G Madhavi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3773865/publications.pdf

Version: 2024-02-01

361413 361022 1,277 36 20 35 citations h-index g-index papers 36 36 36 1358 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 116, 17-25.	3.9	159
2	Green chemical approach towards the synthesis of SnO 2 NPs in argument with photocatalytic degradation of diazo dye and its kinetic studies. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 441-447.	3.8	105
3	Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Advances in Colloid and Interface Science, 2022, 304, 102664.	14.7	102
4	Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO 2 @Fe 3 O 4 modified carbon paste electrode. Journal of Electroanalytical Chemistry, 2018, 820, 168-175.	3.8	89
5	An ultra-sensitive electrochemical sensor for the detection of acetaminophen in the presence of etilefrine using bimetallic Pd–Ag/reduced graphene oxide nanocomposites. New Journal of Chemistry, 2018, 42, 3137-3146.	2.8	74
6	Highly Sensitive Electrochemical Sensor for Anticancer Drug by a Zirconia Nanoparticle-Decorated Reduced Graphene Oxide Nanocomposite. ACS Omega, 2018, 3, 14597-14605.	3.5	68
7	Ultrafine Pt–Ni bimetallic nanoparticles anchored on reduced graphene oxide nanocomposites for boosting electrochemical detection of dopamine in biological samples. New Journal of Chemistry, 2018, 42, 16891-16901.	2.8	60
8	Recent progress on Fe-based nanoparticles: Synthesis, properties, characterization and environmental applications. Journal of Environmental Chemical Engineering, 2016, 4, 3537-3553.	6.7	59
9	Fine-tuning of MXene-nickel oxide-reduced graphene oxide nanocomposite bioelectrode: Sensor for the detection of influenza virus and viral protein. Biosensors and Bioelectronics, 2022, 214, 114511.	10.1	55
10	Determination of dopamine in presence of ascorbic acid and uric acid using poly (Spands Reagent) modified carbon paste electrode. Materials Science and Engineering C, 2015, 57, 378-386.	7.3	53
11	Immobilization of platinum-cobalt and platinum-nickel bimetallic nanoparticles on pomegranate peel extract-treated reduced graphene oxide as electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 7680-7690.	7.1	36
12	A Pt-free graphenaceous composite as an electro-catalyst for efficient oxygen reduction reaction. Nanoscale, 2019, 11, 13300-13308.	5.6	31
13	A simple, highly sensitive and stable electrochemical sensor for the detection of quercetin in solution, onion and honey buckwheat using zinc oxide supported on carbon nanosheet (ZnO/CNS/MCPE) modified carbon paste electrode. Electrochimica Acta, 2019, 313, 523-531.	5.2	31
14	An ultra-sensitive rifampicin electrochemical sensor based on titanium nanoparticles (TiO2) anchored reduced graphene oxide modified glassy carbon electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125533.	4.7	31
15	Simple synthesis of biogenic Pd Ag bimetallic nanostructures for an ultra-sensitive electrochemical sensor for sensitive determination of uric acid. Journal of Electroanalytical Chemistry, 2018, 822, 163-170.	3 . 8	30
16	Highly sensitive detection of anti-cancer drug based on bimetallic reduced graphene oxide nanocomposite. Chemosphere, 2022, 287, 132281.	8.2	28
17	A selective and sensitive UPLC–MS/MS approach for trace level quantification of four potential genotoxic impurities in zolmitriptan drug substance. Journal of Pharmaceutical and Biomedical Analysis, 2013, 84, 84-89.	2.8	26
18	Facile one pot synthesis of bimetallic Pd-Ag/reduced graphene oxide nanocomposite as an electrochemical sensor for sensitive detection of anti-hypotensive drug. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 293-300.	4.7	26

#	Article	IF	CITATIONS
19	Mobilized lipase enzymatic biosensor for the determination of Chlorfenvinphos and Malathion in contaminated water samples: A voltammetric study. Journal of Molecular Liquids, 2014, 198, 181-186.	4.9	25
20	Electrochemical investigations of lipase enzyme activity inhibition by methyl parathion pesticide: Voltammetric studies. Journal of Molecular Liquids, 2013, 180, 26-30.	4.9	24
21	Development and validation of a systematic UPLC–MS/MS method for simultaneous determination of three phenol impurities in ritonavir. Journal of Pharmaceutical and Biomedical Analysis, 2014, 90, 127-133.	2.8	20
22	Simultaneous determination of asenapine and valproic acid in human plasma using LC–MS/MS: Application of the method to support pharmacokinetic study. Journal of Pharmaceutical Analysis, 2013, 3, 394-401.	5. 3	19
23	Remediation of Chlorpyrifos-Contaminated Soils by Laboratory-Synthesized Zero-Valent Nano Iron Particles: Effect of pH and Aluminium Salts. Journal of Chemistry, 2013, 2013, 1-7.	1.9	19
24	Catunaregum spinosa capped Ag NPs and its photocatalytic application against amaranth toxic azo dye. Journal of Molecular Liquids, 2017, 225, 531-535.	4.9	19
25	Method development and validation study for quantitative determination of 2-chloromethyl-3,4-dimethoxy pyridine hydrochloride a genotoxic impurity in pantoprazole active pharmaceutical ingredient (API) by LC/MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2012, 70, 592-597.	2.8	17
26	Trace-level determination of amlodipine besylate by immobilization of palladium-silver bi-metallic nanoparticles on reduced graphene oxide as an electrochemical sensor. Journal of Electroanalytical Chemistry, 2019, 847, 113259.	3.8	16
27	Liquid chromatography–tandem mass spectrometry method for simultaneous quantification of urapidil and aripiprazole in human plasma and its application to human pharmacokinetic study. Biomedical Chromatography, 2013, 27, 916-923.	1.7	13
28	Environmental Friendly Synthesis of Palladium Nanoparticles and its Photocatalytic Activity Against Diazo Dye to Sustain the Natural Source. Journal of Cluster Science, 2017, 28, 1225-1236.	3.3	9
29	Heavy Metals Removal Using Carbon Based Nanocomposites. Green Energy and Technology, 2021, , 249-274.	0.6	9
30	A simple, sensitive, and straightforward LC–MS approach for rapid analysis of three potential genotoxic impurities in rabeprazole formulations. Journal of Separation Science, 2018, 41, 3966-3973.	2.5	6
31	Facile Preparation of Ionic Liquidâ€coated Copper Nanowireâ€modified Carbon Paste Electrode for Electrochemical Detection of Etilefrine Drug. Bulletin of the Korean Chemical Society, 2019, 40, 560-565.	1.9	5
32	Trace level quantification of 1-(3-chloropropyl)-4-(3-chlorophenyl)piperazine HCl genotoxic impurity in trazodone using LC–MS/MS. Arabian Journal of Chemistry, 2019, 12, 1615-1622.	4.9	5
33	Nanoencapsulation of pesticides: Sustainable perspective in agriculture. AIP Conference Proceedings, 2020, , .	0.4	4
34	Systematic Approach for Trace Level Quantification of 2-N-butyl-4-spirocyclopentane-2-imidazole-5-one Genotoxic Impurity in Irbesartan Using LC-MS/MS. Indian Journal of Pharmaceutical Sciences, 2013, 75, 501-6.	1.0	2
35	Zirconia/Poly(oxalic acid) Modified Carbon Paste Electrode for Electrochemical Investigation of Uric Acid in Presence of Dopamine and Ascorbic Acid. Asian Journal of Chemistry, 2016, 28, 1828-1834.	0.3	1
36	Effect of Sulfamerazine on Structural Characteristics of Sodium Alginate Biopolymeric Films. Biotechnology and Bioprocess Engineering, 2022, 27, 596-606.	2.6	1