
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3775718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitric oxide-related gene and microRNA expression in peripheral blood in pregnancy vary by self-reported race. Epigenetics, 2022, 17, 731-745.	2.7	5
2	Analysis of the novel NCWELL database highlights two decades of co-occurrence of toxic metals in North Carolina private well water: Public health and environmental justice implications. Science of the Total Environment, 2022, 812, 151479.	8.0	10
3	Approaches to incorporate extracellular vesicles into exposure science, toxicology, and public health research. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 647-659.	3.9	7
4	Cytokine signature clusters as a tool to compare changes associated with tobacco product use in upper and lower airway samples. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L722-L736.	2.9	4
5	A Collaborative Initiative to Establish Genomic Biomarkers for Assessing Tumorigenic Potential to Reduce Reliance on Conventional Rodent Carcinogenicity Studies. Toxicological Sciences, 2022, 188, 4-16.	3.1	7
6	Chemical Mixtures in Household Environments: In Silico Predictions and In Vitro Testing of Potential Joint Action on PPARÎ ³ in Human Liver Cells. Toxics, 2022, 10, 199.	3.7	5
7	Strengthening Causal Inference in Exposomics Research: Application of Genetic Data and Methods. Environmental Health Perspectives, 2022, 130, 55001.	6.0	5
8	Biomarkers of Airway Immune Homeostasis Differ Significantly with Generation of E-Cigarettes. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1248-1258.	5.6	9
9	Environmental mixtures and breast cancer: identifying co-exposure patterns between understudied vs breast cancer-associated chemicals using chemical inventory informatics. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 794-807.	3.9	10
10	Using liver models generated from human-induced pluripotent stem cells (iPSCs) for evaluating chemical-induced modifications and disease across liver developmental stages. Toxicology in Vitro, 2022, 83, 105412.	2.4	3
11	Integrative exposomic, transcriptomic, epigenomic analyses of human placental samples links understudied chemicals to preeclampsia. Environment International, 2022, 167, 107385.	10.0	6
12	Wildfires and extracellular vesicles: Exosomal MicroRNAs as mediators of cross-tissue cardiopulmonary responses to biomass smoke. Environment International, 2022, 167, 107419.	10.0	14
13	Predictive modeling of biological responses in the rat liver using in vitro Tox21 bioactivity: Benefits from high-throughput toxicokinetics. Computational Toxicology, 2021, 18, 100166.	3.3	30
14	Linking Coregulated Gene Modules with Polycyclic Aromatic Hydrocarbon-Related Cancer Risk in the 3D Human Bronchial Epithelium. Chemical Research in Toxicology, 2021, 34, 1445-1455.	3.3	10
15	Mid-pregnancy maternal blood nitric oxide-related gene and miRNA expression are associated with preterm birth. Epigenomics, 2021, 13, 667-682.	2.1	4
16	Mixtures modeling identifies chemical inducers versus repressors of toxicity associated with wildfire smoke. Science of the Total Environment, 2021, 775, 145759.	8.0	37
17	Metabolites from midtrimester plasma of pregnant patients at high risk for preterm birth. American Journal of Obstetrics & Gynecology MFM, 2021, 3, 100393.	2.6	8
18	Comparing the Predictivity of Human Placental Gene, microRNA, and CpG Methylation Signatures in Relation to Perinatal Outcomes. Toxicological Sciences, 2021, 183, 269-284.	3.1	9

#	Article	IF	CITATIONS
19	Prenatal exposure to toxic and essential metal/metalloid mixtures is associated with placental genomic signatures. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
20	Pre-pregnancy BMI-associated miRNA and mRNA expression signatures in the placenta highlight a sexually-dimorphic response to maternal underweight status. Scientific Reports, 2021, 11, 15743.	3.3	9
21	Two distinct trophectoderm lineage stem cells from human pluripotent stem cells. Journal of Biological Chemistry, 2021, 296, 100386.	3.4	48
22	Identifying the Transcriptional Response of Cancer and Inflammation-Related Genes in Lung Cells in Relation to Ambient Air Chemical Mixtures in Houston, Texas. Environmental Science & Technology, 2020, 54, 13807-13816.	10.0	7
23	Placental genomic and epigenomic signatures associated with infant birth weight highlight mechanisms involved in collagen and growth factor signaling. Reproductive Toxicology, 2020, 96, 221-230.	2.9	16
24	A role for microRNAs in the epigenetic control of sexually dimorphic gene expression in the human placenta. Epigenomics, 2020, 12, 1543-1558.	2.1	18
25	New Approach Methods to Evaluate Health Risks of Air Pollutants: Critical Design Considerations for In Vitro Exposure Testing. International Journal of Environmental Research and Public Health, 2020, 17, 2124.	2.6	51
26	Review of the environmental prenatal exposome and its relationship to maternal and fetal health. Reproductive Toxicology, 2020, 98, 1-12.	2.9	67
27	A Network of Sputum MicroRNAs Is Associated with Neutrophilic Airway Inflammation in Asthma. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 51-64.	5.6	51
28	Epigenetics: An overview of CpG methylation, chromatin remodeling, and regulatory/noncoding RNAs. , 2020, , 3-32.		10
29	Comparison of Gene Expression Responses in the Small Intestine of Mice Following Exposure to 3 Carcinogens Using the S1500+ Gene Set Informs a Potential Common Adverse Outcome Pathway. Toxicologic Pathology, 2019, 47, 851-864.	1.8	9
30	Developing novel in vitro methods for the risk assessment of developmental and placental toxicants in the environment. Toxicology and Applied Pharmacology, 2019, 378, 114635.	2.8	29
31	Use of genome editing tools in environmental health research. Current Opinion in Toxicology, 2019, 18, 13-17.	5.0	6
32	Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis. Toxicology Letters, 2019, 305, 40-50.	0.8	60
33	A Framework for Systematic Evaluation and Quantitative Integration of Mechanistic Data in Assessments of Potential Human Carcinogens. Toxicological Sciences, 2019, 167, 322-335.	3.1	16
34	Identifying Attributes That Influence <i>In Vitro</i> -to- <i>In Vivo</i> Concordance by Comparing <i>In Vivo</i> VitroTox21 Bioactivity Versus <i>In Vivo</i> DrugMatrix Transcriptomic Responses Across 130 Chemicals. Toxicological Sciences, 2019, 167, 157-171.	3.1	25
35	Integrating tools for non-targeted analysis research and chemical safety evaluations at the US EPA. Journal of Exposure Science and Environmental Epidemiology, 2018, 28, 411-426.	3.9	148
36	Integration of mechanistic and pharmacokinetic information to derive oral reference dose and marginâ€ofâ€exposure values for hexavalent chromium. Journal of Applied Toxicology, 2018, 38, 351-365.	2.8	19

#	Article	IF	CITATIONS
37	A hypothesis-driven weight-of-evidence analysis to evaluate potential endocrine activity of perfluorohexanoic acid. Regulatory Toxicology and Pharmacology, 2018, 99, 168-181.	2.7	5
38	Benefit-risk analysis for foods (BRAFO): Evaluation of exposure to dietary nitrates. Food and Chemical Toxicology, 2018, 120, 709-723.	3.6	16
39	High-Throughput Screening Data Interpretation in the Context of In Vivo Transcriptomic Responses to Oral Cr(VI) Exposure. Toxicological Sciences, 2017, 158, 199-212.	3.1	21
40	Epigenetics in chemical-induced genotoxic carcinogenesis. Current Opinion in Toxicology, 2017, 6, 10-17.	5.0	10
41	Benchmark Dose Modeling Estimates of the Concentrations of Inorganic Arsenic That Induce Changes to the Neonatal Transcriptome, Proteome, and Epigenome in a Pregnancy Cohort. Chemical Research in Toxicology, 2017, 30, 1911-1920.	3.3	38
42	Transcriptomic responses in the oral cavity of F344 rats and <scp>B6C3F1</scp> mice following exposure to Cr(VI): Implications for risk assessment. Environmental and Molecular Mutagenesis, 2016, 57, 706-716.	2.2	13
43	A high dose mode of action for tetrabromobisphenol A-induced uterine adenocarcinomas in Wistar Han rats: A critical evaluation of key events in an adverse outcome pathway framework. Regulatory Toxicology and Pharmacology, 2016, 77, 143-159.	2.7	13
44	Comparison of in vivo genotoxic and carcinogenic potency to augment mode of action analysis: Case study with hexavalent chromium. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 800-801, 28-34.	1.7	17
45	Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring. Environment International, 2016, 88, 269-280.	10.0	143
46	Identification of Novel Gene Targets and Putative Regulators of Arsenic-Associated DNA Methylation in Human Urothelial Cells and Bladder Cancer. Chemical Research in Toxicology, 2015, 28, 1144-1155.	3.3	26
47	Prenatal Arsenic Exposure and the Epigenome: Identifying Sites of 5-methylcytosine Alterations that Predict Functional Changes in Gene Expression in Newborn Cord Blood and Subsequent Birth Outcomes. Toxicological Sciences, 2015, 143, 97-106.	3.1	157
48	Metabolomic Characteristics of Arsenic-Associated Diabetes in a Prospective Cohort in Chihuahua, Mexico. Toxicological Sciences, 2015, 144, 338-346.	3.1	44
49	The Role of Apoptosis-Associated Pathways as Responders to Contaminants and in Disease Progression. , 2015, , 187-205.		4
50	T Follicular Helper Cell-Dependent Clearance of a Persistent Virus Infection Requires T Cell Expression of the Histone Demethylase UTX. Immunity, 2015, 43, 703-714.	14.3	76
51	Cadmium exposure and the epigenome: Exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics, 2014, 9, 212-221.	2.7	133
52	Prenatal Exposure to Arsenic and Cadmium Impacts Infectious Disease-Related Genes within the Glucocorticoid Receptor Signal Transduction Pathway. International Journal of Molecular Sciences, 2014, 15, 22374-22391.	4.1	27
53	Prenatal Arsenic Exposure and Shifts in the Newborn Proteome: Interindividual Differences in Tumor Necrosis Factor (TNF)-Responsive Signaling. Toxicological Sciences, 2014, 139, 328-337.	3.1	40
54	Prenatal arsenic exposure and the epigenome: Altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environmental and Molecular Mutagenesis, 2014, 55, 196-208.	2.2	171

#	Article	IF	CITATIONS
55	Formaldehyde-Associated Changes in microRNAs: Tissue and Temporal Specificity in the Rat Nose, White Blood Cells, and Bone Marrow. Toxicological Sciences, 2014, 138, 36-46.	3.1	52
56	Air toxics and epigenetic effects: ozone altered microRNAs in the sputum of human subjects. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L1129-L1137.	2.9	75
57	Formaldehyde and Epigenetic Alterations: MicroRNA Changes in the Nasal Epithelium of Nonhuman Primates. Environmental Health Perspectives, 2013, 121, 339-344.	6.0	47
58	Arsenic and the Epigenome: Interindividual Differences in Arsenic Metabolism Related to Distinct Patterns of DNA Methylation. Journal of Biochemical and Molecular Toxicology, 2013, 27, 106-115.	3.0	97
59	DNA methylation in nasal epithelial cells from smokers: identification of ULBP3-related effects. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L432-L438.	2.9	26
60	Systems Biology and Birth Defects Prevention: Blockade of the Glucocorticoid Receptor Prevents Arsenic-Induced Birth Defects. Environmental Health Perspectives, 2013, 121, 332-338.	6.0	26
61	Formaldehyde Carcinogenicity Research. Toxicologic Pathology, 2013, 41, 181-189.	1.8	183
62	Airway cells from atopic asthmatic patients exposed to ozone display an enhanced innate immune gene profile. Journal of Allergy and Clinical Immunology, 2012, 129, 259-261.e2.	2.9	29
63	Influenza enhances caspase-1 in bronchial epithelial cells from asthmatic volunteers and is associated with pathogenesis. Journal of Allergy and Clinical Immunology, 2012, 130, 958-967.e14.	2.9	46
64	The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic. Toxicology and Applied Pharmacology, 2012, 264, 439-450.	2.8	54
65	Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways. Respiratory Research, 2012, 13, 89.	3.6	21
66	The Aryl Hydrocarbon Receptor Pathway: A Key Component of the microRNA-Mediated AML Signalisome. International Journal of Environmental Research and Public Health, 2012, 9, 1939-1953.	2.6	18
67	Epigenetic Changes in Individuals with Arsenicosis. Chemical Research in Toxicology, 2011, 24, 165-167.	3.3	147
68	A Toxicogenomic Comparison of Primary and Photochemically Altered Air Pollutant Mixtures. Environmental Health Perspectives, 2011, 119, 1583-1589.	6.0	33
69	Comparative genomic analyses identify common molecular pathways modulated upon exposure to low doses of arsenic and cadmium. BMC Genomics, 2011, 12, 173.	2.8	43
70	17β-Estradiol and Tamoxifen Prevent Gastric Cancer by Modulating Leukocyte Recruitment and Oncogenic Pathways in <i>Helicobacter Pylori</i> –Infected INS-GAS Male Mice. Cancer Prevention Research, 2011, 4, 1426-1435.	1.5	63
71	Epigenetic Changes Induced by Air Toxics: Formaldehyde Exposure Alters miRNA Expression Profiles in Human Lung Cells. Environmental Health Perspectives, 2011, 119, 494-500.	6.0	97
72	Development of the InTelligence And Machine LEarning (TAME) Toolkit for Introductory Data Science, Chemical-Biological Analyses, Predictive Modeling, and Database Mining for Environmental Health Research. Frontiers in Toxicology, 0, 4, .	3.1	4