
Andrew J Tanentzap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3776056/publications.pdf Version: 2024-02-01

ANDREW | TANENTZAD

#	Article	IF	CITATIONS
1	Predictions of biodiversity are improved by integrating traitâ€based competition with abiotic filtering. Ecology Letters, 2022, 25, 1277-1289.	6.4	11
2	MASTREE+: Timeâ€series of plant reproductive effort from six continents. Global Change Biology, 2022, 28, 3066-3082.	9.5	19
3	Ecological networks of dissolved organic matter and microorganisms under global change. Nature Communications, 2022, 13, .	12.8	66
4	Microbial and Environmental Processes Shape the Link between Organic Matter Functional Traits and Composition. Environmental Science & Technology, 2022, 56, 10504-10516.	10.0	27
5	Seed predation selects for reproductive variability and synchrony in perennial plants. New Phytologist, 2021, 229, 2357-2364.	7.3	27
6	Polyploidy on Islands: Its Emergence and Importance for Diversification. Frontiers in Plant Science, 2021, 12, 637214.	3.6	19
7	Climate warming causes mast seeding to break down by reducing sensitivity to weather cues. Global Change Biology, 2021, 27, 1952-1961.	9.5	29
8	Aged soils contribute little to contemporary carbon cycling downstream of thawing permafrost peatlands. Global Change Biology, 2021, 27, 5368-5382.	9.5	9
9	Integrating demography and distribution modeling for the iconic Leontopodium alpinum Colm. in the Romanian Carpathians. Ecology and Evolution, 2021, 11, 12322-12334.	1.9	0
10	Global topographic uplift has elevated speciation in mammals and birds over the last 3 million years. Nature Ecology and Evolution, 2021, 5, 1530-1535.	7.8	19
11	Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use. PLoS Biology, 2021, 19, e3001389.	5.6	30
12	Macroevolutionary consequences of mast seeding. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200372.	4.0	11
13	Forest defoliator outbreaks alter nutrient cycling in northern waters. Nature Communications, 2021, 12, 6355.	12.8	8
14	Opposing Effects of Climate and Permafrost Thaw on CH ₄ and CO ₂ Emissions From Northern Lakes. AGU Advances, 2021, 2, e2021AV000515.	5.4	13
15	Does Evolutionary History Correlate with Contemporary Extinction Risk by Influencing Range Size Dynamics?. American Naturalist, 2020, 195, 569-576.	2.1	14
16	From theory to experiments for testing the proximate mechanisms of mast seeding: an agenda for an experimental ecology. Ecology Letters, 2020, 23, 210-220.	6.4	64
17	Climate Change Strengthens Selection for Mast Seeding in European Beech. Current Biology, 2020, 30, 3477-3483.e2.	3.9	31
18	Assessing the Potential for Mobilization of Old Soil Carbon After Permafrost Thaw: A Synthesis of ¹⁴ C Measurements From the Northern Permafrost Region. Global Biogeochemical Cycles, 2020, 34, e2020GB006672.	4.9	36

ANDREW J TANENTZAP

#	Article	IF	CITATIONS
19	Lake characteristics influence how methanogens in littoral sediments respond to terrestrial litter inputs. ISME Journal, 2020, 14, 2153-2163.	9.8	8
20	Think global, act local: The smallâ€scale environment mainly influences microbial community development and function in lake sediment. Limnology and Oceanography, 2020, 65, S88.	3.1	17
21	Angiosperm speciation cools down in the tropics. Ecology Letters, 2020, 23, 692-700.	6.4	78
22	Climate warming restructures an aquatic food web over 28Âyears. Global Change Biology, 2020, 26, 6852-6866.	9.5	31
23	Microbiome functioning depends on individual and interactive effects of the environment and community structure. ISME Journal, 2019, 13, 1-11.	9.8	50
24	Multiple macroevolutionary routes to becoming a biodiversity hotspot. Science Advances, 2019, 5, eaau8067.	10.3	17
25	Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24689-24695.	7.1	98
26	Fine Root Traits Are Correlated with Flooding Duration while Aboveground Traits Are Related to Grazing in an Ephemeral Wetland. Wetlands, 2019, 39, 291-302.	1.5	19
27	Climate-driven shifts in sediment chemistry enhance methane production in northern lakes. Nature Communications, 2018, 9, 1801.	12.8	39
28	Mussels can both outweigh and interact with the effects of terrestrial to freshwater resource subsidies on littoral benthic communities. Science of the Total Environment, 2018, 622-623, 49-56.	8.0	5
29	Plant Litter Type Dictates Microbial Communities Responsible for Greenhouse Gas Production in Amended Lake Sediments. Frontiers in Microbiology, 2018, 9, 2662.	3.5	14
30	Wind and trophic status explain within and amongâ€lake variability of algal biomass. Limnology and Oceanography Letters, 2018, 3, 409-418.	3.9	24
31	Unintentional rewilding: lessons for trophic rewilding from other forms of species introductions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170445.	4.0	9
32	Seasonal shifts in export of DOC and nutrients from burned and unburned peatland-rich catchments, Northwest Territories, Canada. Hydrology and Earth System Sciences, 2018, 22, 4455-4472.	4.9	40
33	Making the mast of a rainy day: environmental constraints can synchronize mass seeding across populations. New Phytologist, 2018, 219, 6-8.	7.3	12
34	Feasting on terrestrial organic matter: Dining in a dark lake changes microbial decomposition. Global Change Biology, 2018, 24, 5110-5122.	9.5	24
35	Better practices for reporting on conservation. Conservation Letters, 2017, 10, 146-152.	5.7	1
36	Evolutionary priority effects persist in anthropogenically created habitats, but not through nonnative plant invasion. New Phytologist, 2017, 215, 865-876.	7.3	8

ANDREW J TANENTZAP

#	Article	IF	CITATIONS
37	Terrestrial support of lake food webs: Synthesis reveals controls over cross-ecosystem resource use. Science Advances, 2017, 3, e1601765.	10.3	92
38	Fencing in nature? Predator exclusion restores habitat for native fauna and leads biodiversity to spill over into the wider landscape. Biological Conservation, 2017, 214, 119-126.	4.1	30
39	Evolutionary conservatism explains increasing relatedness of plant communities along a flooding gradient. New Phytologist, 2017, 213, 634-644.	7.3	20
40	The costs of saving nature: Does it make "cents�. PLoS Biology, 2017, 15, e2003292.	5.6	2
41	Seed size and its rate of evolution correlate with species diversification across angiosperms. PLoS Biology, 2017, 15, e2002792.	5.6	58
42	Resource limitation underlying multiple masting models makes mast seeding sensitive to future climate change. New Phytologist, 2016, 210, 419-430.	7.3	58
43	Precipitation alters the strength of evolutionary priority effects in forest community assembly of pteridophytes and angiosperms. Journal of Ecology, 2016, 104, 1673-1681.	4.0	11
44	When do plant radiations influence community assembly? The importance of historical contingency in the race for niche space. New Phytologist, 2015, 207, 468-479.	7.3	58
45	Accessing habitats first helps less when your competitors themselves have help. Applied Vegetation Science, 2015, 18, 179-180.	1.9	0
46	Evolutionary priority effects in New Zealand alpine plants across environmental gradients. Journal of Biogeography, 2015, 42, 729-737.	3.0	22
47	The jellification of north temperate lakes. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142449.	2.6	65
48	Resolving Conflicts between Agriculture and the Natural Environment. PLoS Biology, 2015, 13, e1002242.	5.6	102
49	Looking forward through the past: identification of 50 priority research questions in palaeoecology. Journal of Ecology, 2014, 102, 256-267.	4.0	212
50	Forests fuel fish growth in freshwater deltas. Nature Communications, 2014, 5, 4077.	12.8	98
51	Estimating the impacts of browsers on forest understories using a modified index of community composition. Forest Ecology and Management, 2014, 313, 10-16.	3.2	14
52	Identifying pathways for managing multiple disturbances to limit plant invasions. Journal of Applied Ecology, 2014, 51, 1015-1023.	4.0	23
53	Niches drive peaked and positive relationships between diversity and disturbance in natural ecosystems. Ecosphere, 2013, 4, 1-28.	2.2	20
54	Increased nitrogen cycling facilitates native forest regeneration: Potential for restoring extinct ecological processes?. Ecological Applications, 2013, 23, 36-45.	3.8	12

ANDREW J TANENTZAP

#	Article	IF	CITATIONS
55	Getting the biggest birch for the bang: restoring and expanding upland birchwoods in the Scottish Highlands by managing red deer. Ecology and Evolution, 2013, 3, 1890-1901.	1.9	12
56	Plant radiation history affects community assembly: evidence from the New Zealand alpine. Biology Letters, 2012, 8, 558-561.	2.3	26
57	Soil nutrient supply modulates temperatureâ€induction cues in mastâ€seeding grasses. Ecology, 2012, 93, 462-469.	3.2	38
58	Double-crested Cormorants Alter Forest Structure and Increase Damage Indices of Individual Trees on Island Habitats in Lake Erie. Waterbirds, 2012, 35, 13-22.	0.3	5
59	Impacts of culling and exclusion of browsers on vegetation recovery across New Zealand forests. Biological Conservation, 2012, 153, 64-71.	4.1	46
60	Slow responses of ecosystems to reductions in deer (Cervidae) populations and strategies for achieving recovery. Forest Ecology and Management, 2012, 264, 159-166.	3.2	99
61	Carbon storage in terrestrial ecosystems: do browsing and grazing herbivores matter?. Biological Reviews, 2012, 87, 72-94.	10.4	152
62	The more stems the merrier: advantages of multiâ€stemmed architecture for the demography of understorey trees in a temperate broadleaf woodland. Journal of Ecology, 2012, 100, 171-183.	4.0	32
63	Seeing the forest for the deer: Do reductions in deer-disturbance lead to forest recovery?. Biological Conservation, 2011, 144, 376-382.	4.1	93
64	Influence of foliar traits on forage selection by introduced red deer in New Zealand. Basic and Applied Ecology, 2011, 12, 56-63.	2.7	15
65	Differential responses of vertebrate and invertebrate herbivores to traits of New Zealand subalpine shrubs. Ecology, 2011, 92, 994-999.	3.2	24
66	Diversity–invasibility relationships across multiple scales in disturbed forest understoreys. Biological Invasions, 2010, 12, 2105-2116.	2.4	22
67	Spatioâ€ŧemporal feeding selection of red deer in a mountainous landscape. Austral Ecology, 2010, 35, 752-764.	1.5	9
68	Trillium grandiflorum height is an indicator of white-tailed deer density at local and regional scales. Forest Ecology and Management, 2010, 259, 1472-1479.	3.2	25
69	Landscapeâ€level vegetation recovery from herbivory: progress after four decades of invasive red deer control. Journal of Applied Ecology, 2009, 46, 1064-1072.	4.0	120
70	Propagule pressure and resource availability determine plant community invasibility in a temperate forest understorey. Oikos, 2009, 118, 300-308.	2.7	26
71	The reliability of palatability estimates obtained from rumen contents analysis and a fieldâ€based index of diet selection. Journal of Zoology, 2009, 278, 243-248.	1.7	13
72	On Sudbury-Area Wind Speeds—A Tale of Forest Regeneration. Journal of Applied Meteorology and Climatology, 2007, 46, 1645-1654.	1.5	11

#	Article	IF	CITATIONS
73	Calibrating the Dynamic Reservoir Simulation Model (DYRESM) and filling required data gaps for one-dimensional thermal profile predictions in a boreal lake. Limnology and Oceanography: Methods, 2007, 5, 484-494.	2.0	43