
Zhixin Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3773461/publications.pdf Version: 2024-02-01

ΖΗΙΥΙΝ ΤΙΛΝ

#	Article	IF	CITATIONS
1	Progress in quantification of nicotine content and form distribution in electronic cigarette liquids and aerosols. Analytical Methods, 2022, 14, 359-377.	2.7	5
2	Structure-Specific <i>N-</i> Glycoproteomics Characterization of NIST Monoclonal Antibody Reference Material 8671. Journal of Proteome Research, 2022, 21, 1276-1284.	3.7	5
3	Comprehensive site- and structure-specific characterization of N-glycosylation in model plant Arabidopsis using mass-spectrometry-based N-glycoproteomics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1198, 123234.	2.3	5
4	Exploration of quantitative siteâ€specific serum Oâ€glycoproteomics with isobaric labeling for the discovery of putative Oâ€glycoprotein biomarkers. Proteomics - Clinical Applications, 2022, 16, e2100095.	1.6	2
5	Site―and structureâ€specific characterization of the human urinary Nâ€glycoproteome with siteâ€determining and structureâ€diagnostic product ions. Rapid Communications in Mass Spectrometry, 2021, 35, e8952.	1.5	14
6	Benchmark of site- and structure-specific quantitative tissue N-glycoproteomics for discovery of potential N-glycoprotein markers: a case study of pancreatic cancer. Glycoconjugate Journal, 2021, 38, 213-231.	2.7	11
7	Methylation of PhoP by CheR Regulates <i>Salmonella</i> Virulence. MBio, 2021, 12, e0209921.	4.1	7
8	Putative N-glycoprotein markers of MCF-7/ADR cancer stem cells from N-glycoproteomics characterization of the whole cell lysate. Talanta, 2021, 232, 122437.	5.5	6
9	N-Glycoproteomics Study of Putative N-Glycoprotein Biomarkers of Drug Resistance in MCF-7/ADR Cells. Phenomics, 2021, 1, 269-284.	2.9	8
10	The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduction and Targeted Therapy, 2021, 6, 396.	17.1	111
11	Separation and detection of minimal length glycopeptide neoantigen epitopes centering the GSTA region of MUC1 by liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2020, 34, e8622.	1.5	3
12	Site- and structure-specific quantitative N-glycoproteomics study of differential N-glycosylation in MCF-7 cancer cells. Journal of Proteomics, 2020, 212, 103594.	2.4	11
13	A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature, 2020, 586, 572-577.	27.8	630
14	Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells. Viruses, 2020, 12, 1409.	3.3	7
15	Quantitative N-glycoproteomics using stable isotopic diethyl labeling. Talanta, 2020, 219, 121359.	5.5	10
16	Quantitative site- and structure-specific N-glycoproteomics characterization of differential N-glycosylation in MCF-7/ADR cancer stem cells. Clinical Proteomics, 2020, 17, 3.	2.1	16
17	New Energy Setup Strategy for Intact N-Glycopeptides Characterization Using Higher-Energy Collisional Dissociation. Journal of the American Society for Mass Spectrometry, 2020, 31, 651-657.	2.8	23
18	A quantitative N-glycoproteomics study of cell-surface N-glycoprotein markers of MCF-7/ADR cancer stem cells. Analytical and Bioanalytical Chemistry, 2020, 412, 2423-2432.	3.7	14

Zhixin Tian

#	Article	IF	CITATIONS
19	Site―and Structureâ€Specific Quantitative Nâ€Glycoproteomics Using RPLCâ€pentaHILIC Separation and the Intact Nâ€Glycopeptide Search Engine GPSeeker. Current Protocols in Protein Science, 2019, 97, e94.	2.8	15
20	Mass spectrometry-based qualitative and quantitative N-glycomics: An update of 2017–2018. Analytica Chimica Acta, 2019, 1091, 1-22.	5.4	18
21	Large-Scale Identification and Fragmentation Pathways Analysis of N-Glycans from Mouse Brain. Journal of the American Society for Mass Spectrometry, 2019, 30, 1254-1261.	2.8	3
22	Site- and structure-specific characterization of <i>N</i> -glycoprotein markers of MCF-7 cancer stem cells using isotopic-labelling quantitative <i>N</i> -glycoproteomics. Chemical Communications, 2019, 55, 7934-7937.	4.1	27
23	GPSeeker Enables Quantitative Structural N-Glycoproteomics for Site- and Structure-Specific Characterization of Differentially Expressed N-Glycosylation in Hepatocellular Carcinoma. Journal of Proteome Research, 2019, 18, 2885-2895.	3.7	73
24	Topâ€down characterization of mouse core histones. Journal of Mass Spectrometry, 2019, 54, 258-265.	1.6	4
25	Enrichment of intact phosphoproteins using immobilized titanium(IV) affinity chromatography microspheres. Separation Science Plus, 2018, 1, 93-99.	0.6	3
26	Large-scale identification and visualization of human liver N-glycome enriched from LO2 cells. Analytical and Bioanalytical Chemistry, 2018, 410, 4195-4202.	3.7	10
27	Largeâ€scale identification and visualization of Nâ€glycans with primary structures using GlySeeker. Rapid Communications in Mass Spectrometry, 2018, 32, 142-148.	1.5	33
28	Facile synthesis of titanium(IV) ionâ€immobilized polyâ€glycidyl methacrylate microparticles functionalized with polyethylenimine and adenosine triphosphate for highly specific enrichment of intact phosphoproteins. Journal of Separation Science, 2018, 41, 4194-4202.	2.5	14
29	Comparative Glycomics Study of Cell-Surface N-Glycomes of HepG2 versus LO2 Cell Lines. Journal of Proteome Research, 2018, 18, 372-379.	3.7	3
30	Selective fragmentation of the Nâ€glycan moiety and protein backbone of ribonuclease B on an Orbitrap Fusion Lumos Tribrid mass spectrometer. Rapid Communications in Mass Spectrometry, 2018, 32, 2031-2039.	1.5	19
31	Facile synthesis of titanium (IV) ion immobilized adenosine triphosphate functionalized silica nanoparticles for highly specific enrichment and analysis of intact phosphoproteins. Journal of Chromatography A, 2018, 1564, 69-75.	3.7	20
32	Top-down characterization of chicken core histones. Journal of Proteomics, 2018, 184, 34-38.	2.4	6
33	Are neutral loss and internal product ions useful for top-down protein identification?. Journal of Proteomics, 2017, 160, 21-27.	2.4	13
34	Accurate phosphorylation site localization using phospho-brackets. Analytica Chimica Acta, 2017, 996, 38-47.	5.4	5
35	Top-down protein identification using isotopic envelope fingerprinting. Journal of Proteomics, 2017, 152, 41-47.	2.4	21
36	Mass measurement accuracy of the Orbitrap in intact proteome analysis . Rapid Communications in Mass Spectrometry, 2016, 30, 1391-1397.	1.5	7

ZHIXIN TIAN

#	Article	IF	CITATIONS
37	Intact Protein Quantitation Using Pseudoisobaric Dimethyl Labeling. Analytical Chemistry, 2016, 88, 7198-7205.	6.5	27
38	Top-down characterization of histone H4 proteoforms with ProteinGoggle 2.0. Chinese Journal of Chromatography (Se Pu), 2016, 34, 1255.	0.8	6
39	Accurate and Efficient Resolution of Overlapping Isotopic Envelopes in Protein Tandem Mass Spectra. Scientific Reports, 2015, 5, 14755.	3.3	14
40	Optimization and parallelization of the isotopic Mass-to-charge ratio and envelope fingerprinting algorithm on SuperVessel Cloud. , 2015, , .		0
41	H/D exchange pathways: Flip-flop and relay processes. International Journal of Mass Spectrometry, 2015, 377, 130-138.	1.5	5
42	Carbanions in the Gas Phase. Chemical Reviews, 2013, 113, 6986-7010.	47.7	43
43	Carbon–Hydrogen Bond Dissociation Energies: The Curious Case of Cyclopropene. Journal of Organic Chemistry, 2013, 78, 12650-12653.	3.2	4
44	Interpreting raw biological mass spectra using isotopic massâ€toâ€charge ratio and envelope fingerprinting. Rapid Communications in Mass Spectrometry, 2013, 27, 1267-1277.	1.5	28
45	Enhanced top-down characterization of histone post-translational modifications. Genome Biology, 2012, 13, R86.	9.6	113
46	Mapping N-Linked Glycosylation Sites in the Secretome and Whole Cells of <i>Aspergillus niger</i> Using Hydrazide Chemistry and Mass Spectrometry. Journal of Proteome Research, 2012, 11, 143-156.	3.7	62
47	Pressurized Pepsin Digestion in Proteomics. Molecular and Cellular Proteomics, 2011, 10, S1-S11.	3.8	41
48	Twoâ€dimensional liquid chromatography system for online topâ€down mass spectrometry. Proteomics, 2010, 10, 3610-3620.	2.2	44
49	Gasâ€Phase versus Liquidâ€Phase Structures by Electrospray Ionization Mass Spectrometry. Angewandte Chemie - International Edition, 2009, 48, 1321-1323.	13.8	94
50	Are Carboxyl Groups the Most Acidic Sites in Amino Acids? Gas-Phase Acidities, Photoelectron Spectra, and Computations on Tyrosine, <i>p</i> -Hydroxybenzoic Acid, and Their Conjugate Bases. Journal of the American Chemical Society, 2009, 131, 1174-1181.	13.7	67
51	Single-Centered Hydrogen-Bonded Enhanced Acidity (SHEA) Acids: A New Class of BrÃ,nsted Acids. Journal of the American Chemical Society, 2009, 131, 16984-16988.	13.7	70
52	Hydrogenâ^'Deuterium Exchange and Selective Labeling of Deprotonated Amino Acids and Peptides in the Gas Phase. Journal of the American Chemical Society, 2008, 130, 8-9.	13.7	25
53	Does Electrospray Ionization Produce Gas-Phase or Liquid-Phase Structures?. Journal of the American Chemical Society, 2008, 130, 10842-10843.	13.7	119
54	A Thermal Decarbonylation of Penam Î ² -Lactams. Journal of Organic Chemistry, 2008, 73, 3024-3031.	3.2	9

ZHIXIN TIAN

#	Article	IF	CITATIONS
55	Lithium monoxide anion: A ground-state triplet with the strongest base to date. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7647-7651.	7.1	36
56	Are Carboxyl Groups the Most Acidic Sites in Amino Acids? Gas-Phase Acidity, H/D Exchange Experiments, and Computations on Cysteine and Its Conjugate Base. Journal of the American Chemical Society, 2007, 129, 5403-5407.	13.7	78
57	A redetermination of the heats of formation of chloro- and dichlorocarbene and the deprotonation of methyl cation, a spin forbidden process?. International Journal of Mass Spectrometry, 2007, 267, 288-294.	1.5	8
58	Cycloalkane and Cycloalkene Câ^'H Bond Dissociation Energies. Journal of the American Chemical Society, 2006, 128, 17087-17092.	13.7	82
59	Organic gas-phase ion chemistry. Annual Reports on the Progress of Chemistry Section B, 2006, 102, 290.	0.9	7
60	The Heat of Formation of Cyclobutadiene. Angewandte Chemie - International Edition, 2006, 45, 4984-4988.	13.8	56
61	Experimental and theoretical studies of the interaction of silver cluster cations Agn+ (n = 1-4) with ethylene. Rapid Communications in Mass Spectrometry, 2005, 19, 2893-2904.	1.5	21
62	A mini-TOF photofragment translational spectrometer – photofragmentation of CF3I at 281.73 nm. Chemical Physics Letters, 2004, 400, 15-18.	2.6	15
63	High-resolution photofragment translational spectra of the photodissociation of CF3I at 248 nm. Chemical Physics Letters, 2003, 380, 600-603.	2.6	11
64	Magic bimetallic cluster anions of M/Pb (M = Au, Ag and Cu) observed and analyzed by laser ablation and time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2003, 17, 1411-1415.	1.5	28
65	Reactions between M+ (M = Si, Ge, Sn and Pb) and benzene in the gas phase. Rapid Communications in Mass Spectrometry, 2003, 17, 1743-1748.	1.5	9
66	Reactions of lead cluster ions with acetone. Rapid Communications in Mass Spectrometry, 2003, 17, 17-23.	1.5	14
67	A Comparative Study of Cation and Anion Cluster Reaction Products:Â The Reaction Mechanisms of Lead Clusters with Benzene in Gas Phase. Journal of Physical Chemistry A, 2003, 107, 8484-8491.	2.5	21
68	Proton transfer in the [M⋯H⋯NH3]+ system (M=1,4-dioxane). Computational and Theoretical Chemistry, 2002, 578, 135-143.	1.5	2
69	Reactions of lead cluster ions with ethylene, propene,trans-butene, andcis-butene. Rapid Communications in Mass Spectrometry, 2002, 16, 1515-1520.	1.5	11