Patrick L Holland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3776059/publications.pdf

Version: 2024-02-01

139 papers 11,194 citations

25014 57 h-index 30058 103 g-index

160 all docs

160 docs citations

160 times ranked 8020 citing authors

#	Article	IF	CITATIONS
1	Beyond fossil fuel–driven nitrogen transformations. Science, 2018, 360, .	6.0	1,379
2	N $<$ sub $>$ 2 $<$ /sub $>$ Reduction and Hydrogenation to Ammonia by a Molecular Iron-Potassium Complex. Science, 2011, 334, 780-783.	6.0	482
3	Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nature Chemistry, 2013, 5, 559-565.	6.6	345
4	Synthesis and Reactivity of Low-Coordinate Iron(II) Fluoride Complexes and Their Use in the Catalytic Hydrodefluorination of Fluorocarbons. Journal of the American Chemical Society, 2005, 127, 7857-7870.	6.6	311
5	Studies of Low-Coordinate Iron Dinitrogen Complexes. Journal of the American Chemical Society, 2006, 128, 756-769.	6.6	302
6	Fe-Catalyzed C–C Bond Construction from Olefins via Radicals. Journal of the American Chemical Society, 2017, 139, 2484-2503.	6.6	301
7	Electronic Structure and Reactivity of Three-Coordinate Iron Complexes. Accounts of Chemical Research, 2008, 41, 905-914.	7.6	261
8	Metal–dioxygen and metal–dinitrogen complexes: where are the electrons?. Dalton Transactions, 2010, 39, 5415.	1.6	229
9	Stepwise Reduction of Dinitrogen Bond Order by a Low-Coordinate Iron Complex. Journal of the American Chemical Society, 2001, 123, 9222-9223.	6.6	227
10	Binding of dinitrogen to an iron–sulfur–carbon site. Nature, 2015, 526, 96-99.	13.7	223
11	Electronically Unsaturated Three-Coordinate Chloride and Methyl Complexes of Iron, Cobalt, and Nickel. Journal of the American Chemical Society, 2002, 124, 14416-14424.	6.6	202
12	Planar Three-Coordinate High-Spin FellComplexes with Large Orbital Angular Momentum: Mössbauer, Electron Paramagnetic Resonance, and Electronic Structure Studies. Journal of the American Chemical Society, 2002, 124, 3012-3025.	6.6	197
13	<i>Z</i> -Selective Alkene Isomerization by High-Spin Cobalt(II) Complexes. Journal of the American Chemical Society, 2014, 136, 945-955.	6.6	196
14	Rapid, Regioconvergent, Solvent-Free Alkene Hydrosilylation with a Cobalt Catalyst. Journal of the American Chemical Society, 2015, 137, 13244-13247.	6.6	192
15	β-Diketiminate Ligand Backbone Structural Effects on Cu(I)/O2Reactivity: Unique Copperâ^'Superoxo and Bis(μ-oxo) Complexes. Journal of the American Chemical Society, 2002, 124, 2108-2109.	6.6	185
16	The Reactivity Patterns of Low-Coordinate Ironâ^'Hydride Complexes. Journal of the American Chemical Society, 2008, 130, 6624-6638.	6.6	179
17	A Sulfido-Bridged Diiron(II) Compound and Its Reactions with Nitrogenase-Relevant Substrates. Journal of the American Chemical Society, 2004, 126, 4522-4523.	6.6	159
18	Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chemical Science, 2020, 11, 12401-12422.	3.7	158

#	Article	IF	Citations
19	Dinitrogen Binding and Cleavage by Multinuclear Iron Complexes. Accounts of Chemical Research, 2015, 48, 2059-2065.	7.6	157
20	Insight into the Iron–Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands. Journal of the American Chemical Society, 2016, 138, 7200-7211.	6.6	146
21	Distinctive Reaction Pathways at Base Metals in High-Spin Organometallic Catalysts. Accounts of Chemical Research, 2015, 48, 1696-1702.	7.6	144
22	Coordination-Number Dependence of Reactivity in an Imidoiron(III) Complex. Angewandte Chemie - International Edition, 2006, 45, 6868-6871.	7.2	143
23	Selectivity and Mechanism of Hydrogen Atom Transfer by an Isolable Imidoiron(III) Complex. Journal of the American Chemical Society, 2011, 133, 9796-9811.	6.6	128
24	Reversible Beta-Hydrogen Elimination of Three-Coordinate Iron(II) Alkyl Complexes:Â Mechanistic and Thermodynamic Studies. Organometallics, 2004, 23, 5226-5239.	1.1	125
25	Low-Coordinate Iron(II) Amido Complexes of β-Diketiminates:  Synthesis, Structure, and Reactivity. Inorganic Chemistry, 2004, 43, 3306-3321.	1.9	123
26	NN Bond Cleavage by a Low-Coordinate Iron(II) Hydride Complex. Journal of the American Chemical Society, 2003, 125, 15752-15753.	6.6	120
27	Cobaltâ^'Dinitrogen Complexes with Weakened Nâ^'N Bonds. Journal of the American Chemical Society, 2009, 131, 9471-9472.	6.6	120
28	Tuning steric and electronic effects in transition-metal \hat{l}^2 -diketiminate complexes. Dalton Transactions, 2015, 44, 16654-16670.	1.6	112
29	Tuning metal coordination number by ancillary ligand steric effects: synthesis of a three-coordinate iron(ii) complex. Chemical Communications, 2001, , 1542-1543.	2.2	108
30	Binding Affinity of Alkynes and Alkenes to Low-Coordinate Iron. Inorganic Chemistry, 2006, 45, 5742-5751.	1.9	105
31	A Masked Two-Coordinate Cobalt(I) Complex That Activates C–F Bonds. Journal of the American Chemical Society, 2011, 133, 12418-12421.	6.6	103
32	Alkali Metal Control over N–N Cleavage in Iron Complexes. Journal of the American Chemical Society, 2014, 136, 16807-16816.	6.6	103
33	Reduction of CO ₂ to CO Using Low-Coordinate Iron:  Formation of a Four-Coordinate Iron Dicarbonyl Complex and a Bridging Carbonate Complex. Inorganic Chemistry, 2008, 47, 784-786.	1.9	102
34	Mössbauer, Electron Paramagnetic Resonance, and Crystallographic Characterization of a High-Spin Fe(I) Diketiminate Complex with Orbital Degeneracy. Inorganic Chemistry, 2005, 44, 4915-4922.	1.9	95
35	Three-Coordinate Terminal Imidoiron(III) Complexes: Structure, Spectroscopy, and Mechanism of Formation. Inorganic Chemistry, 2010, 49, 6172-6187.	1.9	95
36	Ligand Effects on Hydrogen Atom Transfer from Hydrocarbons to Three-Coordinate Iron Imides. Inorganic Chemistry, 2012, 51, 8352-8361.	1.9	92

#	Article	IF	CITATIONS
37	Resonance Raman Spectroscopy as a Probe of the Bis(\hat{l} /4-oxo)dicopper Core. Journal of the American Chemical Society, 2000, 122, 792-802.	6.6	91
38	Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction. Catalysis Today, 2017, 286, 21-40.	2.2	88
39	Reversible C–C Bond Formation between Redox-Active Pyridine Ligands in Iron Complexes. Journal of the American Chemical Society, 2012, 134, 20352-20364.	6.6	85
40	A Multi-iron System Capable of Rapid N ₂ Formation and N ₂ Cleavage. Journal of the American Chemical Society, 2014, 136, 10226-10229.	6.6	82
41	Catalytic nitrene transfer from an imidoiron(iii) complex to form carbodiimides and isocyanates. Chemical Communications, 2009, , 1760.	2.2	78
42	Roles of Iron Complexes in Catalytic Radical Alkene Cross-Coupling: A Computational and Mechanistic Study. Journal of the American Chemical Society, 2019, 141, 7473-7485.	6.6	78
43	Mössbauer and Computational Study of an N2-Bridged Diiron Diketiminate Complex: Parallel Alignment of the Iron Spins by Direct Antiferromagnetic Exchange with Activated Dinitrogen. Journal of the American Chemical Society, 2006, 128, 10181-10192.	6.6	77
44	Stepwise Nâ€"H bond formation from N2-derived iron nitride, imide and amide intermediates to ammonia. Chemical Science, 2016, 7, 5736-5746.	3.7	76
45	Coupling dinitrogen and hydrocarbons through aryl migration. Nature, 2020, 584, 221-226.	13.7	75
46	Potential Economic Feasibility of Direct Electrochemical Nitrogen Reduction as a Route to Ammonia. ACS Sustainable Chemistry and Engineering, 2020, 8, 8938-8948.	3.2	75
47	Low-Coordinate Cobalt Fluoride Complexes: Synthesis, Reactions, and Production from C–F Activation Reactions. Organometallics, 2012, 31, 1349-1360.	1.1	72
48	A Bridging Hexazene (RNNNNNR) Ligand from Reductive Coupling of Azides. Journal of the American Chemical Society, 2008, 130, 6074-6075.	6.6	70
49	Borane Bâ^'C Bond Cleavage by a Low-Coordinate Iron Hydride Complex and Nâ^'N Bond Cleavage by the Hydridoborate Product. Organometallics, 2007, 26, 3217-3226.	1.1	64
50	Mechanistic Insight into NN Cleavage by a Low-Coordinate Iron(II) Hydride Complex. Journal of the American Chemical Society, 2007, 129, 8112-8121.	6.6	63
51	Cooperativity Between Low-Valent Iron and Potassium Promoters in Dinitrogen Fixation. Inorganic Chemistry, 2012, 51, 7546-7550.	1.9	63
52	Spin Crossover during β-Hydride Elimination in High-Spin Iron(II)– and Cobalt(II)–Alkyl Complexes. Organometallics, 2013, 32, 4741-4751.	1.1	63
53	A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12703-12708.	3.3	63
54	Dinitrogen Reduction to Ammonium at Rhenium Utilizing Light and Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2019, 141, 20198-20208.	6.6	62

#	Article	IF	CITATIONS
55	Three-Coordinate, 12-Electron Organometallic Complexes of Iron(II) Supported by a Bulky \hat{I}^2 -Diketiminate Ligand: \hat{A} Synthesis and Insertion of CO To Give Square-Pyramidal Complexes. Organometallics, 2002, 21, 4808-4814.	1.1	61
56	Iron(II) Complexes with Redox-Active Tetrazene (RNNNNR) Ligands. Inorganic Chemistry, 2009, 48, 4828-4836.	1.9	61
57	Low-coordinate iron complexes as synthetic models of nitrogenase. Canadian Journal of Chemistry, 2005, 83, 296-301.	0.6	60
58	Considering Electrocatalytic Ammonia Synthesis via Bimetallic Dinitrogen Cleavage. ACS Catalysis, 2020, 10, 10826-10846.	5 . 5	60
59	Mechanism of Catalytic Nitrene Transfer Using Iron(I)–Isocyanide Complexes. Organometallics, 2013, 32, 5289-5298.	1.1	58
60	Multimetallic cooperativity in activation of dinitrogen at iron–potassium sites. Chemical Science, 2014, 5, 267-274.	3.7	55
61	Characterization of the FeH Bond in a Threeâ€Coordinate Terminal Hydride Complex of Iron(I). Angewandte Chemie - International Edition, 2012, 51, 3658-3662.	7.2	50
62	Boron compounds tackle dinitrogen. Science, 2018, 359, 871-871.	6.0	50
63	Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes. Inorganic Chemistry, 2016, 55, 2960-2968.	1.9	45
64	Planar three-coordinate iron sulfide in a synthetic [4Fe-3S] cluster with biomimetic reactivity. Nature Chemistry, 2019, 11, 1019-1025.	6.6	45
65	Quantitative Geometric Descriptions of the Belt Iron Atoms of the Ironâ [^] Molybdenum Cofactor of Nitrogenase and Synthetic Iron(II) Model Complexes. Inorganic Chemistry, 2007, 46, 60-71.	1.9	44
66	Reduction of CO ₂ by a masked two-coordinate cobalt(<scp>i</scp>) complex and characterization of a proposed oxodicobalt(<scp>ii</scp>) intermediate. Chemical Science, 2019, 10, 918-929.	3.7	44
67	A Cationic Three-Coordinate Iron(II) Complex and the Reaction of \hat{I}^2 -Diketiminate with Ethyl Diazoacetate. Organometallics, 2005, 24, 1803-1805.	1.1	43
68	Isolation and Characterization of Stable Iron(I) Sulfide Complexes. Angewandte Chemie - International Edition, 2012, 51, 8247-8250.	7.2	42
69	Alkali-Controlled C–H Cleavage or N–C Bond Formation by N ₂ -Derived Iron Nitrides and Imides. Journal of the American Chemical Society, 2016, 138, 11185-11191.	6.6	42
70	Effects of N ₂ Binding Mode on Iron-Based Functionalization of Dinitrogen to Form an Iron(III) Hydrazido Complex. Journal of the American Chemical Society, 2018, 140, 8586-8598.	6.6	42
71	Alkyl isomerisation in three-coordinate iron(ii) complexesElectronic supplementary information (ESI) available: general considerations, synthesis of compounds, kinetic studies and crystal data. See http://www.rsc.org/suppdata/cc/b2/b209389h/. Chemical Communications, 2002, , 2886-2887.	2.2	41
72	Synthesis, Spectroscopy, and Hydrogen/Deuterium Exchange in High-Spin Iron(II) Hydride Complexes. Inorganic Chemistry, 2014, 53, 2370-2380.	1.9	38

#	Article	IF	CITATIONS
73	Quantitation of the THF Content in Fe[N(SiMe ₃) ₂] ₂ A· <i>x</i> THF. Inorganic Chemistry, 2017, 56, 3140-3143.	1.9	38
74	Density Functional Calculations for Prediction of ⁵⁷ Fe Mössbauer Isomer Shifts and Quadrupole Splittings in β-Diketiminate Complexes. ACS Omega, 2017, 2, 2594-2606.	1.6	37
75	Synthesis, Structure, and Spectroscopy of an Oxodiiron(II) Complex. Journal of the American Chemical Society, 2005, 127, 9344-9345.	6.6	36
76	Remote Substitution on $\langle i \rangle N \langle i \rangle$ -Heterocyclic Carbenes Heightens the Catalytic Reactivity of Their Palladium Complexes. Organometallics, 2011, 30, 5123-5132.	1.1	36
77	Ligand Dependence of Binding to Three-Coordinate Fe(II) Complexes. Inorganic Chemistry, 2009, 48, 5106-5116.	1.9	35
78	The Mechanism of N–N Double Bond Cleavage by an Iron(II) Hydride Complex. Journal of the American Chemical Society, 2016, 138, 12112-12123.	6.6	34
79	Nitrogenase-Relevant Reactivity of a Synthetic Iron–Sulfur–Carbon Site. Journal of the American Chemical Society, 2019, 141, 13148-13157.	6.6	34
80	New routes to low-coordinate iron hydride complexes: The binuclear oxidative addition of H2. Journal of Organometallic Chemistry, 2009, 694, 2825-2830.	0.8	33
81	Azurin as a Protein Scaffold for a Low-coordinate Nonheme Iron Site with a Small-molecule Binding Pocket. Journal of the American Chemical Society, 2012, 134, 19746-19757.	6.6	33
82	Highly <i>Z</i> Selective Double Bond Transposition in Simple Alkenes and Allylarenes through a Spin-Accelerated Allyl Mechanism. Journal of the American Chemical Society, 2021, 143, 3070-3074.	6.6	33
83	Geometric and redox flexibility of pyridine as a redox-active ligand that can reversibly accept one or two electrons. Chemical Communications, 2014, 50, 11114-11117.	2.2	31
84	Reversible Ligandâ€Centered Reduction in Lowâ€Coordinate Iron Formazanate Complexes. Chemistry - A European Journal, 2018, 24, 9417-9425.	1.7	30
85	Alkali Cation Effects on Redox-Active Formazanate Ligands in Iron Chemistry. Inorganic Chemistry, 2018, 57, 9580-9591.	1.9	30
86	Reaction: Opportunities for Sustainable Catalysts. CheM, 2017, 2, 443-444.	5.8	29
87	Comment on "Structural evidence for a dynamic metallocofactor during N ₂ reduction by Mo-nitrogenase― Science, 2021, 371, .	6.0	29
88	Bidentate Coordination of Pyrazolate in Low-Coordinate Iron(II) and Nickel(II) Complexes. Angewandte Chemie - International Edition, 2006, 45, 1607-1611.	7.2	28
89	Cobalt–Magnesium and Iron–Magnesium Complexes with Weakened Dinitrogen Bridges. European Journal of Inorganic Chemistry, 2013, 2013, 3891-3897.	1.0	28
90	Mössbauer, Electron Paramagnetic Resonance, and Theoretical Study of a High-Spin, Four-Coordinate Fe(II) Diketiminate Complex. Inorganic Chemistry, 2008, 47, 8687-8695.	1.9	27

#	Article	IF	CITATIONS
91	Enhancement of Câ^'H Oxidizing Ability in Coâ€"O ₂ â€Complexes through an Isolated Heterobimetallic Oxo Intermediate. Angewandte Chemie - International Edition, 2017, 56, 3211-3215.	7.2	27
92	Diazoalkanes in Low-Coordinate Iron Chemistry: Bimetallic Diazoalkyl and Alkylidene Complexes of Iron(II). Inorganic Chemistry, 2017, 56, 1019-1022.	1.9	26
93	Dinitrogen Activation and Functionalization Using βâ€Diketiminate Iron Complexes. European Journal of Inorganic Chemistry, 2019, 2019, 1861-1869.	1.0	26
94	Spin Isomers and Ligand Isomerization in a Three-Coordinate Cobalt(I) Carbonyl Complex. Journal of the American Chemical Society, 2015, 137, 10689-10699.	6.6	25
95	Synthesis, Characterization, and Nitrogenase-Relevant Reactions of an Iron Sulfide Complex with a Bridging Hydride. Journal of the American Chemical Society, 2015, 137, 13220-13223.	6.6	25
96	Understanding Terminal versus Bridging End-on N ₂ Coordination in Transition Metal Complexes. Journal of the American Chemical Society, 2021, 143, 9744-9757.	6.6	24
97	Cobalt(II) Complex of a Diazoalkane Radical Anion. Inorganic Chemistry, 2015, 54, 5148-5150.	1.9	22
98	Enhancement of Câ^'H Oxidizing Ability in Coâ€"O ₂ â€Complexes through an Isolated Heterobimetallic Oxo Intermediate. Angewandte Chemie, 2017, 129, 3259-3263.	1.6	22
99	Oxidized and reduced [2Fe–2S] clusters from an iron(I) synthon. Journal of Biological Inorganic Chemistry, 2015, 20, 875-883.	1.1	21
100	Câ^'H and Câ^'N Activation at Redoxâ€Active Pyridine Complexes of Iron. Angewandte Chemie - International Edition, 2017, 56, 1069-1072.	7.2	20
101	Selective Conversion of CO 2 into Isocyanate by Lowâ€Coordinate Iron Complexes. Angewandte Chemie - International Edition, 2018, 57, 6507-6511.	7.2	20
102	A Sulfideâ€Bridged Diiron(II) Complex with a N ₂ H ₄ Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1351-1355.	0.6	19
103	Chemical Oxidation of a Coordinated PNP-Pincer Ligand Forms Unexpected Re–Nitroxide Complexes with Reversal of Nitride Reactivity. Inorganic Chemistry, 2019, 58, 10791-10801.	1.9	19
104	Câ€"H activation by a terminal imidoiron(III) complex to form a cyclopentadienyliron(II) product. Inorganica Chimica Acta, 2011, 369, 40-44.	1.2	18
105	Cobalt–Carbon Bonding in a Salen-Supported Cobalt(IV) Alkyl Complex Postulated in Oxidative MHAT Catalysis. Journal of the American Chemical Society, 2022, 144, 10361-10367.	6.6	18
106	The influences of carbon donor ligands on biomimetic multi-iron complexes for N ₂ reduction. Chemical Science, 2020, 11, 12710-12720.	3.7	17
107	Isolation and characterization of a high-spin mixed-valent iron dinitrogen complex. Chemical Communications, 2018, 54, 13339-13342.	2.2	15
108	So Close, yet Sulfur Away: Opening the Nitrogenase Cofactor Structure Creates a Binding Site. Biochemistry, 2018, 57, 3540-3541.	1.2	15

#	Article	IF	CITATIONS
109	Iron and Cobalt Diazoalkane Complexes Supported by \hat{l}^2 -Diketiminate Ligands: A Synthetic, Spectroscopic, and Computational Investigation. Inorganic Chemistry, 2018, 57, 5959-5972.	1.9	15
110	Masked Radicals: Iron Complexes of Trityl, Benzophenone, and Phenylacetylene. Organometallics, 2019, 38, 4224-4232.	1.1	15
111	A [2Fe–1S] Complex That Affords Access to Bimetallic and Higher-Nuclearity Iron–Sulfur Clusters. Inorganic Chemistry, 2019, 58, 8829-8834.	1.9	15
112	Mechanistic Study of Alkene Hydrosilylation Catalyzed by a \hat{I}^2 -Dialdiminate Cobalt(I) Complex. Organometallics, 2020, 39, 2415-2424.	1.1	15
113	Highâ€Frequency Fe–H Vibrations in a Bridging Hydride Complex Characterized by NRVS and DFT. Angewandte Chemie - International Edition, 2018, 57, 9367-9371.	7.2	14
114	A Reduced (βâ€Diketiminato)iron Complex with Endâ€On and Sideâ€On Nitriles: Strong Backbonding or Ligand Nonâ€Innocence?. European Journal of Inorganic Chemistry, 2012, 2012, 479-483.	1.0	13
115	Protonation and electrochemical reduction of rhodium– and iridium–dinitrogen complexes in organic solution. Dalton Transactions, 2017, 46, 14325-14330.	1.6	13
116	Introduction: Reactivity of Nitrogen from the Ground to the Atmosphere. Chemical Reviews, 2020, 120, 4919-4920.	23.0	13
117	Synthesis and Reactivity of Iron Complexes with a Biomimetic SCS Pincer Ligand. Inorganic Chemistry, 2021, 60, 1965-1974.	1.9	13
118	Electronic and Spin-State Effects on Dinitrogen Splitting to Nitrides in a Rhenium Pincer System. Inorganic Chemistry, 2021, 60, 6115-6124.	1.9	12
119	Facile conversion of ammonia to a nitride in a rhenium system that cleaves dinitrogen. Chemical Science, 2022, 13, 4010-4018.	3.7	11
120	Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation. Journal of Inorganic Biochemistry, 2021, 219, 111430.	1.5	10
121	Twoâ€Coordinate Transitionâ€Metal Centers With Metal–Metal Bonds. Angewandte Chemie - International Edition, 2011, 50, 6213-6214.	7.2	9
122	Effects of Ligand Halogenation on the Electron Localization, Geometry and Spin State of Lowâ€Coordinate (βâ€Diketiminato)iron Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 3344-3355.	1.0	9
123	ENDOR characterization of an iron–alkene complex provides insight into a corresponding organometallic intermediate of nitrogenase. Chemical Science, 2017, 8, 5941-5948.	3.7	8
124	Virtual Inorganic Pedagogical Electronic Resource Learning Objects in Organometallic Chemistry. Journal of Chemical Education, 2012, 89, 185-187.	1.1	7
125	Synthesis and Mechanism of Formation of Hydride–Sulfide Complexes of Iron. Inorganic Chemistry, 2017, 56, 9185-9193.	1.9	7
126	Selective Conversion of CO2into Isocyanate by Lowâ€Coordinate Iron Complexes. Angewandte Chemie, 2018, 130, 6617-6621.	1.6	7

#	Article	IF	CITATIONS
127	Iron Complexes of a Proton-Responsive SCS Pincer Ligand with a Sensitive Electronic Structure. Inorganic Chemistry, 2022, 61, 1644-1658.	1.9	7
128	Câ^'H and Câ^'N Activation at Redoxâ€Active Pyridine Complexes of Iron. Angewandte Chemie, 2017, 129, 1089-1092.	1.6	6
129	Metal-Halogen Secondary Bonding in a 2,5-Dichlorohydroquinonate Cobalt(II) Complex: Insight into Substrate Coordination in the Chlorohydroquinone Dioxygenase PcpA. European Journal of Inorganic Chemistry, 2015, 2015, 4643-4647.	1.0	5
130	Incorporating light atoms into synthetic analogues of FeMoco. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5054-5056.	3.3	5
131	Dinitrogen Binding and Functionalization. , 2022, , 521-554.		5
132	Spin States, Bonding and Magnetism in Mixedâ€Valence Iron(0)â€Iron(II) Complexes**. Chemistry - A European Journal, 2022, 28, .	1.7	4
133	A diketiminate-bound diiron complex with a bridging carbonate ligand. Acta Crystallographica Section C: Crystal Structure Communications, 2009, 65, m174-m176.	0.4	3
134	Sulfur-Supported Iron Complexes for Understanding N2 Reduction. Topics in Organometallic Chemistry, 2016, , 197-213.	0.7	3
135	Implementation of an Accessible Gas Chromatography Laboratory Experiment for High School Students. Journal of Chemical Education, 2019, 96, 1707-1713.	1.1	3
136	Techniques for Functional and Structural Modeling of Nitrogenase. Methods in Molecular Biology, 2011, 766, 249-263.	0.4	2
137	Highâ€Frequency Fe–H Vibrations in a Bridging Hydride Complex Characterized by NRVS and DFT. Angewandte Chemie, 2018, 130, 9511-9515.	1.6	2
138	Nitrogenases and Model Complexes in Bioorganometallic Chemistry., 2022,, 41-72.		2
139	Functionalized Self-Assembled Monolayers Bearing Diiminate Complexes Immobilized through Covalently Anchored Ligands. Langmuir, 2018, 34, 13472-13480.	1.6	1