
Caroline L Mohammed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3773598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induced resistance to pests and pathogens in trees. New Phytologist, 2010, 185, 893-908.	7.3	256
2	Puccinia psidii: a threat to the Australian environment and economy – a review. Australasian Plant Pathology, 2007, 36, 1.	1.0	188
3	Perception of climate change and its impact by smallholders in pastoral/agropastoral systems of Borana, South Ethiopia. SpringerPlus, 2015, 4, 236.	1.2	130
4	Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiology, 2009, 29, 753-764.	3.1	110
5	The Effects of Working Memory Resource Availability on Prospective Memory. Experimental Psychology, 2005, 52, 243-256.	0.7	100
6	Identification of hydrolysable tannins in the reaction zone of Eucalyptus nitens wood by high performance liquid chromatography-electrospray ionisation mass spectrometry. Phytochemical Analysis, 2001, 12, 120-127.	2.4	80
7	Chlorophyll and nitrogen determination for plantation-grown Eucalyptus nitens and E. globulus using a non-destructive meter. Forest Ecology and Management, 2006, 223, 211-217.	3.2	76
8	Application of Remote Sensing Technologies for Assessing Planted Forests Damaged by Insect Pests and Fungal Pathogens: a Review. Current Forestry Reports, 2017, 3, 75-92.	7.4	68
9	Defoliation and nitrogen effects on photosynthesis and growth of Eucalyptus globulus. Tree Physiology, 2007, 27, 1053-1063.	3.1	64
10	Management of basidiomycete root―and stemâ€rot diseases in oil palm, rubber and tropical hardwood plantation crops. Forest Pathology, 2014, 44, 428-446.	1.1	62
11	Photosynthesis of Eucalyptus globulus with Mycosphaerella leaf disease. New Phytologist, 2006, 170, 119-127.	7.3	54
12	Comparison of Antifungal and Antioxidant Activities of Acacia mangium and A. auriculiformis Heartwood Extracts. Journal of Chemical Ecology, 2005, 31, 789-804.	1.8	53
13	Effects of Mycosphaerella leaf disease on the spectral reflectance properties of juvenile Eucalyptus globulus foliage. Forest Pathology, 2006, 36, 334-348.	1.1	53
14	Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill. Tree Physiology, 2012, 32, 958-967.	3.1	51
15	Genetic variation inEucalyptus globulusfor susceptibility toMycosphaerella nubilosaand its association with tree growth. Australasian Plant Pathology, 2005, 34, 11.	1.0	50
16	Anatomical and histochemical defence responses induced in juvenile leaves of <i>Eucalyptus globulus</i> and <i>Eucalyptus nitens</i> by <i>Mycosphaerella</i> infection. Forest Pathology, 2007, 37, 361-373.	1.1	50
17	Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings. Journal of Experimental Botany, 2013, 64, 1625-1636.	4.8	49
18	Crownâ€scale evaluation of spectral indices for defoliated and discoloured eucalypts. International Journal of Remote Sensing, 2008, 29, 47-69.	2.9	48

#	Article	IF	CITATIONS
19	<i>Ganoderma</i> and <i>Amauroderma</i> species associated with root-rot disease of <i>Acacia mangium</i> plantation trees in Indonesia and Malaysia. Australasian Plant Pathology, 2009, 38, 345.	1.0	48
20	Temperate eucalypt forest decline is linked to altered ectomycorrhizal communities mediated by soil chemistry. Forest Ecology and Management, 2013, 302, 329-337.	3.2	48
21	Do artificial and natural defoliation have similar effects on physiology of Eucalyptus globulus Labill. seedlings?. Annals of Forest Science, 2010, 67, 203-203.	2.0	45
22	Growth responses of Eucalyptus globulus Labill. to nitrogen application and severity, pattern and frequency of artificial defoliation. Forest Ecology and Management, 2006, 229, 378-387.	3.2	43
23	New foliar pathogens of Eucalyptus from Australia and Indonesia. Mycological Research, 1998, 102, 527-532.	2.5	41
24	Photosynthetic responses of field-grown Pinus radiata trees to artificial and aphid-induced defoliation. Tree Physiology, 2011, 31, 592-603.	3.1	41
25	Effects of fertilising with nitrogen and phosphorus on growth and crown condition of Eucalyptus globulus Labill. experiencing insect defoliation. Forest Ecology and Management, 2006, 231, 131-137.	3.2	40
26	Rapid collapse of a subâ€Antarctic alpine ecosystem: the role of climate and pathogens. Journal of Applied Ecology, 2015, 52, 774-783.	4.0	40
27	Wound wood formation in Eucalyptus globulus and Eucalyptus nitens: anatomy and chemistry. Canadian Journal of Forest Research, 2003, 33, 2331-2339.	1.7	38
28	Novel detection of formylated phloroglucinol compounds (FPCs) in the wound wood of Eucalyptus globulus and E. nitens. Journal of Chemical Ecology, 2003, 29, 881-898.	1.8	37
29	Management of fungal rootâ€rot pathogens in tropical <i>Acacia mangium</i> plantations. Forest Pathology, 2008, 38, 332-355.	1.1	33
30	Development of an efficient system for the separation of indole alkaloids by high performance liquid chromatography and its applications. Phytochemical Analysis, 2001, 12, 96-103.	2.4	32
31	Polyphenols in Acacia mangium and Acacia auriculiformis heartwood with reference to heart rot susceptibility. Journal of Wood Science, 2005, 51, 615-621.	1.9	32
32	Development of Nested Polymerase Chain Reaction Detection of Mycosphaerella spp. and Its Application to the Study of Leaf Disease in Eucalyptus Plantations. Phytopathology, 2007, 97, 132-144.	2.2	32
33	Spectral characterization of necrosis from reflectance of Eucalyptus globulus leaves with Mycosphaerella leaf disease or subjected to artificial lesions. International Journal of Remote Sensing, 2011, 32, 9243-9259.	2.9	32
34	Mycosphaerella species occurring on Eucalyptus globulus and Eucalyptus nitens plantations of Tasmania, Australia. Forest Pathology, 2001, 31, 53-63.	1.1	31
35	Effect of season and different fungi on phenolics in response to xylem wounding and inoculation in Eucalyptus nitens. Forest Pathology, 2002, 32, 163-178.	1.1	31
36	Host responses to natural infection byCytonaemasp. in the aerial bark ofEucalyptus globulus. Forest Pathology, 2003, 33, 317-331.	1.1	31

Caroline L Mohammed

#	Article	IF	CITATIONS
37	The ecology and diversity of wood-inhabiting macrofungi in a native Eucalyptus obliqua forest of southern Tasmania, Australia. Fungal Ecology, 2011, 4, 56-67.	1.6	31
38	Effect of pruning Acacia mangium on growth, form and heart rot. Forest Ecology and Management, 2007, 238, 261-267.	3.2	30
39	A Theory of Partisan Support and Entry Deterrence in Electoral Competition. Journal of Theoretical Politics, 2006, 18, 123-158.	0.4	29
40	Ceratocystis species, including two new species associated with nitidulid beetles, on eucalypts in Australia. Antonie Van Leeuwenhoek, 2012, 101, 217-241.	1.7	29
41	Microsatellite analysis indicates that Puccinia psidii in Australia is mutating but not recombining. Australasian Plant Pathology, 2015, 44, 455-462.	1.0	29
42	Growth responses, physiology and decay associated with pruning plantation-grown Eucalyptus globulus Labill. and E. nitens (Deane and Maiden) Maiden. Forest Ecology and Management, 2004, 200, 263-277.	3.2	27
43	Predicting productivity of Acacia hybrid plantations for a range of climates and soils in Vietnam. Forest Ecology and Management, 2016, 367, 97-111.	3.2	27
44	Disease progression in plantations of <i><scp>A</scp>cacia mangium</i> affected by red root rot (<i><scp>G</scp>anoderma philippii</i>). Forest Pathology, 2014, 44, 447-459.	1.1	26
45	Identification of basidiomycete fungi in <scp>I</scp> ndonesian hardwood plantations by <scp>DNA</scp> barcoding. Forest Pathology, 2014, 44, 496-508.	1.1	24
46	Pruning and fertiliser effects on branch size and decay in two Eucalyptus nitens plantations. Forest Ecology and Management, 2006, 225, 123-133.	3.2	23
47	<i>Ceratocystis</i> wilt and canker – a disease that compromises the growing of commercial <i>Acacia</i> -based plantations in the tropics. Australian Forestry, 2019, 82, 80-93.	0.9	23
48	Effects of soil- and climate data aggregation on simulated potato yield and irrigation water requirement. Science of the Total Environment, 2020, 710, 135589.	8.0	23
49	Quantifying stem growth loss at the tree-level in a Pinus radiata plantation to repeated attack by the aphid, Essigella californica. Forest Ecology and Management, 2011, 261, 120-127.	3.2	21
50	Anatomical variation and defence responses of juvenileEucalyptus nitensleaves to Mycosphaerella leaf disease. Australasian Plant Pathology, 2006, 35, 725.	1.0	20
51	Signs and identification of fungal rootâ€rot pathogens in tropical <i>Eucalyptus pellita</i> plantations. Forest Pathology, 2014, 44, 486-495.	1.1	20
52	Pathogenicity of Fungi Associated with Stem Cankers of Eucalypts in Tasmania, Australia. Plant Disease, 1999, 83, 1063-1069.	1.4	19
53	Kino vein formation inEucalyptus globulusandE. nitens. Australian Forestry, 2003, 66, 206-212.	0.9	18
54	Incidence of heartrot in harvest-age Acacia mangium in Indonesia, using a rapid survey method. Forest Ecology and Management, 2004, 190, 273-280.	3.2	18

CAROLINE L MOHAMMED

#	Article	IF	CITATIONS
55	Physiology and anatomy of lenticel-like structures on leaves of Eucalyptus nitens and Eucalyptus globulus seedlings. Tree Physiology, 2006, 26, 989-999.	3.1	18
56	Screening for host responses in <i>Acacia</i> to a canker and wilt pathogen, <i>Ceratocystis manginecans</i> . Forest Pathology, 2018, 48, e12390.	1.1	17
57	Ceratocystis moniliformopsis sp. nov., an early coloniser of Eucalyptus obliqua logs in Tasmania, Australia. Australian Systematic Botany, 2002, 15, 125.	0.9	16
58	Role ofEucalyptus globuluswound wood extractives: evidence of superoxide dismutase-like activity. Forest Pathology, 2004, 34, 225-232.	1.1	15
59	Solid-wood production from temperate eucalypt plantations: a Tasmanian case study. Southern Forests, 2008, 70, 45-57.	0.7	15
60	Speciesâ€specific <scp>PCR</scp> for rapid identification of <i>Ganoderma philippii</i> and <i>Ganoderma mastoporum</i> from <i>Acacia mangium</i> and <i>Eucalyptus pellita</i> plantations in <scp>I</scp> ndonesia. Forest Pathology, 2014, 44, 477-485.	1.1	15
61	Contribution of Harvest Residues to Nutrient Cycling in a Tropical Acacia mangium Willd. Plantation. Forests, 2018, 9, 577.	2.1	15
62	Detection of necrotic foliage in a young <i>Eucalyptus pellita</i> plantation using unmanned aerial vehicle RGB photography – a demonstration of concept. Australian Forestry, 2019, 82, 79-88.	0.9	15
63	Genetic structure of aMycosphaerella crypticapopulation. Australasian Plant Pathology, 2005, 34, 345.	1.0	14
64	Precision And Accuracy Of Pest And Pathogen Damage Assessment In Young Eucalypt Plantations. Environmental Monitoring and Assessment, 2005, 111, 243-256.	2.7	14
65	Association of <i>Eucalyptus globulus</i> leaf anatomy with susceptibility to <i>Teratosphaeria</i> leaf disease. Forest Pathology, 2018, 48, e12395.	1.1	14
66	The effect of time and site on incidence and spread of pruning-related decay in plantation-grown Eucalyptus nitens. Canadian Journal of Forest Research, 2005, 35, 495-502.	1.7	13
67	Predicting <i>Mycosphaerella</i> leaf disease severity in a <i>Eucalyptus globulus</i> plantation using digital multi-spectral imagery. Southern Forests, 2007, 69, 175-182.	0.2	13
68	Role of site in the mortality and production of <i>Acacia mangium</i> plantations in Indonesia. Southern Forests, 2018, 80, 37-50.	0.7	12
69	Diversity and ecology of epigeous ectomycorrhizal macrofungal assemblages in a native wet eucalypt forest in Tasmania, Australia. Fungal Ecology, 2011, 4, 290-298.	1.6	11
70	An assessment of ectomycorrhizal fungal communities in Tasmanian temperate high-altitude Eucalyptus delegatensis forest reveals a dominance of the Cortinariaceae. Mycorrhiza, 2017, 27, 67-74.	2.8	11
71	Screening disease resistance of Acacia auriculiformis clones against Ceratocystis manginecans by artificial and natural inoculation methods. Australasian Plant Pathology, 2019, 48, 617-624.	1.0	11
72	COMPARISON OF CEPA (2-CHLOROETHYL PHOSPHONIC ACID) INDUCED RESPONSES IN JUVENILE EUCALYPTUS NITENS, E. GLOBULUS AND E. OBLIQUA: A HISTOCHEMICAL AND ANATOMICAL STUDY. IAWA Journal, 2002, 23, 419-430.	2.7	10

#	Article	IF	CITATIONS
73	Variation of heartrot, sapwood infection and polyphenol extractives with provenance of Acacia mangium. Forest Pathology, 2006, 36, 183-197.	1.1	9
74	Diversity and phenology of the macrofungal assemblages supported by litter in a tall, wet Eucalyptus obliqua forest inÂsouthern Tasmania, Australia. Fungal Ecology, 2011, 4, 68-75.	1.6	9
75	Effect of residue management and fertiliser application on the productivity of a Eucalyptus hybrid and Acacia mangium planted on sloping terrain in northern Vietnam. Southern Forests, 2019, 81, 201-212.	0.7	9
76	The influence of wound location on decay extent in plantation-grown Eucalyptus globulus and Eucalyptus nitens. Forest Ecology and Management, 2007, 242, 353-362.	3.2	8
77	Seasonal dynamics in understorey abundance and carbohydrate concentration in relation to browsing and bark stripping of Tasmanian Pinus radiata plantations. Forest Ecology and Management, 2013, 296, 98-107.	3.2	8
78	<i><scp>G</scp>anoderma steyaertanum</i> as a rootâ€rot pathogen of forest trees. Forest Pathology, 2014, 44, 460-471.	1.1	8
79	<i><scp>L</scp>ophodermium pinastri</i> and an unknown species of Teratosphaeriaceae are associated with needle cast in a <i><scp>P</scp>inus radiata</i> selection trial. Forest Pathology, 2015, 45, 281-289.	1.1	8
80	Acacia plantations in Indonesia facilitate clonal spread of the root pathogen <i>Ganoderma philippii</i> . Plant Pathology, 2020, 69, 685-697.	2.4	8
81	Lesion development in stems of rough- and smooth-barked Eucalyptus nitens following artificial inoculations with canker fungi. Forest Pathology, 2001, 31, 149-161.	1.1	6
82	Multigene phylogenetic study of <i>Cyclaneusma</i> species. Forest Pathology, 2014, 44, 299-309.	1.1	6
83	Diversity and identification of fungi associated with needles of <i>Pinus radiata</i> in Tasmania. Southern Forests, 2016, 78, 19-34.	0.7	6
84	Ganoderma basidiospore germination responses as affected by spore density, temperature and nutrient media. Tropical Plant Pathology, 2017, 42, 328-338.	1.5	6
85	Characterizing Eucalypt Leaf Phenology and Stress with Spectral Analysis. Lecture Notes in Geoinformation and Cartography, 2009, , 193-209.	1.0	6
86	Sexuality and mating types of Ganoderma philippii, Ganoderma mastoporum and Ganoderma australe, three basidiomycete fungi with contrasting ecological roles in south-east Asian pulpwood plantations. Australasian Plant Pathology, 2018, 47, 83-94.	1.0	5
87	Maximising growth and sawlog production from Acacia hybrid plantations in Vietnam. New Forests, 2019, 50, 785-804.	1.7	5
88	Tolerance of Acacia populations following inoculation with the Ceratocystis canker and wilt pathogen in Vietnam. Tree Genetics and Genomes, 2020, 16, 1.	1.6	5
89	Structural host responses of <i>Acacia mangium</i> and <i>Eucalyptus pellita</i> to artificial infection with the root rot pathogen, <i>Ganoderma philippii</i> . Forest Pathology, 2016, 46, 369-375.	1.1	4
90	Quantifying stem discoloration and decay following pruning and thinning an <i>Acacia</i> hybrid plantation. Forest Pathology, 2017, 47, e12312.	1.1	3

#	Article	IF	CITATIONS
91	Woodâ€rotting basidiomycetes are a minor component of fungal communities associated with <i>Acacia</i> hybrid trees grown for sawlogs in South Vietnam. Forest Pathology, 2019, 49, e12498.	1.1	3
92	Ease of Access to An Alternative Food Source Enables Wallabies to Strip Bark in Tasmanian Pinus radiata Plantations. Forests, 2020, 11, 387.	2.1	3
93	Screening clonally replicated Acacia mangium breeding populations for tolerance to Ceratocystis canker and wilt disease. Tree Genetics and Genomes, 2022, 18, 1.	1.6	3
94	Post-Harvest Chemical Staining in Blackwood (Acacia melanoxylon R. Br.). Holzforschung, 2003, 57, 230-236.	1.9	2
95	Defence responses in plantationâ€grown <i>Eucalyptus globulus</i> and <i>Eucalyptus nitens</i> after artificial fungal inoculation. Forest Pathology, 2011, 41, 398-406.	1.1	2
96	Recovery after defoliation in Eucalyptus globulus saplings: respiration and growth. Trees - Structure and Function, 2016, 30, 1543-1555.	1.9	2
97	First Report of Gloeosporidina sp. Isolated from Lesions on Shoots and Leaves of Eucalyptus nitens and E. globulus in Australia. Plant Disease, 2000, 84, 510-512.	1.4	1
98	Phyllode inoculation provides a rapid protocol for preliminary screening of Acacia species for tolerance to Ceratocystis wilt and canker disease. European Journal of Plant Pathology, 2022, 163, 321-339.	1.7	1
99	Effect of harvest residue management on soil properties of Eucalyptus hybrid and Acacia mangium plantations planted on steep slopes in northern Vietnam. Southern Forests, 2020, 82, 159-169.	0.7	Ο