
Hui Xin Ong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3775547/publications.pdf Version: 2024-02-01

HUL XIN ONC

#	Article	IF	CITATIONS
1	Spray freeze drying for protein encapsulation: Impact of the formulation to morphology and stability. Drying Technology, 2023, 41, 137-150.	3.1	3
2	An adaptable microreactor to investigate the influence of interfaces on Pseudomonas aeruginosa biofilm growth. Applied Microbiology and Biotechnology, 2022, 106, 1067-1077.	3.6	6
3	Timothy Grass Pollen Induces Spatial Reorganisation of F-Actin and Loss of Junctional Integrity in Respiratory Cells. Inflammation, 2022, 45, 1209-1223.	3.8	4
4	Prospective nanoparticle treatments for lymphangioleiomyomatosis. Expert Opinion on Drug Delivery, 2022, 19, 75-86.	5.0	1
5	Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. International Journal of Molecular Sciences, 2022, 23, 2408.	4.1	13
6	Understanding the effects of aerodynamic and hydrodynamic shear forces on <i>Pseudomonas aeruginosa</i> biofilm growth. Biotechnology and Bioengineering, 2022, 119, 1483-1497.	3.3	9
7	Application of Micro-Engineered Kidney, Liver, and Respiratory System Models to Accelerate Preclinical Drug Testing and Development. Bioengineering, 2022, 9, 150.	3.5	2
8	The application of in vitro cellular assays for analysis of electronic cigarettes impact on the airway. Life Sciences, 2022, 298, 120487.	4.3	2
9	Engineered nasal dry powder for the encapsulation of bioactive compounds. Drug Discovery Today, 2022, 27, 2300-2308.	6.4	24
10	Investigating potential TRPV1 positive feedback to explain TRPV1 upregulation in airway disease states. Drug Development and Industrial Pharmacy, 2022, , 1-11.	2.0	0
11	Development of excipients free inhalable co-spray-dried tobramycin and diclofenac formulations for cystic fibrosis using two and three fluid nozzles. International Journal of Pharmaceutics, 2022, 624, 121989.	5.2	5
12	Real-time quantitative monitoring of <i>in vitro</i> nasal drug delivery by a nasal epithelial mucosa-on-a-chip model. Expert Opinion on Drug Delivery, 2021, 18, 803-818.	5.0	15
13	Development and in vitro characterization of a novel pMDI diclofenac formulation as an inhalable anti-inflammatory therapy for cystic fibrosis. International Journal of Pharmaceutics, 2021, 596, 120319.	5.2	6
14	Tobramycin and Colistin display anti-inflammatory properties in CuFi-1 cystic fibrosis cell line. European Journal of Pharmacology, 2021, 902, 174098.	3.5	2
15	Inhaled rapamycin solid lipid nano particles for the treatment of Lymphangioleiomyomatosis. European Journal of Pharmaceutical Sciences, 2020, 142, 105098.	4.0	18
16	An in vitro model for assessing drug transport in cystic fibrosis treatment: Characterisation of the CuFi-1 cell line. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 156, 121-130.	4.3	15
17	Modifying and Integrating in vitro and ex vivo Respiratory Models for Inhalation Drug Screening. Frontiers in Bioengineering and Biotechnology, 2020, 8, 581995.	4.1	28
18	Properties of rapamycin solid lipid nanoparticles for lymphatic access through the lungs & part I: the effect of size. Nanomedicine, 2020, 15, 1927-1945.	3.3	6

Hui Xin Ong

#	Article	IF	CITATIONS
19	Paclitaxel-eluting silicone airway stent for preventing granulation tissue growth and lung cancer relapse in central airway pathologies. Expert Opinion on Drug Delivery, 2020, 17, 1631-1645.	5.0	7
20	Properties of rapamycin solid lipid nanoparticles for lymphatic access through the lungs & part II: the effect of nanoparticle charge. Nanomedicine, 2020, 15, 1947-1963.	3.3	7
21	Using individualized three-dimensional printed airway models to guide airway stent implantation. Interactive Cardiovascular and Thoracic Surgery, 2020, 31, 900-903.	1.1	4
22	A Review of Respiratory Anatomical Development, Air Flow Characterization and Particle Deposition. International Journal of Environmental Research and Public Health, 2020, 17, 380.	2.6	68
23	Co-Spray-Dried Urea Cross-Linked Hyaluronic Acid and Sodium Ascorbyl Phosphate as Novel Inhalable Dry Powder Formulation. Journal of Pharmaceutical Sciences, 2019, 108, 2964-2971.	3.3	11
24	Application of a Thermosensitive In Situ Gel of Chitosan-Based Nasal Spray Loaded with Tranexamic Acid for Localised Treatment of Nasal Wounds. AAPS PharmSciTech, 2019, 20, 299.	3.3	38
25	Simvastatin Nanoparticles Reduce Inflammation in LPS-Stimulated Alveolar Macrophages. Journal of Pharmaceutical Sciences, 2019, 108, 3890-3897.	3.3	12
26	Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders. Expert Opinion on Drug Delivery, 2019, 16, 453-466.	5.0	62
27	The utility of 3D-printed airway stents to improve treatment strategies for central airway obstructions. Drug Development and Industrial Pharmacy, 2019, 45, 1-10.	2.0	33
28	In vitro characterization of physico-chemical properties, cytotoxicity, bioactivity of urea-crosslinked hyaluronic acid and sodium ascorbyl phosphate nasal powder formulation. International Journal of Pharmaceutics, 2019, 558, 341-350.	5.2	11
29	Sweetening Inhaled Antibiotic Treatment for Eradication of Chronic Respiratory Biofilm Infection. Pharmaceutical Research, 2018, 35, 50.	3.5	11
30	Combination of urea-crosslinked hyaluronic acid and sodium ascorbyl phosphate for the treatment of inflammatory lung diseases: An in vitro study. European Journal of Pharmaceutical Sciences, 2018, 120, 96-106.	4.0	19
31	Is there a role for inhaled anti-inflammatory drugs in cystic fibrosis treatment?. Expert Opinion on Orphan Drugs, 2018, 6, 69-84.	0.8	3
32	Repurposing of statins via inhalation to treat lung inflammatory conditions. Advanced Drug Delivery Reviews, 2018, 133, 93-106.	13.7	23
33	Inhaled simvastatin nanoparticles for inflammatory lung disease. Nanomedicine, 2017, 12, 2471-2485.	3.3	17
34	Novel nano-cellulose excipient for generating non-Newtonian droplets for targeted nasal drug delivery. Drug Development and Industrial Pharmacy, 2017, 43, 1729-1733.	2.0	4
35	Application of RPMI 2650 nasal cell model to a 3D printed apparatus for the testing of drug deposition and permeation of nasal products. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 223-233.	4.3	53
36	Could simvastatin be considered as a potential therapy for chronic lung diseases? A debate on the pros and cons. Expert Opinion on Drug Delivery, 2016, 13, 1407-1420.	5.0	12

Hui Xin Ong

#	Article	IF	CITATIONS
37	Biological Effects of Simvastatin Formulated as pMDI on Pulmonary Epithelial Cells. Pharmaceutical Research, 2016, 33, 92-101.	3.5	17
38	Is the cellular uptake of respiratory aerosols delivered from different devices equivalent?. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 320-327.	4.3	17
39	Tuning Aerosol Performance Using the Multibreath Orbital® Dry Powder Inhaler Device: Controlling Delivery Parameters and Aerosol Performance via Modification of Puck Orifice Geometry. Journal of Pharmaceutical Sciences, 2015, 104, 2169-2176.	3.3	11
40	Dry powder formulation of simvastatin. Expert Opinion on Drug Delivery, 2015, 12, 857-868.	5.0	22
41	In vitro and ex vivo methods predict the enhanced lung residence time of liposomal ciprofloxacin formulations for nebulisation. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 83-89.	4.3	46
42	Combined Inhaled Salbutamol and Mannitol Therapy for Mucus Hyper-secretion in Pulmonary Diseases. AAPS Journal, 2014, 16, 269-280.	4.4	25
43	Across the pulmonary epithelial barrier: Integration of physicochemical properties and human cell models to study pulmonary drug formulations. , 2014, 144, 235-252.		54
44	Pharmaceutical applications of the Calu-3 lung epithelia cell line. Expert Opinion on Drug Delivery, 2013, 10, 1287-1302.	5.0	63
45	The Effects of Mannitol on the Transport of Ciprofloxacin across Respiratory Epithelia. Molecular Pharmaceutics, 2013, 10, 2915-2924.	4.6	22
46	Ciprofloxacin Is Actively Transported across Bronchial Lung Epithelial Cells Using a Calu-3 Air Interface Cell Model. Antimicrobial Agents and Chemotherapy, 2013, 57, 2535-2540.	3.2	49
47	Liposomal Nanoparticles Control the Uptake of Ciprofloxacin Across Respiratory Epithelia. Pharmaceutical Research, 2012, 29, 3335-3346.	3.5	75
48	Epithelial Profiling of Antibiotic Controlled Release Respiratory Formulations. Pharmaceutical Research, 2011, 28, 2327-2338.	3.5	45