aptian as prelude to Oceanic Anoxic Event 1a: Evidence from the Gorgo a Cerbara section (Umbria-Marche basin, central) Tj ETQq0 0	0 n gB T/0	verboock 10 Tf 5
Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections: Chemostratigraphic constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240, 120-145.	2.3	90
Pyrite geochemistry in the Toarcian Posidonia Shale of southâ€west Germany: Evidence for contrasting traceâ€element patterns of diagenetic and syngenetic pyrites. Sedimentology, 2013, 60, 548-573.	3.1	90
	Assentic entrichment in groundwater of West Bengal, India: geochemical evidence for mobilization of As under reducing conditions. Applied Geochemistry, 2003, 18, 1417-1434. Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology, 2007, 35, 483. Impact of Irrigation with As rich groundwater on soil and crops: A geochemical case study in West Bengal Delta Plain, India. Applied Geochemistry, 2005, 20, 1890-1906. Apatitle (Ua6"Thá6"Sm)/He thermochronology of rapidly cooled samples: The effect of He implantation. Earth and Planetary Science Letters, 2009, 285, 105-114. The Cenomanian Turonian anosic event at the Bonarell Level in Italy and Spain: enhanced productivity and/or better preservation?. Cretaceous Research, 2007, 28, 597-612. Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 2007, 315, 47-33. Removal of arsenic from aqueous solution by natural siderite and hematite. Applied Geochemistry, 2007, 22, 1039-1051. Time-Dependent Increase of Traffic-Emitted Platinum-Group Elements (PCE) in Different Environmental Compartments. Environmental Science & Disposition of Assenic in groundwater of Bengal Basin: Insight from the Hetao Basin, Inner Mongolia. Environmental Pollution, 2011, 159, 876-883. Role of competing ions in the mobilization of Asreenic in groundwater of Bengal Basin: Insight from surface complexation modeling. Water Research, 2014, 55, 30-39. Evolution of the marine stable carbon-isotope record during the early Cretaceous: A focus on the later Hauterivian and Barrenian in the Tethyan realm. Earth and Planetary Science Letters, 2006, 242, 254-271. Ceochemical processes underlying a sharp contrast in groundwater arsenic concentrations in a village on the Red River delta, Vietnam. Applied Geochemistry, 2008, 23, 3143-3154. Trace analysis of platinum in biological samples: a companion between sector field ICP-MS and adsorptive cathodic stippiny uotammetry fo	Assence enrichment in groundwater of West Bengal, Indias geochemical evidence for mobilization of As under reducing conditions. Applied Geochemistry, 2003, 18, 1417-1434. Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology, 2007, 35, 483. Impact of irrigation with As rich groundwater on soil and crops: A geochemical case study in West Bengal Dotts Plain, India. Applied Geochemistry, 2005, 20, 1890-1906. Apatite (UBC*Thi6*Sm)Het thermochronology of rapidly cooled samples: The effect of He implantation. Earth and Planetary Science Letters, 2009, 285, 105-114. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: enhanced productivity and/or better preservation?. Cretaceous Research, 2007, 28, 597-612. Adsorption of arsenic (III) and arsenic(V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 2007, 315, 47-53. Removal of arsenic from aqueous solution by natural siderite and hematite. Applied Geochemistry, 2007, 22, 1039-1051. Time-Dependent Increase of Traffic-Emitted Platinum-Group Elements (PCE) in Different Environmental Compartments. Environmental Science & Amp. Technology, 1999, 33, 3166-3170. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetso basin, laner Mongolia. Environmental Pollution, 2011, 159, 876-883. Role of competing Ions in the mobilization of Aarsenic in groundwater of Bengal Basin: Insight from surface complexation modeling. Water Research, 2014, 55, 30-39. Evolution of the marine stable carbon-isotope record during the early Cretaceous: A focus on the late Health and the Australian in the Tethyan realm. Earth and Planetary Science Letters, 2006, 242, 254-271. Geochemical processes underlying a sharp contrast in groundwater arsenic concentrations in a will also Health and the Comparison of the Central Science Sc

#	Article	IF	Citations
19	Cenomanian–Turonian and δ13C, and δ18O, sea level and salinity variations at Pueblo, Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 211, 19-43.	2.3	87
20	Age and paleoenvironment of the Maastrichtian to Paleocene of the Mahajanga Basin, Madagascar: a multidisciplinary approach. Marine Micropaleontology, 2003, 47, 17-70.	1.2	81
21	Heavy metal incorporation in foraminiferal calcite: results from multi-element enrichment culture experiments with & amp; lt; i& amp; gt; Ammonia tepida & amp; lt; li& amp; gt; Biogeosciences, 2010, 7, 2339-2350.	3.3	76
22	Organic carbon induced mobilization of iron and manganese in a West Bengal aquifer and the muted response of groundwater arsenic concentrations. Chemical Geology, 2014, 367, 51-62.	3.3	71
23	Chicxulub impact predates K–T boundary: New evidence from Brazos, Texas. Earth and Planetary Science Letters, 2007, 255, 339-356.	4.4	69
24	Cenomanian–Turonian transition in a shallow water sequence of the Sinai, Egypt. International Journal of Earth Sciences, 2010, 99, 165-182.	1.8	68
25	The cretaceous-tertiary transition on the shallow Saharan Platform of southern tunisia. Geobios, 1997, 30, 951-975.	1.4	66
26	Groundwater chemistry and redox processes: Depth dependent arsenic release mechanism. Applied Geochemistry, 2011, 26, 516-525.	3.0	66
27	Middle and late Cenomanian oceanic anoxic events in shallow and deeper shelf environments of western Morocco. Sedimentology, 2010, 57, 1430-1462.	3.1	63
28	Organic carbon deposition and phosphorus accumulation during Oceanic Anoxic Event 2 in Tarfaya, Morocco. Cretaceous Research, 2008, 29, 1008-1023.	1.4	59
29	Intense pyrite formation under low-sulfate conditions in the Achterwasser lagoon, SW Baltic Sea. Geochimica Et Cosmochimica Acta, 2005, 69, 3619-3630.	3.9	54
30	S- and O-isotopic character of dissolved sulphate in the cover rock aquifers of a Zechstein salt dome. Applied Geochemistry, 2002, 17, 1515-1528.	3.0	53
31	Nd and Sr isotopic ratios and trace element geochemistry of epidote from the Swiss Molasse Basin as provenance indicators: implications for the reconstruction of the exhumation history of the Central Alps. Chemical Geology, 2002, 189, 231-250.	3.3	52
32	The Application of Microelectrodes for the Measurements of Trace Metals in Water. Analytical Letters, 2005, 38, 2281-2300.	1.8	52
33	Paleoenvironments of the latest Cretaceous oil shale sequence, Southern Tethys, Israel, as an integral part of the prevailing upwelling system. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305, 93-108.	2.3	52
34	Development of an ultramicroelectrode arrays (UMEAs) sensor for trace heavy metal measurement in water. Sensors and Actuators B: Chemical, 2004, 97, 168-173.	7.8	49
35	Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part II: Comparative geochemical profile and leaching study. Applied Geochemistry, 2008, 23, 996-1011.	3.0	49
36	Spatial, vertical and temporal variation of arsenic in shallow aquifers of the Bengal Basin: Controlling geochemical processes. Chemical Geology, 2014, 387, 157-169.	3.3	49

#	Article	IF	Citations
37	More evidence that the Chicxulub impact predates the K/T mass extinction. Meteoritics and Planetary Science, 2004, 39, 1127-1144.	1.6	48
38	Temporal variations in arsenic concentration in the groundwater of Murshidabad District, West Bengal, India. Environmental Earth Sciences, 2011, 62, 223-232.	2.7	46
39	Adsorption of arsenic species from water using activated siderite–hematite column filters. Journal of Hazardous Materials, 2008, 151, 628-635.	12.4	44
40	The Angouran Zn (Pb) deposit, NW Iran: Evidence for a two stage, hypogene zinc sulfide–zinc carbonate mineralization. Ore Geology Reviews, 2013, 53, 373-402.	2.7	44
41	Chronostratigraphy of the Upper Cretaceous high productivity sequence of the southern Tethys, Israel. Cretaceous Research, 2014, 50, 187-213.	1.4	43
42	Carbonatite-like dykes from the eastern Himalayan syntaxis: geochemical, isotopic, and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic crust. Journal of Asian Earth Sciences, 2006, 26, 105-120.	2.3	37
43	13C and 15N natural abundances of urban soils and herbaceous vegetation in Karlsruhe, Germany. European Journal of Soil Science, 2005, 56, 607-620.	3.9	36
44	Source and origin of active and fossil thermal spring systems, northern Upper Rhine Graben, Germany. Applied Geochemistry, 2012, 27, 1153-1169.	3.0	35
45	Barremian–Danian chemostratigraphic sequences of the Cauvery Basin, India: Implications on scales of stratigraphic correlation. Gondwana Research, 2011, 19, 291-309.	6.0	34
46	Monsoonal influence on variation of hydrochemistry and isotopic signatures: Implications for associated arsenic release in groundwater. Journal of Hydrology, 2016, 535, 407-417.	5.4	34
47	Paleoceanographic reconstruction of the late Cretaceous oil shale of the Negev, Israel: Integration of geochemical, and stable isotope records of the organic matter. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 319-320, 46-57.	2.3	33
48	Sea surface temperature record of a Late Cretaceous tropical Southern Tethys upwelling system. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392, 350-358.	2.3	32
49	Geochemical evidence for the link between sulfate reduction, sulfide oxidation and phosphate accumulation in a Late Cretaceous upwelling system. Geochemical Transactions, 2015, 16, 2.	0.7	31
50	Biogeochemical phosphorus cycling in groundwater ecosystems $\hat{a} \in \text{``Insights}$ from South and Southeast Asian floodplain and delta aquifers. Science of the Total Environment, 2018, 644, 1357-1370.	8.0	31
51	A statistical procedure for the analysis of seismotectonically induced hydrochemical signals: A case study from the Eastern Carpathians, Romania. Tectonophysics, 2005, 405, 77-98.	2.2	30
52	Environmental monitoring of heavy metals and arsenic from Ag-Pb-Zn mining: a case study over two millennia. Environmental Monitoring and Assessment, 2001, 70, 181-200.	2.7	28
53	Age, chemo- and biostratigraphy of Haiti spherule-rich deposits: a multi-event K–T scenario. Canadian Journal of Earth Sciences, 2001, 38, 197-227.	1.3	28
54	87Sr/86Sr anomalies in Late Cretaceous-Early Tertiary strata of the Cauvery basin, south India: Constraints on nature and rate of environmental changes across K-T boundary. Journal of Earth System Science, 2010, 119, 1-17.	1.3	28

#	Article	IF	CITATIONS
55	Stable isotope and mineralogical investigation of the genesis of amethyst geodes in the Los Catalanes gemological district, Uruguay, southernmost Paran $ ilde{A}_i$ volcanic province. Mineralium Deposita, 2011, 46, 239-255.	4.1	27
56	Geochemical changes in individual sediment grains during sequential arsenic extractions. Water Research, 2010, 44, 5545-5555.	11.3	26
57	Characteristics of arsenic adsorption from aqueous solution: Effect of arsenic species and natural adsorbents. Applied Geochemistry, 2009, 24, 657-663.	3.0	25
58	Reconstructing the sedimentation history of the Bengal Delta Plain by means of geochemical and stable isotopic data. Applied Geochemistry, 2013, 36, 70-82.	3.0	25
59	Influences of groundwater extraction on the distribution of dissolved As in shallow aquifers of West Bengal, India. Journal of Hazardous Materials, 2013, 262, 941-950.	12.4	25
60	New data on the mobility of Pt emitted from catalytic converters. Analytical and Bioanalytical Chemistry, 2004, 379, 131-136.	3.7	24
61	Arsenic in framboidal pyrite from recent sediments of a shallow water lagoon of the Baltic Sea. Sedimentology, 2013, 60, 1389-1404.	3.1	19
62	Hierarchical delineation and multivariate statistical discrimination of chemozones of the Cauvery Basin, south India: Implications on spatio-temporal scales of stratigraphic correlation. Petroleum Science, 2010, 7, 435-447.	4.9	18
63	A Gis-Supported Multivariate Statistical Analysis of Relationships Among Stream Water Chemistry, Geology and Land Use in Baden-Wýrttemberg, Germany. Water, Air, and Soil Pollution, 2005, 167, 39-57.	2.4	17
64	Miocene diagenetic and epigenetic strontium mineralization in calcareous series from Cyprus and the Arabian Gulf: Metallogenic perspective on sub- and suprasalt redox-controlled base metal deposits. Journal of Asian Earth Sciences, 2009, 34, 557-576.	2.3	17
65	Effect of carbon sources and of sulfate on microbial arsenic mobilization in sediments of West Bengal, India. Ecotoxicology and Environmental Safety, 2013, 91, 139-146.	6.0	17
66	On the distribution and speciation of arsenic in the soil-plant-system of a rice field in West-Bengal, India: A $\hat{l}\frac{1}{4}$ -synchrotron techniques based case study. Applied Geochemistry, 2017, 77, 4-14.	3.0	17
67	The Cretaceous–Tertiary (K/T) boundary transition at Coxquihui, state of Veracruz, Mexico: evidence for an early Danian impact event?. Journal of South American Earth Sciences, 2002, 15, 497-509.	1.4	15
68	Reply to †Chicxulub impact predates K†T boundary: New evidence from Brazos, Texas†Comment by Schulte et al Earth and Planetary Science Letters, 2008, 269, 621-629.	4.4	13
69	Geochemistry of Early Frasnian (Late Devonian) pyrite-ammonoid level in the KostomÅ, oty Basin, Poland, and a new proxy parameter for assessing the relative amount of syngenetic and diagenetic pyrite. Sedimentary Geology, 2014, 308, 18-31.	2.1	13
70	Electrochemical Behavior and Analytical Performance of an Iridium-Based Ultramicroelectrode Array (UMEA) Sensor. Mikrochimica Acta, 2005, 150, 137-145.	5.0	11
71	Mineralogical and chemical composition of the Hagendorf-North Pegmatite, SE Germany – a monographic study. Neues Jahrbuch Fur Mineralogie, Abhandlungen, 2013, 190, 281-318.	0.3	11
72	Two anomalies of platinum group elements above the Cretaceous-Tertiary boundary at Beloc, Haiti: Geochemical context and consequences for the impact scenario. , 2002, , .		11

#	Article	IF	CITATIONS
73	Coupling Size-Exclusion Chromatography and ICP-MS to Investigate the Speciation of Platinum-Group Elements in Environmental Samples. Geostandards and Geoanalytical Research, 2001, 25, 239-251.	3.1	9
74	Biostratigraphy, Age of Chicxulub Impact, and Depositional Environment of the Brazos River KTB Sequences., 2011,, 81-122.		9
75	Preparative separation of arsenate from phosphate by IRA-400 (OH) for oxygen isotopic work. Talanta, 2013, 105, 46-51.	5.5	7
76	Thermoanalytical study of Quaternary thermal lacustrine travertine occurrences in Hungary (Buda-Vár-hegy, Budakalász, Szomód-Les-hegy). Acta Geologica Hungarica, 2003, 46, 195-204.	0.2	6
77	Sedimentological and structural processes operative along a metalliferous catena from sandstone-hosted to unconformity-related Pb-Cu-Zn deposits in an epicontinental basin, SE Germany. Ore Geology Reviews, 2014, 63, 91-114.	2.7	6
78	Redox Control on the Isotopic Composition of Dissolved Sulfate in Percolating Sewage - An Experimental Study. Clean - Soil, Air, Water, 2004, 32, 304-315.	0.6	4
79	Temporal Trends of Geochemistry, Relative Sea Level, and Source Area Weathering in the Cauvery Basin, South India. , 2015, , 273-308.		4
80	Effect of Molybdate and Cell Growth on S-Isotope Fractionation During Bacterial Sulfate Reduction. Geomicrobiology Journal, 2004, 21, 207-219.	2.0	2
81	Analytical Procedure for the Quantification of in vitro Induced Pt- and Pd-DNA Adducts in Human Lung Cells. , 2006, , 215-227.		1
82	Selective separation and preconcentration of arsenite from arsenic enriched natural waters with three different adsorbents. Separation Science and Technology, 2015, , 150527095459001.	2.5	0
83	An Insight into the Spatio-vertical Heterogeneity of Dissolved Arsenic in Part of the Bengal Delta Plain Aquifer in West Bengal (India). , 2015, , 161-177.		0