Jeremy G Venditti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3772755/publications.pdf

Version: 2024-02-01

126907 155660 3,345 80 33 55 citations g-index h-index papers 97 97 97 2186 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Is the critical Shields stress for incipient sediment motion dependent on channelâ€bed slope?. Journal of Geophysical Research, 2008, 113, .	3.3	364
2	Spectral analysis of turbulent flow and suspended sediment transport over fixed dunes. Journal of Geophysical Research, 2000, 105, 22035-22047.	3.3	142
3	Response of bed surface patchiness to reductions in sediment supply. Journal of Geophysical Research, 2009, 114, .	3.3	116
4	Bed form initiation from a flat sand bed. Journal of Geophysical Research, 2005, $110, \dots$	3.3	106
5	Reevaluating dune scaling relations. Earth-Science Reviews, 2017, 165, 356-376.	9.1	103
6	Morphodynamics of small-scale superimposed sand waves over migrating dune bed forms. Water Resources Research, 2005, 41, .	4.2	102
7	Translation and dispersion of sediment pulses in flume experiments simulating gravel augmentation below dams. Water Resources Research, 2009, 45, .	4.2	99
8	Mobilization of coarse surface layers in gravelâ€bedded rivers by finer gravel bed load. Water Resources Research, 2010, 46, .	4.2	98
9	The 2015 landslide and tsunami in Taan Fiord, Alaska. Scientific Reports, 2018, 8, 12993.	3.3	89
10	On the transition between 2D and 3D dunes. Sedimentology, 2005, 52, 1343-1359.	3.1	87
11	Turbulent flow over a dune: Green River, Colorado. Earth Surface Processes and Landforms, 2005, 30, 289-304.	2.5	78
12	Effect of sediment pulse grain size on sediment transport rates and bed mobility in gravel bed rivers. Journal of Geophysical Research, 2010, 115 , .	3.3	77
13	Reconstructing a sediment pulse: Modeling the effect of placer mining on Fraser River, Canada. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1436-1454.	2.8	74
14	Turbulent flow and drag over fixed two―and threeâ€dimensional dunes. Journal of Geophysical Research, 2007, 112, .	3.3	73
15	Experimental evidence for the effect of hydrographs on sediment pulse dynamics in gravelâ€bedded rivers. Water Resources Research, 2012, 48, .	4.2	73
16	Alternate bar response to sediment supply termination. Journal of Geophysical Research, 2012, 117, .	3.3	73
17	Morphology and controls on the position of a gravelâ€sand transition: Fraser River, British Columbia. Journal of Geophysical Research F: Earth Surface, 2014, 119, 1959-1976.	2.8	67
18	Flow in bedrock canyons. Nature, 2014, 513, 534-537.	27.8	62

#	Article	IF	CITATIONS
19	Flow structure and resistance over subaquaeous high―and lowâ€angle dunes. Journal of Geophysical Research F: Earth Surface, 2016, 121, 545-564.	2.8	60
20	The grain size gap and abrupt gravelâ€sand transitions in rivers due to suspension fallout. Geophysical Research Letters, 2016, 43, 3777-3785.	4.0	60
21	Sediment transport and shear stress partitioning in a vegetated flow. Water Resources Research, 2015, 51, 2901-2922.	4.2	58
22	Mud in rivers transported as flocculated and suspended bed material. Nature Geoscience, 2020, 13, 566-570.	12.9	55
23	Bed topography and the development of forced bed surface patches. Journal of Geophysical Research, 2010, 115, .	3.3	54
24	Sedimentation Across the Tidal–Fluvial Transition in the Lower Fraser River, Canada. The Sedimentary Record, 2012, 10, 4-9.	0.6	51
25	The gravel-sand transition: Sediment dynamics in a diffuse extension. Journal of Geophysical Research F: Earth Surface, 2015, 120, 943-963.	2.8	47
26	The trouble with shear stress. Geomorphology, 2018, 323, 41-50.	2.6	45
27	Efficacy of bedrock erosion by subglacial water flow. Earth Surface Dynamics, 2016, 4, 125-145.	2.4	40
28	Transport Scaling of Dune Dimensions in Shallow Flows. Journal of Geophysical Research F: Earth Surface, 2019, 124, 526-547.	2.8	40
29	On interfacial instability as a cause of transverse subcritical bed forms. Water Resources Research, 2006, 42, .	4.2	39
30	Flow and sediment suspension events over lowâ€angle dunes: Fraser Estuary, Canada. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1693-1709.	2.8	38
31	Robust classification for the joint velocityâ€intermittency structure of turbulent flow over fixed and mobile bedforms. Earth Surface Processes and Landforms, 2014, 39, 1717-1728.	2.5	38
32	Variability in bedform morphology and kinematics with transport stage. Sedimentology, 2016, 63, 1017-1040.	3.1	36
33	Use of ADCPs for suspended sediment transport monitoring: An empirical approach. Water Resources Research, 2016, 52, 2715-2736.	4.2	35
34	Response of lowâ€angle dunes to variable flow. Sedimentology, 2016, 63, 743-760.	3.1	34
35	Entrainment and suspension of sand and gravel. Earth Surface Dynamics, 2020, 8, 485-504.	2.4	32
36	Vegetation-driven morphodynamic adjustments of a sand bed. Geophysical Research Letters, 2014, 41, 3876-3883.	4.0	31

#	Article	IF	CITATIONS
37	Submarine Deposition of a Subaerial Landslide in Taan Fiord, Alaska. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2443-2463.	2.8	29
38	Modeling Sediment Transport in Iceâ€Walled Subglacial Channels and Its Implications for Esker Formation and Proglacial Sediment Yields. Journal of Geophysical Research F: Earth Surface, 2018, 123, 3206-3227.	2.8	28
39	A Mechanistic Model for Lateral Erosion of Bedrock Channel Banks by Bedload Particle Impacts. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005509.	2.8	28
40	Observations of Coherent Flow Structures Over Subaqueous High―and Low―Angle Dunes. Journal of Geophysical Research F: Earth Surface, 2017, 122, 2244-2268.	2.8	26
41	The Growth of Dunes in Rivers. Journal of Geophysical Research F: Earth Surface, 2019, 124, 548-566.	2.8	26
42	Excavation of subglacial bedrock channels by seasonal meltwater flow. Earth Surface Processes and Landforms, 2018, 43, 1960-1972.	2.5	24
43	Struggles with stream power: Connecting theory across scales. Geomorphology, 2020, 366, 106817.	2.6	21
44	Why do large, deep rivers have low-angle dune beds?. Geology, 2019, 47, 919-922.	4.4	20
45	Simulating Sediment Transport in a Flume with Forced Pool-Riffle Morphology: Examinations of Two One-Dimensional Numerical Models. Journal of Hydraulic Engineering, 2008, 134, 892-904.	1.5	19
46	Calculation of in situ acoustic sediment attenuation using offâ€theâ€shelf horizontal <scp>A</scp> DCPs in low concentration settings. Water Resources Research, 2017, 53, 5017-5037.	4.2	19
47	An empirical model of subcritical bedform migration. Sedimentology, 2013, 60, 1786-1799.	3.1	18
48	Bedform spurs: a result of a trailing helical vortex wake. Sedimentology, 2018, 65, 191-208.	3.1	18
49	Experimental Insights Into the Threshold of Motion in Alluvial Channels: Sediment Supply and Streambed State. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005736.	2.8	18
50	Sediment dynamics across gravel-sand transitions: Implications for river stability and floodplain recycling. Geology, 2020, 48, 468-472.	4.4	18
51	Estimating suspended sediment concentrations in areas with limited hydrological data using a mixedâ€effects model. Hydrological Processes, 2012, 26, 3678-3688.	2.6	17
52	Representative pointâ€integrated suspended sediment sampling in rivers. Water Resources Research, 2017, 53, 2956-2971.	4.2	17
53	Rock Control of River Geometry: The Fraser Canyons. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1860-1878.	2.8	17
54	Suspended sediment transport in Fraser River at Mission, British Columbia: New observations and comparison to historical records. Canadian Water Resources Journal, 2014, 39, 356-371.	1.2	14

#	Article	IF	CITATIONS
55	The gravel-sand transition and grain size gap in river bed sediments. Earth-Science Reviews, 2021, 222, 103838.	9.1	14
56	Comparing the behaviour of spherical beads and natural grains in bedload mixtures. Earth Surface Processes and Landforms, 2020, 45, 831-840.	2.5	13
57	Experiments on the morphological controls of velocity inversions in bedrock canyons. Earth Surface Processes and Landforms, 2018, 43, 654-668.	2.5	12
58	Supplyâ€limited bedform patterns and scaling downstream of a gravel–sand transition. Sedimentology, 2019, 66, 2538-2556.	3.1	12
59	The Role of Threeâ€Dimensional Boundary Stresses in Limiting the Occurrence and Size of Experimental Landslides. Journal of Geophysical Research F: Earth Surface, 2018, 123, 46-65.	2.8	11
60	An Analytical Model for Lateral Erosion From Saltating Bedload Particle Impacts. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF006061.	2.8	10
61	The Influence of Riparian Vegetation on the Sinuosity and Lateral Stability of Meandering Channels. Geophysical Research Letters, 2022, 49, .	4.0	9
62	The Impact of Intermittency on Bed Load Sediment Transport. Geophysical Research Letters, 2022, 49, .	4.0	9
63	Megafloods downsized. Nature, 2016, 538, 174-175.	27.8	8
64	Modeling grain size adjustments in the downstream reach following runâ€ofâ€river development. Water Resources Research, 2016, 52, 2770-2788.	4.2	8
65	Mechanisms of Dune Growth and Decay in Rivers. Geophysical Research Letters, 2021, 48, e2021GL094572.	4.0	8
66	Fluidâ€Driven Transport of Round Sediment Particles: From Discrete Simulations to Continuum Modeling. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	8
67	Evaluating Uncertainty in Physical Habitat Modelling in a Highâ€Gradient Mountain Stream. River Research and Applications, 2016, 32, 1106-1115.	1.7	7
68	Modelling changes in suspended sediment from forest road surfaces in a coastal watershed of British Columbia. Hydrological Processes, 2014, 28, 4914-4927.	2.6	6
69	Crestline bifurcation and dynamics in fluviallyâ€dominated, tidallyâ€nfluenced flow. Sedimentology, 2018, 65, 2621-2636.	3.1	6
70	Catastrophic landscape modification from a massive landslide tsunami in Taan Fiord, Alaska. Geomorphology, 2020, 353, 107029.	2.6	6
71	The Influence of Slipface Angle on Fluvial Dune Growth. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005959.	2.8	6
72	Covariation in width and depth in bedrock rivers. Earth Surface Processes and Landforms, 2022, 47, 1570-1582.	2.5	6

#	Article	IF	CITATIONS
73	Shore-based monitoring of flow dynamics in a steep bedrock canyon river. E3S Web of Conferences, 2018, 40, 06025.	0.5	4
74	Are Results in Geomorphology Reproducible?. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005553.	2.8	4
75	Bed and Bank Stress Partitioning in Bedrock Rivers. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	4
76	Experiments on Pool Formation in Bedrock Canyons. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	4
77	Application of Multifrequency Acoustic Inversions Using Three Horizontally Profiling ADCPs. Water Resources Research, 2020, 56, e2019WR025298.	4.2	3
78	Bedforms in Sand Bed Rivers. , 2022, , 222-254.		3
79	Why do large, deep rivers have low-angle dune beds?: REPLY. Geology, 2020, 48, e506-e506.	4.4	2
80	Amplification of plunging flows in bedrock canyons. Geophysical Research Letters, 0, , .	4.0	1