Stephen P Bell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3772851/publications.pdf Version: 2024-02-01

STEDHEN D RELL

#	Article	IF	CITATIONS
1	Genome-Wide Location and Function of DNA Binding Proteins. Science, 2000, 290, 2306-2309.	12.6	1,826
2	DNA Replication in Eukaryotic Cells. Annual Review of Biochemistry, 2002, 71, 333-374.	11.1	1,589
3	ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature, 1992, 357, 128-134.	27.8	1,228
4	Components and Dynamics of DNA Replication Complexes in S. cerevisiae: Redistribution of MCM Proteins and Cdc45p during S Phase. Cell, 1997, 91, 59-69.	28.9	714
5	The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes and Development, 2004, 18, 1263-1271.	5.9	706
6	Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature, 1990, 344, 830-836.	27.8	691
7	Genome-Wide Distribution of ORC and MCM Proteins in <i>S. cerevisiae</i> : High-Resolution Mapping of Replication Origins. Science, 2001, 294, 2357-2360.	12.6	385
8	INITIATION OF DNA REPLICATION IN EUKARYOTIC CELLS. Annual Review of Cell and Developmental Biology, 1997, 13, 293-332.	9.4	379
9	Conserved nucleosome positioning defines replication origins. Genes and Development, 2010, 24, 748-753.	5.9	333
10	Chromosome Duplication in <i>Saccharomyces cerevisiae</i> . Genetics, 2016, 203, 1027-1067.	2.9	323
11	Polymerases and the Replisome: Machines within Machines. Cell, 1998, 92, 295-305.	28.9	322
12	Eukaryotic Origin-Dependent DNA Replication InÂVitro Reveals Sequential Action of DDK and S-CDK Kinases. Cell, 2011, 146, 80-91.	28.9	276
13	Coordination of replication and transcription along a Drosophila chromosome. Genes and Development, 2004, 18, 3094-3105.	5.9	271
14	The origin recognition complex: from simple origins to complex functions. Genes and Development, 2002, 16, 659-672.	5.9	251
15	Nucleosomes Positioned by ORC Facilitate the Initiation of DNA Replication. Molecular Cell, 2001, 7, 21-30.	9.7	248
16	Sequential ATP Hydrolysis by Cdc6 and ORC Directs Loading of the Mcm2-7 Helicase. Molecular Cell, 2006, 21, 29-39.	9.7	245
17	The multidomain structure of Orc1 p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell, 1995, 83, 563-568.	28.9	244
18	Coordinate Binding of ATP and Origin DNA Regulates the ATPase Activity of the Origin Recognition Complex. Cell, 1997, 88, 493-502.	28.9	229

STEPHEN P BELL

#	Article	IF	CITATIONS
19	ATP Hydrolysis by ORC Catalyzes Reiterative Mcm2-7 Assembly at a Defined Origin of Replication. Molecular Cell, 2004, 16, 967-978.	9.7	211
20	Interactions between Two Catalytically Distinct MCM Subgroups Are Essential for Coordinated ATP Hydrolysis and DNA Replication. Molecular Cell, 2001, 8, 1093-1104.	9.7	176
21	Single-Molecule Studies of Origin Licensing Reveal Mechanisms Ensuring Bidirectional Helicase Loading. Cell, 2015, 161, 513-525.	28.9	172
22	Mapping of Meiotic Single-Stranded DNA Reveals Double-Strand-Break Hotspots near Centromeres and Telomeres. Current Biology, 2007, 17, 2003-2012.	3.9	158
23	Mec1 Is One of Multiple Kinases that Prime the Mcm2-7 Helicase for Phosphorylation by Cdc7. Molecular Cell, 2010, 40, 353-363.	9.7	155
24	Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila. EMBO Journal, 2007, 26, 4974-4984.	7.8	153
25	Genomic profiling and expression studies reveal both positive and negative activities for the <i>Drosophila</i> Myb–MuvB/dREAM complex in proliferating cells. Genes and Development, 2007, 21, 2880-2896.	5.9	132
26	Interaction of the S-phase cyclin Clb5 with an 'RXL' docking sequence in the initiator protein Orc6 provides an origin-localized replication control switch. Genes and Development, 2004, 18, 981-991.	5.9	124
27	Helicase Loading at Chromosomal Origins of Replication. Cold Spring Harbor Perspectives in Biology, 2013, 5, a010124-a010124.	5.5	116
28	Orc6 is required for dynamic recruitment of Cdt1 during repeated Mcm2–7 loading. Genes and Development, 2007, 21, 2897-2907.	5.9	115
29	Incorporation into the prereplicative complex activates the Mcm2–7 helicase for Cdc7–Dbf4 phosphorylation. Genes and Development, 2009, 23, 643-654.	5.9	115
30	A genomic view of eukaryotic DNA replication. Chromosome Research, 2005, 13, 309-326.	2.2	105
31	ATPase switches controlling DNA replication initiation. Current Opinion in Cell Biology, 2000, 12, 280-285.	5.4	104
32	Subunit Organization of Mcm2-7 and the Unequal Role of Active Sites in ATP Hydrolysis and Viability. Molecular and Cellular Biology, 2008, 28, 5865-5873.	2.3	104
33	Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase. Genes and Development, 2017, 31, 291-305.	5.9	103
34	CDK prevents Mcm2–7 helicase loading by inhibiting Cdt1 interaction with Orc6. Genes and Development, 2011, 25, 363-372.	5.9	87
35	Multiple Functions for Mcm2–7 ATPase Motifs during Replication Initiation. Molecular Cell, 2014, 55, 655-665.	9.7	86
36	The B2 element of the Saccharomyces cerevisiae ARS1 origin of replication requires specific sequences to facilitate pre-RC formation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 101-106.	7.1	83

STEPHEN P BELL

#	Article	IF	CITATIONS
37	Cell-cycle control of the establishment of mating-type silencing in S. cerevisiae. Genes and Development, 2002, 16, 2935-2945.	5.9	81
38	Separation of DNA Replication from the Assembly of Break-Competent Meiotic Chromosomes. PLoS Genetics, 2012, 8, e1002643.	3.5	81
39	The Dynamics of Eukaryotic Replication Initiation: Origin Specificity, Licensing, and Firing at the Single-Molecule Level. Molecular Cell, 2015, 58, 483-494.	9.7	80
40	Visualization of replication initiation and elongation in Drosophila. Journal of Cell Biology, 2002, 159, 225-236.	5.2	73
41	A conserved MCM single-stranded DNA binding element is essential for replication initiation. ELife, 2014, 3, e01993.	6.0	69
42	Mechanism and timing of Mcm2–7 ring closure during DNA replication origin licensing. Nature Structural and Molecular Biology, 2017, 24, 309-315.	8.2	59
43	Nucleosomes influence multiple steps during replication initiation. ELife, 2017, 6, .	6.0	58
44	Dynamics of Pre-replicative Complex Assembly. Journal of Biological Chemistry, 2010, 285, 9437-9443.	3.4	57
45	Multiple Cdt1 molecules act at each origin to load replication-competent Mcm2-7 helicases. EMBO Journal, 2011, 30, 4885-4896.	7.8	51
46	Cell cycle execution point analysis of ORC function and characterization of the checkpoint response to ORC inactivation in <i>Saccharomyces cerevisiae</i> . Genes To Cells, 2006, 11, 557-573.	1.2	43
47	Genome-wide Analysis of Re-replication Reveals Inhibitory Controls That Target Multiple Stages of Replication Initiation. Molecular Biology of the Cell, 2006, 17, 2415-2423.	2.1	37
48	DDK regulates replication initiation by controlling the multiplicity of Cdc45-GINS binding to Mcm2-7. ELife, 2021, 10, .	6.0	23
49	A conserved Mcm4 motif is required for Mcm2-7 double-hexamer formation and origin DNA unwinding. ELife, 2019, 8, .	6.0	23
50	Mapping Subunit Location on the Saccharomyces cerevisiae Origin Recognition Complex Free and Bound to DNA Using a Novel Nanoscale Biopointer. Journal of Biological Chemistry, 2004, 279, 36354-36362.	3.4	22
51	Multiple kinases inhibit origin licensing and helicase activation to ensure reductive cell division during meiosis. ELife, 2018, 7, .	6.0	22
52	A helicase-tethered ORC flip enables bidirectional helicase loading. ELife, 2021, 10, .	6.0	22
53	Replication origin–flanking roadblocks reveal origin-licensing dynamics and altered sequence dependence. Journal of Biological Chemistry, 2017, 292, 21417-21430.	3.4	18
54	Putting Two Heads Together to Unwind DNA. Cell, 2009, 139, 652-654.	28.9	14

STEPHEN P BELL

#	Article	IF	CITATIONS
55	Rethinking origin licensing. ELife, 2017, 6, .	6.0	12
56	DNA Replication and the Cell Cycle. Novartis Foundation Symposium, 1992, 170, 147-160.	1.1	9
57	Terminating the replisome. Science, 2014, 346, 418-419.	12.6	8
58	Initiation-specific alleles of the Cdc45 helicase-activating protein. PLoS ONE, 2019, 14, e0214426.	2.5	4
59	Transcriptional repression of CDC6 and SLD2 during meiosis is associated with production of short heterogeneous RNA isoforms. Chromosoma, 2018, 127, 515-527.	2.2	3
60	Incorporation into the preâ€replication complex activates the Mcm2â€7 replicative DNA helicase for phosphorylation by the Sâ€phase kinase, Cdc7â€Dbf4. FASEB Journal, 2009, 23, 201.1.	0.5	0
61	In vitro helicase loading and ORC binding on replicative and nonâ€replicative ACSs. FASEB Journal, 2011, 25, .	0.5	0