Jie Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3773992/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hierarchical NiCo ₂ O ₄ @NiMoO ₄ core–shell hybrid nanowire/nanosheet arrays for high-performance pseudocapacitors. Journal of Materials Chemistry A, 2015, 3, 14348-14357.	10.3	213
2	Construction of Hierarchical NiCo ₂ O ₄ @Ni-MOF Hybrid Arrays on Carbon Cloth as Superior Battery-Type Electrodes for Flexible Solid-State Hybrid Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 37675-37684.	8.0	169
3	Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. International Journal of Pharmaceutics, 2015, 479, 291-301.	5.2	157
4	Construction of Hierarchical NiCo2S4@Ni(OH)2 Core-Shell Hybrid Nanosheet Arrays on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors. Electrochimica Acta, 2016, 193, 116-127.	5.2	151
5	Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties. Applied Surface Science, 2015, 355, 921-929.	6.1	71
6	Superhydrophobic and breathable SiO2/polyurethane porous membrane for durable water repellent application and oil-water separation. Applied Surface Science, 2020, 512, 144837.	6.1	70
7	Dye-sensitized solar cells based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode. Electrochimica Acta, 2013, 87, 651-656.	5.2	60
8	Sandwich-structured composite fibrous membranes with tunable porous structure for waterproof, breathable, and oil-water separation applications. Journal of Colloid and Interface Science, 2018, 514, 386-395.	9.4	60
9	Fabrication of ultrafine fibrous polytetrafluoroethylene porous membranes by electrospinning. Journal of Materials Research, 2009, 24, 2755-2761.	2.6	58
10	3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2018, 163, 369-378.	5.0	58
11	Coaxial electrospun TiO2/ZnO core–sheath nanofibers film: Novel structure for photoanode of dye-sensitized solar cells. Electrochimica Acta, 2012, 78, 392-397.	5.2	54
12	In vivo study of silk fibroin/gelatin electrospun nanofiber dressing loaded with astragaloside IV on the effect of promoting wound healing and relieving scar. Journal of Drug Delivery Science and Technology, 2019, 52, 272-281.	3.0	54
13	Electrospun montmorillonite modified poly(vinylidene fluoride) nanocomposite separators for lithium-ion batteries. Materials Research Bulletin, 2016, 79, 1-7.	5.2	52
14	Electrospinning fabrication and luminescent properties of SrMoO4:Sm3+ nanofibers. Journal of Alloys and Compounds, 2012, 540, 179-183.	5.5	45
15	Electrospun cellulose polymer nanofiber membrane with flame resistance properties for lithium-ion batteries. Carbohydrate Polymers, 2020, 234, 115907.	10.2	45
16	Robust hydrophobic polyurethane fibrous membranes with tunable porous structure for waterproof and breathable application. Applied Surface Science, 2018, 439, 589-597.	6.1	43
17	Interlaced NiMn-LDH nanosheet decorated NiCo ₂ O ₄ nanowire arrays on carbon cloth as advanced electrodes for high-performance flexible solid-state hybrid supercapacitors. Dalton Transactions, 2019, 48, 12168-12176.	3.3	41
18	Photocatalytic degradation of Rhodamine B using electrospun TiO2 and ZnO nanofibers: a comparative study. Journal of Materials Science, 2013, 48, 8386-8392.	3.7	39

JIE XIONG

#	Article	IF	CITATIONS
19	Growth of Ultrathin Mesoporous Ni-Mo Oxide Nanosheet Arrays on Ni Foam for High-performance Supercapacitor Electrodes. Electrochimica Acta, 2015, 176, 1343-1351.	5.2	38
20	Preparation of electrospun polyurethane/hydrophobic silica gel nanofibrous membranes for waterproof and breathable application. Polymer Engineering and Science, 2018, 58, 1381-1390.	3.1	37
21	Electrospun Polyacrylonitrile nanofiber yarn prepared by funnel-shape collector. Materials Letters, 2012, 79, 245-247.	2.6	36
22	Enhanced efficiency in flexible dye-sensitized solar cells by a novel bilayer photoanode made of carbon nanotubes incorporated TiO 2 nanorods and branched TiO 2 nanotubes. Solar Energy Materials and Solar Cells, 2016, 147, 134-143.	6.2	36
23	Designed construction of hierarchical NiCo ₂ S ₄ @polypyrrole core–shell nanosheet arrays as electrode materials for high-performance hybrid supercapacitors. RSC Advances, 2017, 7, 18447-18455.	3.6	36
24	One-step sulfuration synthesis of hierarchical NiCo ₂ S ₄ @NiCo ₂ S ₄ nanotube/nanosheet arrays on carbon cloth as advanced electrodes for high-performance flexible solid-state hybrid supercapacitors. RSC Advances, 2019, 9, 3041-3049.	3.6	36
25	Electrospun polyurethane microporous membranes for waterproof and breathable application: the effects of solvent properties on membrane performance. Polymer Bulletin, 2018, 75, 3539-3553.	3.3	32
26	Preparation and the luminescent properties of Tb3 +-doped Gd2O3fluorescent nanofibers via electrospinning. Nanotechnology, 2011, 22, 035602.	2.6	30
27	Synthesis and luminescence of high-brightness Gd2O2SO4:Tb3+ nanopieces and the enhanced luminescence by alkali metal ions co-doping. Journal of Luminescence, 2014, 150, 50-54.	3.1	29
28	Growth of three-dimensional hierarchical Co 3 O 4 @NiMoO 4 core-shell nanoflowers on Ni foam as electrode materials for hybrid supercapacitors. Materials Letters, 2016, 182, 298-301.	2.6	28
29	Growth of highly mesoporous CuCo2O4 nanoflakes@Ni(OH)2 nanosheets as advanced electrodes for high-performance hybrid supercapacitors. Journal of Alloys and Compounds, 2017, 722, 928-937.	5.5	27
30	Polydimethylsiloxaneâ€modified polyurethane–poly(É›â€caprolactone) nanofibrous membranes for waterproof, breathable applications. Journal of Applied Polymer Science, 2018, 135, 46360.	2.6	27
31	Investigation of polylactide/poly(ε-caprolactone)/multi-walled carbon nanotubes electrospun nanofibers with surface texture. RSC Advances, 2015, 5, 99179-99187.	3.6	26
32	Highly flexible TiO2/C nanofibrous film for flexible dye-sensitized solar cells as a platinum- and transparent conducting oxide-free flexible counter electrode. Electrochimica Acta, 2017, 255, 256-265.	5.2	26
33	Electrospun PMIA and PVDF-HFP composite nanofibrous membranes with two different structures for improved lithium-ion battery separators. Solid State Ionics, 2020, 347, 115253.	2.7	26
34	High flexibility and electrocatalytic activity MoS2/TiC/carbon nanofibrous film for flexible dye-sensitized solar cell based photovoltaic textile. Materials Research Bulletin, 2019, 118, 110522.	5.2	25
35	High reusability and durability of carbon-doped TiO2/carbon nanofibrous film as visible-light-driven photocatalyst. Journal of Materials Science, 2019, 54, 3795-3804.	3.7	25
36	Metal-organic frameworks derived copper doped cobalt phosphide nanosheet arrays with boosted electrochemical performance for hybrid supercapacitors. Electrochimica Acta, 2020, 363, 137262.	5.2	25

JIE XIONG

#	Article	IF	CITATIONS
37	Fabrication and characterization of electrospun nanofibers of high DP natural cotton lines cellulose. Fibers and Polymers, 2011, 12, 345-351.	2.1	24
38	TiO2/Nb2O5 core–sheath nanofibers film: Co-electrospinning fabrication and its application in dye-sensitized solar cells. Electrochemistry Communications, 2012, 25, 46-49.	4.7	24
39	Capturing cancer cells using hyaluronic acid-immobilized electrospun random or aligned PLA nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123978.	4.7	24
40	Preparation and luminescence properties of terbium-doped lanthanum oxide nanofibers by electrospinning. Journal of Luminescence, 2012, 132, 171-174.	3.1	23
41	Construction of hierarchical NiCo ₂ S ₄ nanotube@NiMoO ₄ nanosheet hybrid arrays as advanced battery-type electrodes for hybrid supercapacitors. New Journal of Chemistry, 2019, 43, 7065-7073.	2.8	23
42	Efficiency enhancement of dye-sensitized solar cells by optimization of electrospun ZnO nanowire/nanoparticle hybrid photoanode and combined modification. Electrochimica Acta, 2015, 163, 330-337.	5.2	22
43	Adult Stem Cells Seeded on Electrospinning Silk Fibroin Nanofiberous Scaffold Enhance Wound Repair and Regeneration. Journal of Nanoscience and Nanotechnology, 2016, 16, 5498-5505.	0.9	22
44	Mesoporous NiO nanosheet network as efficient hole transporting layer for stable inverted perovskite solar cells. Materials Letters, 2018, 231, 101-104.	2.6	21
45	Effects of hydrochloric acid treatment of TiO2 nanoparticles/nanofibers bilayer film on the photovoltaic properties of dye-sensitized solar cells. Materials Research Bulletin, 2013, 48, 978-982.	5.2	20
46	Enhanced performance of flexible dye-sensitized solar cells using flexible Ag@ZrO2/C nanofiber film as low-cost counter electrode. Applied Surface Science, 2018, 440, 992-1000.	6.1	20
47	Electrospun homogeneous silk fibroin/poly (É›-caprolactone) nanofibrous scaffolds by addition of acetic acid for tissue engineering. Journal of Biomaterials Applications, 2016, 31, 421-437.	2.4	19
48	Finite Element Analysis of Electrospun Nanofibrous Mats under Biaxial Tension. Nanomaterials, 2018, 8, 348.	4.1	19
49	A photovoltaic smart textile and a photocatalytic functional textile based on co-electrospun TiO ₂ /MgO core–sheath nanorods: novel textiles of integrating energy and environmental science with textile research. Textile Reseach Journal, 2013, 83, 1690-1702.	2.2	18
50	Novel structure of TiO2–ZnO core shell rice grain for photoanode of dye-sensitized solar cells. Journal of Power Sources, 2014, 261, 1-6.	7.8	18
51	Immobilization of polyethyleneimine-templated silver nanoparticles onto filter paper for catalytic applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 571, 44-49.	4.7	18
52	A facile preparation and the luminescent properties of Eu3+-doped Y2O2SO4 nanopieces. Materials Research Bulletin, 2013, 48, 4896-4900.	5.2	17
53	A facile synthesis of novel ZnO structures and their applications in photocatalysis. Materials Letters, 2014, 123, 214-216.	2.6	17
54	CoMoO 4 nanoplates decorated CuCo 2 O 4 nanowires as advanced electrodes for high-performance hybrid supercapacitors. Materials Letters, 2018, 226, 30-33.	2.6	17

JIE XIONG

#	Article	IF	CITATIONS
55	Co-electrospun nano-/microfibrous composite scaffolds with structural and chemical gradients for bone tissue engineering. Materials Science and Engineering C, 2021, 119, 111622.	7.3	17
56	Durable Polyurethane/SiO ₂ Nanofibrous Membranes by Electrospinning for Waterproof and Breathable Textiles. ACS Applied Nano Materials, 2022, 5, 10686-10695.	5.0	17
57	Co-electrospinning fabrication and photocatalytic performance of TiO2/SiO2 core/sheath nanofibers with tunable sheath thickness. Materials Research Bulletin, 2013, 48, 4673-4678.	5.2	16
58	Investigation of microporous composite scaffolds fabricated by embedding sacrificial polyethylene glycol microspheres in nanofibrous membrane. Composites Part A: Applied Science and Manufacturing, 2016, 91, 20-29.	7.6	16
59	A Tensile Constitutive Relationship and a Finite Element Model of Electrospun Nanofibrous Mats. Nanomaterials, 2018, 8, 29.	4.1	16
60	Fabrication of stable perovskite solar cells with efficiency over 20% in open air using <i>in situ</i> polymerized bi-functional additives. Journal of Materials Chemistry A, 2022, 10, 3688-3697.	10.3	16
61	Facile preparation of superhydrophobic silica nanoparticles by hydrothermal-assisted sol–gel process and effects of hydrothermal time on surface modification. Journal of Sol-Gel Science and Technology, 2018, 87, 478-485.	2.4	15
62	A simple fabrication of high efficiency planar perovskite solar cells: controlled film growth with methylammonium iodide and green antisolvent sec-butyl alcohol. Journal of Materials Chemistry C, 2020, 8, 12560-12567.	5.5	15
63	The application of highly flexible ZrO2/C nanofiber films to flexible dye-sensitized solar cells. Journal of Materials Science, 2017, 52, 11025-11035.	3.7	14
64	Analysis of the Comprehensive Tensile Relationship in Electrospun Silk Fibroin/Polycaprolactone Nanofiber Membranes. Membranes, 2017, 7, 67.	3.0	14
65	A novel bilayer photoanode made of carbon nanotubes incorporated TiO2 nanorods and Mg2+ doped TiO2 nanorods for flexible dye-sensitized solar cells. Thin Solid Films, 2018, 646, 44-52.	1.8	14
66	Catalytic Reduction of Hexavalent Chromium Using Iron/Palladium Bimetallic Nanoparticle-Assembled Filter Paper. Nanomaterials, 2019, 9, 1183.	4.1	13
67	Simple fabrication of perovskite solar cells with enhanced efficiency, stability, and flexibility under ambient air. Journal of Power Sources, 2019, 442, 227216.	7.8	13
68	Optimization of electrospun TiO ₂ nanofibers photoanode film for dyeâ€sensitized solar cells through interfacial preâ€treatment, controllable calcination, and surface postâ€treatment. Surface and Interface Analysis, 2013, 45, 1878-1883.	1.8	11
69	The preparation of highly flexible mesoporous TiC/CNF film for flexible dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2018, 22, 1185-1195.	2.5	9
70	The TiO2 Hierarchical Structure with Nanosheet Spheres for Improved Photoelectric Performance in Dye-Sensitized Solar Cells. Journal of Electronic Materials, 2018, 47, 2230-2236.	2.2	9
71	Modeling Analysis of Silk Fibroin/Poly(Îμ-caprolactone) Nanofibrous Membrane under Uniaxial Tension. Nanomaterials, 2019, 9, 1149.	4.1	9
72	CuGaO ₂ Nanosheet Arrays as the Hole-Transport Layer in Inverted Perovskite Solar Cells. ACS Applied Nano Materials, 2022, 5, 10055-10063.	5.0	9

Jie Xiong

#	Article	IF	CITATIONS
73	Synthesis and photocatalytic properties of Zn2+ doped anatase TiO2 nanofibers. Materials Chemistry and Physics, 2013, 142, 77-81.	4.0	8
74	Fabrication of CNFs/ZnO nanocomposites with enhanced photocatalytic activity and mechanical properties. Fibers and Polymers, 2015, 16, 113-119.	2.1	8
75	Enhanced light harvesting of dye-sensitized solar cells with TiO2 microspheres as light scattering layer. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	8
76	Fabrication of high efficiency perovskite solar cells based on mesoporous TiO 2 nanofibrous film under high humidity conditions. Materials Research Bulletin, 2018, 106, 439-445.	5.2	8
77	Flexible carbon nanotubes/TiO2/C nanofibrous film as counter electrode of flexible quasi-solid dye-sensitized solar cells. Thin Solid Films, 2020, 711, 138307.	1.8	8
78	Highly efficient and stable perovskite solar cells produced by maximizing additive engineering. Sustainable Energy and Fuels, 2021, 5, 469-477.	4.9	8
79	Design of NiO <i>_x</i> /Carbon Heterostructure Interlayer to Improve Hole Extraction Efficiency of Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100862.	3.7	8
80	Effect of wheel rotating speed and LiCl additives on electrospun aligned polyacrylonitrile nanofiber. Polymer Engineering and Science, 2011, 51, 2178-2183.	3.1	7
81	Branched open-ended TiO2 nanotubes for improved efficiency of flexible dye-sensitized solar cells. Journal of Alloys and Compounds, 2017, 724, 1124-1133.	5.5	7
82	Perovskite solar cells with PCE over 19% fabricated under air environment by using a dye molecule additive. Sustainable Energy and Fuels, 2021, 5, 2266-2272.	4.9	7
83	Multifunctional Compoundâ€Regulated SnO ₂ for Highâ€Efficiency and Stable Perovskite Solar Cells under Ambient Air. ChemElectroChem, 2022, 9, .	3.4	6
84	CuGaO ₂ Nanosheets and CuCrO ₂ Nanoparticles Mixed with Spiro-OMeTAD as the Hole-Transport Layer in Perovskite Solar Cells. ACS Applied Nano Materials, 2022, 5, 7312-7320.	5.0	6
85	When Aggregationâ€Induced Emission Meets Perovskites: Efficient Defectâ€Passivation and Chargeâ€Transfer for Ambient Fabrication of Perovskite Solar Cells. Chemistry - A European Journal, 2022, 28, .	3.3	6
86	A Facile Preparation of Flexible Alumina/Carbon Composite Nanofibers Film. Journal of Nano Research, 0, 35, 115-127.	0.8	5
87	Preparation of the flexible ZrO2/C composite nanofibrous film via electrospinning. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	5
88	The preparation of flexible Al2O3/C film and application in flexible dye-sensitized solar cells. Thin Solid Films, 2017, 636, 710-716.	1.8	5
89	Organic–Inorganic Hybrid Electron Transport Layer for Rigid or Flexible Perovskite Solar Cells under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10, 6826-6834.	6.7	5
90	Preparation of ZnO nanoparticles and nanofibers and their use in the degradation of rhodamine B dye under UV irradiation. Fibers and Polymers, 2014, 15, 1648-1655.	2.1	4

Jie Xiong

#	Article	IF	CITATIONS
91	The preparation and properties of the flexible titanium oxide/carbon nanofibers film. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	4
92	Porous carbon nanofibers prepared by low-cost and environmentally friendly ammonium chloride for high-performance Li–S batteries. Ionics, 2022, 28, 1157-1166.	2.4	4
93	A Bioinspired Fibrous Helix with Periodic Gradient for Directional Fluidic Gates. Advanced Engineering Materials, 2022, 24, .	3.5	4
94	A facile method for tailoring the three-dimensional porous nanofibrous scaffolds by the dual electrospinning. Materials Letters, 2017, 209, 384-387.	2.6	3
95	The disappearing additive: introducing volatile ethyl acetate into a perovskite precursor for fabricating high efficiency stable devices in open air. Nanoscale, 2022, 14, 5204-5213.	5.6	3
96	Electrospun Core-Shell Hollow Structure Cocatalysts for Enhanced Photocatalytic Activity. Journal of Nanomaterials, 2021, 2021, 1-7.	2.7	2
97	Flexible N-doped TiO2/C nanofibrous film-based photocatalytic fabric with high photocatalytic activity and excellent reusability. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	1
98	Synthesis of Titania Nanotubes with Different Diameters for Dye-Sensitized Solar Cells. Key Engineering Materials, 0, 582, 131-134.	0.4	0
99	Simulation of coupled transient heat and water vapor transfer in porous fiber membrane with different fiber orientations and porosity. Journal of Industrial Textiles, 0, , 152808372110417.	2.4	0