Paul R Moorcroft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3772777/publications.pdf

Version: 2024-02-01

117625 144013 5,987 61 34 citations h-index papers

57 g-index 65 65 65 8938 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Vegetation demographics in Earth System Models: A review of progress and priorities. Global Change Biology, 2018, 24, 35-54.	9.5	478
2	Contributions of Land-Use History to Carbon Accumulation in U.S. Forests. Science, 2000, 290, 1148-1151.	12.6	452
3	Building the bridge between animal movement and population dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2289-2301.	4.0	401
4	Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219, 851-869.	7.3	341
5	High sensitivity of peat decomposition toÂclimate change through water-table feedback. Nature Geoscience, 2008, 1, 763-766.	12.9	336
6	Assessing uncertainties in a secondâ€generation dynamic vegetation model caused by ecological scale limitations. New Phytologist, 2010, 187, 666-681.	7.3	271
7	Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytologist, 2013, 200, 350-365.	7.3	247
8	Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1651-1659.	2.6	166
9	Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 793-797.	7.1	161
10	The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink. Global Change Biology, 2006, 12, 2370-2390.	9.5	153
11	Terrestrial models and global change: challenges for the future. Global Change Biology, 1998, 4, 581-590.	9.5	151
12	Tree mortality in the eastern and central United States: patterns and drivers. Global Change Biology, 2011, 17, 3312-3326.	9.5	151
13	The global-scale temperature and moisture dependencies of soil organic carbon decomposition: an analysis using a mechanistic decomposition model. Biogeochemistry, 2006, 80, 217-231.	3.5	147
14	How close are we to a predictive science of the biosphere?. Trends in Ecology and Evolution, 2006, 21, 400-407.	8.7	140
15	BEYOND POTENTIAL VEGETATION: COMBINING LIDAR DATA AND A HEIGHT-STRUCTURED MODEL FOR CARBON STUDIES. , 2004, 14, 873-883.		134
16	Deforestation and climate feedbacks threaten the ecological integrity of south–southeastern Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120155.	4.0	118
17	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	9.5	116
18	The Sensitivity of North American Terrestrial Carbon Fluxes to Spatial and Temporal Variation in Soil Moisture: An Analysis Using Radarâ€Derived Estimates of Rootâ€Zone Soil Moisture. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3208-3231.	3.0	111

#	Article	IF	CITATIONS
19	MECHANISTIC HOME RANGE MODELS AND RESOURCE SELECTION ANALYSIS: A RECONCILIATION AND UNIFICATION. Ecology, 2008, 89, 1112-1119.	3.2	109
20	Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A dataâ€model intercomparison. Global Change Biology, 2017, 23, 191-208.	9.5	106
21	Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8275-8280.	7.1	101
22	Observing changing ecological diversity in the Anthropocene. Frontiers in Ecology and the Environment, 2013, 11, 129-137.	4.0	101
23	Future deforestation in the Amazon and consequences for South American climate. Agricultural and Forest Meteorology, 2015, 214-215, 12-24.	4.8	100
24	The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric <scp>CO</scp> _{2,} and land use. Global Change Biology, 2015, 21, 2569-2587.	9.5	97
25	The Influence of Previous Mountain Pine Beetle (Dendroctonus ponderosae) Activity on the 1988 Yellowstone Fires. Ecosystems, 2006, 9, 1318-1327.	3.4	95
26	Seasonal carbon dynamics and water fluxes in an <scp>A</scp> mazon rainforest. Global Change Biology, 2012, 18, 1322-1334.	9.5	87
27	Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 222-235.	4.0	7 5
28	Predicting the impact of hemlock woolly adelgid on carbon dynamics of eastern United States forests. Canadian Journal of Forest Research, 2010, 40, 119-133.	1.7	70
29	Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Global Change Biology, 2017, 23, 4280-4293.	9.5	66
30	Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytologist, 2018, 219, 914-931.	7.3	64
31	Mechanistic Home Range Analysis. (MPB-43). , 2013, , .		63
32	The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 1: Model description. Geoscientific Model Development, 2019, 12, 4309-4346.	3.6	62
33	Mechanistic approaches to understanding and predicting mammalian space use: recent advances, future directions. Journal of Mammalogy, 2012, 93, 903-916.	1.3	61
34	Impacts of climate change and deforestation on hydropower planning in the Brazilian Amazon. Nature Sustainability, 2020, 3, 430-436.	23.7	53
35	Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function., 2011, 21, 1120-1137.		49
36	Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005677.	3.0	44

#	Article	IF	CITATIONS
37	Future Climate and Land Use Change Impacts on River Flows in the Tapaj \tilde{A}^3 s Basin in the Brazilian Amazon. Earth's Future, 2019, 7, 993-1017.	6.3	39
38	Regional carbon fluxes from an observationally constrained dynamic ecosystem model: Impacts of disturbance, CO2fertilization, and heterogeneous land cover. Journal of Geophysical Research, 2007, 112, .	3.3	36
39	Experimental evidence of memory-based foraging decisions in a large wild mammal. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
40	Changing Amazon biomass and the role of atmospheric CO ₂ concentration, climate, and land use. Global Biogeochemical Cycles, 2016, 30, 18-39.	4.9	32
41	Land cover change explains the increasing discharge of the Paran $ ilde{A}_i$ River. Regional Environmental Change, 2018, 18, 1871-1881.	2.9	32
42	Leaf surface water, not plant water stress, drives diurnal variation in tropical forest canopy water content. New Phytologist, 2021, 231, 122-136.	7.3	30
43	The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 2: Model evaluation for tropical South America. Geoscientific Model Development, 2019, 12, 4347-4374.	3.6	29
44	Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability. Scientific Reports, 2020, 10, 11946.	3.3	28
45	Climatic controls of interannual variability in regional carbon fluxes from topâ€down and bottomâ€up perspectives. Journal of Geophysical Research, 2010, 115, .	3.3	27
46	The Central Amazon Biomass Sink Under Current and Future Atmospheric CO ₂ : Predictions From Big‣eaf and Demographic Vegetation Models. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JC005500.	3.0	23
47	Mass conservation and atmospheric dynamics in the Regional Atmospheric Modeling System (RAMS). Environmental Fluid Mechanics, 2005, 5, 109-134.	1.6	21
48	Imaging spectrometry-derived estimates of regional ecosystem composition for the Sierra Nevada, California. Remote Sensing of Environment, 2019, 228, 14-30.	11.0	19
49	Movement, space-use and resource preferences of European golden jackals in human-dominated landscapes: insights from a telemetry study. Mammalian Biology, 2021, 101, 619-630.	1.5	18
50	Simulating boreal forest dynamics from perspectives of ecophysiology, resource availability, and climate change. Ecological Research, 2010, 25, 501-511.	1.5	17
51	Biasâ€corrected data sets of climate model outputs at uniform space–time resolution for land surface modelling over Amazonia. International Journal of Climatology, 2017, 37, 621-636.	3.5	17
52	Decoupling the effects of deforestation and climate variability in the $\langle scp \rangle T \langle scp \rangle$ apaj \tilde{A}^3 s river basin in the $\langle scp \rangle B \langle scp \rangle$ razilian $\langle scp \rangle A \langle scp \rangle$ mazon. Hydrological Processes, 2018, 32, 1648-1663.	2.6	16
53	Cluster-based trajectory segmentation with local noise. Data Mining and Knowledge Discovery, 2018, 32, 1017-1055.	3.7	16
54	Memory drives the formation of animal home ranges: Evidence from a reintroduction. Ecology Letters, 2022, 25, 716-728.	6.4	15

#	Article	IF	CITATION
55	Ecological and Behavioral Drivers of Supplemental Feeding Use by Roe Deer Capreolus capreolus in a Peri-Urban Context. Animals, 2020, 10, 2088.	2.3	14
56	Technical note: A hydrological routing scheme for the Ecosystem Demography model (ED2+R) tested in the Tapaj \tilde{A}^3 s River basin in the Brazilian Amazon. Hydrology and Earth System Sciences, 2017, 21, 4629-4648.	4.9	12
57	Climate change and anthropogenic food manipulation interact in shifting the distribution of a large herbivore at its altitudinal range limit. Scientific Reports, 2021, 11, 7600.	3.3	11
58	Science in support of Amazonian conservation in the 21st century: the case of Brazil. Biotropica, 2018, 50, 850-858.	1.6	6
59	Understanding water and energy fluxes in the Amazonia: Lessons from an observationâ€model intercomparison. Global Change Biology, 2021, 27, 1802-1819.	9.5	6
60	Impacts of the 2012â€2015 Californian Drought on Carbon, Water and Energy Fluxes in Californian Sierras: Results from an Imaging Spectrometryâ€Constrained Terrestrial Biosphere Model. Global Change Biology, 2021, , .	9.5	4
61	Knowing your neighbours: How memoryâ€mediated conspecific avoidance influences home ranges. Journal of Animal Ecology, 2020, 89, 2746-2749.	2.8	1