Natalie M Mahowald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3771576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 1025.	1.6	78
2	Earth, Wind, Fire, and Pollution: Aerosol Nutrient Sources and Impacts on Ocean Biogeochemistry. Annual Review of Marine Science, 2022, 14, 303-330.	11.6	48
3	Future PM _{2.5} emissions from metal production to meet renewable energy demand. Environmental Research Letters, 2022, 17, 044043.	5.2	4
4	Microplastics and nanoplastics in the marine-atmosphere environment. Nature Reviews Earth & Environment, 2022, 3, 393-405.	29.7	121
5	The underappreciated role of anthropogenic sources in atmospheric soluble iron flux to the Southern Ocean. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	13
6	Improved Parameterization for the Size Distribution of Emitted Dust Aerosols Reduces Model Underestimation of Super Coarse Dust. Geophysical Research Letters, 2022, 49, .	4.0	13
7	COVID-19 impact on an academic Institution's greenhouse gas inventory: The case of Cornell University. Journal of Cleaner Production, 2022, 363, 132440.	9.3	10
8	The relationship between PM _{2.5} and anticyclonic wave activity during summer over the United States. Atmospheric Chemistry and Physics, 2022, 22, 7575-7592.	4.9	1
9	Global Dust Cycle and Direct Radiative Effect in E3SM Version 1: Impact of Increasing Model Resolution. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	12
10	Anthropogenic Perturbations to the Atmospheric Molybdenum Cycle. Global Biogeochemical Cycles, 2021, 35, e2020GB006787.	4.9	12
11	Quantifying the range of the dust direct radiative effect due to source mineralogy uncertainty. Atmospheric Chemistry and Physics, 2021, 21, 3973-4005.	4.9	47
12	Importance of Uncertainties in the Spatial Distribution of Preindustrial Wildfires for Estimating Aerosol Radiative Forcing. Geophysical Research Letters, 2021, 48, e2020GL089758.	4.0	1
13	Constraining the atmospheric limb of the plastic cycle. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	232
14	Improved representation of the global dust cycle using observational constraints on dust properties and abundance. Atmospheric Chemistry and Physics, 2021, 21, 8127-8167.	4.9	65
15	Contribution of the world's main dust source regions to the global cycle of desert dust. Atmospheric Chemistry and Physics, 2021, 21, 8169-8193.	4.9	126
16	Short-term impacts of 2017 western North American wildfires on meteorology, the atmosphere's energy budget, and premature mortality. Environmental Research Letters, 2021, 16, 064065.	5.2	5
17	The EMIT mission information yield for mineral dust radiative forcing. Remote Sensing of Environment, 2021, 258, 112380.	11.0	19
18	Changing atmospheric acidity as a modulator of nutrient deposition and ocean biogeochemistry. Science Advances, 2021, 7, .	10.3	39

#	Article	IF	CITATIONS
19	AWESOME OCIM: A simple, flexible, and powerful tool for modeling elemental cycling in the oceans. Chemical Geology, 2020, 533, 119403.	3.3	15
20	A Comparison of the CMIP6 <i>midHolocene</i> and <i>lig127k</i> Simulations in CESM2. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003957.	2.9	14
21	Ejection of Dust From the Ocean as a Potential Source of Marine Ice Nucleating Particles. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033073.	3.3	17
22	Recent (1980 to 2015) Trends and Variability in Dailyâ€toâ€Interannual Soluble Iron Deposition from Dust, Fire, and Anthropogenic Sources. Geophysical Research Letters, 2020, 47, e2020GL089688.	4.0	31
23	A Mineralogyâ€Based Anthropogenic Combustionâ€ŀron Emission Inventory. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032114.	3.3	32
24	Natural atmospheric deposition of molybdenum: a global model and implications for tropical forests. Biogeochemistry, 2020, 149, 159-174.	3.5	13
25	Tropical Rains Controlling Deposition of Saharan Dust Across the North Atlantic Ocean. Geophysical Research Letters, 2020, 47, e2019GL086867.	4.0	21
26	Impact of Changes to the Atmospheric Soluble Iron Deposition Flux on Ocean Biogeochemical Cycles in the Anthropocene. Global Biogeochemical Cycles, 2020, 34, e2019GB006448.	4.9	62
27	What goes up must come down: impacts of deposition in a sulfate geoengineering scenario. Environmental Research Letters, 2020, 15, 094063.	5.2	15
28	African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16216-16221.	7.1	100
29	Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation. Atmospheric Chemistry and Physics, 2019, 19, 8591-8617.	4.9	60
30	Radiative Forcing of Climate: The Historical Evolution of the Radiative Forcing Concept, the Forcing Agents and their Quantification, and Applications. Meteorological Monographs, 2019, 59, 14.1-14.101.	5.0	52
31	Improved methodologies for Earth system modelling of atmospheric soluble iron and observation comparisons using the Mechanism of Intermediate complexity for Modelling Iron (MIMI v1.0). Geoscientific Model Development, 2019, 12, 3835-3862.	3.6	39
32	Paleodust Insights into Dust Impacts on Climate. Journal of Climate, 2019, 32, 7897-7913.	3.2	29
33	Climate-driven oscillation of phosphorus and iron limitation in the North Pacific Subtropical Gyre. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12720-12728.	7.1	44
34	Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes. Nature Communications, 2019, 10, 2628.	12.8	71
35	Major Impact of Dust Deposition on the Productivity of the Arabian Sea. Geophysical Research Letters, 2019, 46, 6736-6744.	4.0	53
36	Pyrogenic iron: The missing link to high iron solubility in aerosols. Science Advances, 2019, 5, eaau7671.	10.3	128

3

#	Article	IF	CITATIONS
37	Glacially sourced dust as a potentially significant source of ice nucleating particles. Nature Geoscience, 2019, 12, 253-258.	12.9	101
38	Climate change impacts the spread potential of wheat stem rust, a significant crop disease. Environmental Research Letters, 2019, 14, 124053.	5.2	47
39	Sustained climate warming drives declining marine biological productivity. Science, 2018, 359, 1139-1143.	12.6	276
40	Impacts of Aerosol Dry Deposition on Black Carbon Spatial Distributions and Radiative Effects in the Community Atmosphere Model CAM5. Journal of Advances in Modeling Earth Systems, 2018, 10, 1150-1171.	3.8	28
41	Anthropogenic combustion iron as a complex climate forcer. Nature Communications, 2018, 9, 1593.	12.8	86
42	Global and regional importance of the direct dust-climate feedback. Nature Communications, 2018, 9, 241.	12.8	162
43	Aerosol-Climate Interactions During the Last Glacial Maximum. Current Climate Change Reports, 2018, 4, 99-114.	8.6	24
44	Atmospheric processing of iron in mineral and combustion aerosols: development of an intermediate-complexity mechanism suitable for Earth system models. Atmospheric Chemistry and Physics, 2018, 18, 14175-14196.	4.9	41
45	Reviews and syntheses: the CESAMP atmospheric iron deposition model intercomparison study. Biogeosciences, 2018, 15, 6659-6684.	3.3	63
46	Aerosol trace metal leaching and impacts on marine microorganisms. Nature Communications, 2018, 9, 2614.	12.8	176
47	The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan. Geoscientific Model Development, 2018, 11, 1033-1057.	3.6	164
48	Black carbon radiative effects highly sensitive to emitted particle size when resolving mixing-state diversity. Nature Communications, 2018, 9, 3446.	12.8	106
49	Aerosol Deposition Impacts on Land and Ocean Carbon Cycles. Current Climate Change Reports, 2017, 3, 16-31.	8.6	103
50	Comments on †Influence of measurement uncertainties on fractional solubility of iron in mineral aerosols over the oceans' Aeolian Research 22, 85–92. Aeolian Research, 2017, 25, 123-125.	2.7	7
51	Parameterizationâ€based uncertainty in future lightning flash density. Geophysical Research Letters, 2017, 44, 2893-2901.	4.0	43
52	Interactions between land use change and carbon cycle feedbacks. Global Biogeochemical Cycles, 2017, 31, 96-113.	4.9	46
53	Are the impacts of land use on warming underestimated in climate policy?. Environmental Research Letters, 2017, 12, 094016.	5.2	23
54	Development of a global aerosol model using a twoâ€dimensional sectional method: 2. Evaluation and sensitivity simulations. Journal of Advances in Modeling Earth Systems, 2017, 9, 1887-1920.	3.8	43

#	Article	IF	CITATIONS
55	Sensitivity of the interannual variability of mineral aerosol simulations to meteorological forcing dataset. Atmospheric Chemistry and Physics, 2017, 17, 3253-3278.	4.9	14
56	The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geoscientific Model Development, 2017, 10, 4035-4055.	3.6	137
57	The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geoscientific Model Development, 2017, 10, 3979-4003.	3.6	171
58	Projections of leaf area index in earth system models. Earth System Dynamics, 2016, 7, 211-229.	7.1	96
59	Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model. Biogeosciences, 2016, 13, 3397-3426.	3.3	79
60	Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans. Biogeosciences, 2016, 13, 3887-3900.	3.3	65
61	Effects of African dust deposition on phytoplankton in the western tropical Atlantic Ocean off Barbados. Global Biogeochemical Cycles, 2016, 30, 716-734.	4.9	85
62	Tracing dust input to the global ocean using thorium isotopes in marine sediments: ThoroMap. Global Biogeochemical Cycles, 2016, 30, 1526-1541.	4.9	55
63	Shape and size constraints on dust optical properties from the Dome C ice core, Antarctica. Scientific Reports, 2016, 6, 28162.	3.3	54
64	Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC. Environmental Research Letters, 2016, 11, 034020.	5.2	21
65	West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II). Climate Dynamics, 2016, 47, 3517-3545.	3.8	39
66	Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean. Geophysical Research Letters, 2016, 43, 3944-3954.	4.0	72
67	Temperature Extremes in the Community Atmosphere Model with Stochastic Parameterizations*. Journal of Climate, 2016, 29, 241-258.	3.2	6
68	Multicentury changes in ocean and land contributions to the climate arbon feedback. Global Biogeochemical Cycles, 2015, 29, 744-759.	4.9	63
69	The sensitivity of global climate to the episodicity of fire aerosol emissions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,589.	3.3	18
70	Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry?. Global Biogeochemical Cycles, 2015, 29, 1369-1383.	4.9	122
71	Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing. Atmospheric Chemistry and Physics, 2015, 15, 537-561.	4.9	130
72	CH ₄ parameter estimation in CLM4.5bgc using surrogate global optimization. Geoscientific Model Development, 2015, 8, 3285-3310.	3.6	26

#	Article	IF	CITATIONS
73	Seasonal and interannual variability in wetland methane emissions simulated by CLM4Me' and CAM-chem and comparisons to observations of concentrations. Biogeosciences, 2015, 12, 4029-4049.	3.3	20
74	Local sources of global climate forcing from different categories of land use activities. Earth System Dynamics, 2015, 6, 175-194.	7.1	14
75	Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives. Climate of the Past, 2015, 11, 869-903.	3.4	104
76	Modeling the global emission, transport and deposition of trace elements associated with mineral dust. Biogeosciences, 2015, 12, 5771-5792.	3.3	49
77	A model-based evaluation of tropical climate in Pangaea during the late Palaeozoic icehouse. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 425, 109-127.	2.3	38
78	The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes. Earth System Dynamics, 2014, 5, 211-221.	7.1	36
79	Simulated changes in atmospheric dust in response to a Heinrich stadial. Paleoceanography, 2014, 29, 30-43.	3.0	17
80	Improved dust representation in the Community Atmosphere Model. Journal of Advances in Modeling Earth Systems, 2014, 6, 541-570.	3.8	253
81	Contributions of developed and developing countries to global climate forcing and surface temperature change. Environmental Research Letters, 2014, 9, 074008.	5.2	42
82	A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric Environment, 2014, 93, 3-100.	4.1	650
83	The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Research, 2014, 15, 53-71.	2.7	468
84	Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC). Journal of Climate, 2014, 27, 8981-9005.	3.2	156
85	Addendum to: "A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus― Atmospheric Environment, 2014, 93, 101-116.	4.1	9
86	The significance of the episodic nature of atmospheric deposition to Low Nutrient Low Chlorophyll regions. Global Biogeochemical Cycles, 2014, 28, 1179-1198.	4.9	106
87	An improved dust emission model – Part 2: Evaluation in the Community Earth System Model, with implications for the use of dust source functions. Atmospheric Chemistry and Physics, 2014, 14, 13043-13061.	4.9	86
88	Potential climate forcing of land use and land cover change. Atmospheric Chemistry and Physics, 2014, 14, 12701-12724.	4.9	66
89	An improved dust emission model – Part 1: Model description and comparison against measurements. Atmospheric Chemistry and Physics, 2014, 14, 13023-13041.	4.9	150
90	Ocean–Atmosphere Interactions of Particles. Springer Earth System Sciences, 2014, , 171-246.	0.2	29

#	Article	IF	CITATIONS
91	The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the American Meteorological Society, 2013, 94, 1339-1360.	3.3	1,848
92	The role of mineral-dust aerosols in polar temperature amplification. Nature Climate Change, 2013, 3, 487-491.	18.8	70
93	The seeds of ice in clouds. Nature, 2013, 498, 302-303.	27.8	15
94	Equatorial upwelling enhances nitrogen fixation in the Atlantic Ocean. Geophysical Research Letters, 2013, 40, 1766-1771.	4.0	55
95	The fate of phosphorus fertilizer in Amazon soya bean fields. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120154.	4.0	54
96	Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries. Journal of Climate, 2013, 26, 4447-4475.	3.2	48
97	Processes and patterns of oceanic nutrient limitation. Nature Geoscience, 2013, 6, 701-710.	12.9	1,627
98	Radiative forcing in the ACCMIP historical and future climate simulations. Atmospheric Chemistry and Physics, 2013, 13, 2939-2974.	4.9	395
99	Northâ€South asymmetry in the modeled phytoplankton community response to climate change over the 21st century. Global Biogeochemical Cycles, 2013, 27, 1274-1290.	4.9	39
100	Volcano impacts on climate and biogeochemistry in a coupled carbon–climate model. Earth System Dynamics, 2012, 3, 121-136.	7.1	8
101	Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development, 2012, 5, 709-739.	3.6	807
102	Response to Comment on "Climate Sensitivity Estimated from Temperature Reconstructions of the Last Glacial Maximum― Science, 2012, 337, 1294-1294.	12.6	5
103	The changing radiative forcing of fires: global model estimates for past, present and future. Atmospheric Chemistry and Physics, 2012, 12, 10857-10886.	4.9	212
104	Atmospheric fluxes of organic N and P to the global ocean. Global Biogeochemical Cycles, 2012, 26, .	4.9	179
105	Direct measurements of atmospheric iron, cobalt, and aluminumâ€derived dust deposition at Kerguelen Islands. Global Biogeochemical Cycles, 2012, 26, .	4.9	34
106	A paleogeographic approach to aerosol prescription in simulations of deep time climate. Journal of Advances in Modeling Earth Systems, 2012, 4, .	3.8	23
107	Dust transport from nonâ€East Asian sources to the North Pacific. Geophysical Research Letters, 2012, 39, .	4.0	27
108	Atmospheric Transport and Deposition of Mineral Dust to the Ocean: Implications for Research Needs. Environmental Science & Technology, 2012, 46, 10390-10404.	10.0	187

#	Article	IF	CITATIONS
109	The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences, 2012, 9, 509-525.	3.3	131
110	Sensitivity of wetland methane emissions to model assumptions: application and model testing against site observations. Biogeosciences, 2012, 9, 2793-2819.	3.3	68
111	Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates. Climate Dynamics, 2012, 38, 1731-1755.	3.8	86
112	Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal of Hydrology, 2012, 416-417, 182-205.	5.4	906
113	Climate Sensitivity Estimated from Temperature Reconstructions of the Last Glacial Maximum. Science, 2011, 334, 1385-1388.	12.6	212
114	Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	177
115	Impacts of anthropogenic SO _x , NO _x and NH ₃ on acidification of coastal waters and shipping lanes. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	43
116	Aerosol Impacts on Climate and Biogeochemistry. Annual Review of Environment and Resources, 2011, 36, 45-74.	13.4	207
117	Model insight into glacial–interglacial paleodust records. Quaternary Science Reviews, 2011, 30, 832-854.	3.0	56
118	Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model. Biogeosciences, 2011, 8, 387-414.	3.3	47
119	Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 2011, 11, 7781-7816.	4.9	839
120	Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: contributions from the regional tectonic uplift and global climate change. Climate Dynamics, 2011, 37, 2289-2301.	3.8	45
121	Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences, 2011, 8, 1925-1953.	3.3	325
122	Aerosol Indirect Effect on Biogeochemical Cycles and Climate. Science, 2011, 334, 794-796.	12.6	367
123	Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics, 2010, 10, 7017-7039.	4.9	2,020
124	Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmospheric Chemistry and Physics, 2010, 10, 10875-10893.	4.9	355
125	Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment. Climate Dynamics, 2010, 35, 3-27.	3.8	123
126	Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences, 2010, 7, 1877-1902.	3.3	194

#	Article	IF	CITATIONS
127	Impacts of atmospheric nutrient inputs on marine biogeochemistry. Journal of Geophysical Research, 2010, 115, .	3.3	138
128	Toward New Frontiers in Understanding the Link Between Dust and Climate; DUSTSPEC Workshop: Dust Records for a Changing World; Palisades, New York, 24–26 May 2010. Eos, 2010, 91, 360.	0.1	0
129	Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences, 2009, 6, 2099-2120.	3.3	399
130	Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences, 2009, 6, 779-794.	3.3	280
131	Maintenance of Lower Tropospheric Temperature Inversion in the Saharan Air Layer by Dust and Dry Anomaly. Journal of Climate, 2009, 22, 5149-5162.	3.2	54
132	Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data. Journal of Marine Systems, 2009, 76, 95-112.	2.1	204
133	Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models. Global Change Biology, 2009, 15, 2462-2484.	9.5	324
134	Atmospheric Iron Deposition: Global Distribution, Variability, and Human Perturbations. Annual Review of Marine Science, 2009, 1, 245-278.	11.6	536
135	Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 640-655.	1.4	169
136	A numerical study of the climate response to lowered Mediterranean Sea level during the Messinian Salinity Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 279, 41-59.	2.3	40
137	Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry. Global Biogeochemical Cycles, 2009, 23, .	4.9	123
138	Impact of changes in atmospheric conditions in modulating summer dust concentration at Barbados: A backâ€ŧrajectory analysis. Journal of Geophysical Research, 2009, 114, .	3.3	16
139	Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. Journal of Geophysical Research, 2009, 114, .	3.3	200
140	Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4601-4605.	7.1	353
141	Springtime warming and reduced snow cover from carbonaceous particles. Atmospheric Chemistry and Physics, 2009, 9, 2481-2497.	4.9	492
142	Particulate absorption of solar radiation: anthropogenic aerosols vs. dust. Atmospheric Chemistry and Physics, 2009, 9, 3935-3945.	4.9	38
143	Interannual variability in hindcasts of atmospheric chemistry: the role of meteorology. Atmospheric Chemistry and Physics, 2009, 9, 5261-5280.	4.9	23
144	Increasing eolian dust deposition in the western United States linked to humanÂactivity. Nature Geoscience, 2008, 1, 189-195.	12.9	439

#	Article	IF	CITATIONS
145	Combustion iron distribution and deposition. Global Biogeochemical Cycles, 2008, 22, .	4.9	263
146	Revisiting atmospheric dust export to the Southern Hemisphere ocean: Biogeochemical implications. Global Biogeochemical Cycles, 2008, 22, .	4.9	161
147	Ocean temperature forcing by aerosols across the Atlantic tropical cyclone development region. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	51
148	Longâ€ŧerm variability in Saharan dust transport and its link to North Atlantic sea surface temperature. Geophysical Research Letters, 2008, 35, .	4.0	30
149	Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database. Journal of Geophysical Research, 2008, 113, .	3.3	197
150	Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO ₂ . Journal of Geophysical Research, 2008, 113,	3.3	70
151	Research Opportunities and Challenges in the Indian Ocean. Eos, 2008, 89, 125-126.	0.1	12
152	Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochemical Cycles, 2008, 22, .	4.9	617
153	Covariant Glacial-Interglacial Dust Fluxes in the Equatorial Pacific and Antarctica. Science, 2008, 320, 93-96.	12.6	214
154	Impact of variable air-sea O ₂ and CO ₂ fluxes on atmospheric potential oxygen (APO) and land-ocean carbon sink partitioning. Biogeosciences, 2008, 5, 875-889.	3.3	19
155	Impact of Desert Dust Radiative Forcing on Sahel Precipitation: Relative Importance of Dust Compared to Sea Surface Temperature Variations, Vegetation Changes, and Greenhouse Gas Warming. Journal of Climate, 2007, 20, 1445-1467.	3.2	290
156	Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14580-14585.	7.1	332
157	Global trends in visibility: implications for dust sources. Atmospheric Chemistry and Physics, 2007, 7, 3309-3339.	4.9	222
158	Dissolved iron in the vicinity of the Crozet Islands, Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 1999-2019.	1.4	155
159	Dust emission response to climate in southern Africa. Journal of Geophysical Research, 2007, 112, .	3.3	91
160	Atlantic Southern Ocean productivity: Fertilization from above or below?. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	4.9	52
161	Interannual and seasonal variability in atmospheric N ₂ O. Global Biogeochemical Cycles, 2007, 21, .	4.9	56
162	Influence of carbonâ€nitrogen cycle coupling on land model response to CO ₂ fertilization and climate variability. Global Biogeochemical Cycles, 2007, 21, .	4.9	624

#	Article	IF	CITATIONS
163	Atmospheric deposition and surface stratification as controls of contrasting chlorophyll abundance in the North Indian Ocean. Journal of Geophysical Research, 2007, 112, .	3.3	64
164	Exploring the sensitivity of interannual basin-scale air-sea CO2fluxes to variability in atmospheric dust deposition using ocean carbon cycle models and atmospheric CO2inversions. Journal of Geophysical Research, 2007, 112, .	3.3	10
165	Anthropocene changes in desert area: Sensitivity to climate model predictions. Geophysical Research Letters, 2007, 34, .	4.0	96
166	Sea-salt aerosol response to climate change: Last Glacial Maximum, preindustrial, and doubled carbon dioxide climates. Journal of Geophysical Research, 2006, 111, .	3.3	78
167	Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	427
168	Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophysical Research Letters, 2006, 33, .	4.0	134
169	Characteristics of Atmospheric Transport Using Three Numerical Formulations for Atmospheric Dynamics in a Single GCM Framework. Journal of Climate, 2006, 19, 2243-2266.	3.2	61
170	Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 560-572.	1.6	114
171	Coupling between Land Ecosystems and the Atmospheric Hydrologic Cycle through Biogenic Aerosol Pathways. Bulletin of the American Meteorological Society, 2005, 86, 1738-1742.	3.3	43
172	Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science, 2005, 308, 67-71.	12.6	2,365
173	Iron, manganese, and lead at Hawaii Ocean Time-series station ALOHA: Temporal variability and an intermediate water hydrothermal plume. Geochimica Et Cosmochimica Acta, 2005, 69, 933-952.	3.9	217
174	Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	930
175	Simulation of absorbing aerosol indices for African dust. Journal of Geophysical Research, 2005, 110, .	3.3	42
176	Assessment of the global impact of aerosols on tropospheric oxidants. Journal of Geophysical Research, 2005, 110, .	3.3	289
177	Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	142
178	Estimation of iron solubility from observations and a global aerosol model. Journal of Geophysical Research, 2005, 110, .	3.3	99
179	Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	362
180	Sensitivity of TOMS aerosol index to boundary layer height: Implications for detection of mineral aerosol sources. Geophysical Research Letters, 2004, 31, .	4.0	81

#	Article	IF	CITATIONS
181	Observational evidence of African desert dust intensification of easterly waves. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	57
182	Comment on "Relative importance of climate and land use in determining present and future global soil dust emission―by I. Tegen et al Geophysical Research Letters, 2004, 31, .	4.0	52
183	Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications. Journal of Geophysical Research, 2004, 109, .	3.3	185
184	Temporal variability of dust mobilization and concentration in source regions. Journal of Geophysical Research, 2004, 109, .	3.3	35
185	Radiative forcing of climate by ice-age atmospheric dust. Climate Dynamics, 2003, 20, 193-202.	3.8	142
186	Ephemeral lakes and desert dust sources. Geophysical Research Letters, 2003, 30, .	4.0	96
187	Biogeochemical signatures of nitrogen fixation in the eastern North Atlantic. Geophysical Research Letters, 2003, 30, .	4.0	46
188	Mineral aerosol and cloud interactions. Geophysical Research Letters, 2003, 30, .	4.0	123
189	Interannual variability in atmospheric mineral aerosols from a 22-year model simulation and observational data. Journal of Geophysical Research, 2003, 108, .	3.3	171
190	Confronting a burning question: The Role of fire on Earth. Eos, 2003, 84, 23.	0.1	4
191	A less dusty future?. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	196
192	Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. Journal of Geophysical Research, 2003, 108, .	3.3	255
193	The Role of Easterly Waves on African Desert Dust Transport. Journal of Climate, 2003, 16, 3617-3628.	3.2	91
194	Global tracer modeling during SOLVE: High-latitude descent and mixing. Journal of Geophysical Research, 2002, 107, SOL 52-1-SOL 52-14.	3.3	34
195	Stratospheric transport in a three-dimensional isentropic coordinate model. Journal of Geophysical Research, 2002, 107, ACH 3-1.	3.3	57
196	Understanding the 30-year Barbados desert dust record. Journal of Geophysical Research, 2002, 107, AAC 7-16.	3.3	97
197	Applying the adjoint method for biogeochemical modeling: Export of participate organic matter in the world ocean. Geophysical Monograph Series, 2000, , 107-124.	0.1	83
198	Measurement equation for trace chemicals in fluids and solution of its inverse. Geophysical Monograph Series, 2000, , 3-18.	0.1	35

#	Article	IF	CITATIONS
199	A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 1025-1056.	1.6	113
200	Paleonutrient data analysis of the glacial Atlantic using an adjoint ocean general circulation model. Geophysical Monograph Series, 2000, , 171-183.	0.1	19
201	Synthesis inversion of atmospheric CO2 using the NIRE chemical transport model. Geophysical Monograph Series, 2000, , 239-253.	0.1	3
202	What caused the glacial/interglacial atmosphericpCO2cycles?. Reviews of Geophysics, 2000, 38, 159-189.	23.0	404
203	Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research, 1999, 104, 15895-15916.	3.3	595
204	A model for studies of tropospheric photochemistry: Description, global distributions, and evaluation. Journal of Geophysical Research, 1999, 104, 26245-26277.	3.3	159
205	Transport of222radon to the remote troposphere using the Model of Atmospheric Transport and Chemistry and assimilated winds from ECMWF and the National Center for Environmental Prediction/NCAR. Journal of Geophysical Research, 1997, 102, 28139-28151.	3.3	148
206	Deducing CCl3F emissions using an inverse method and chemical transport models with assimilated winds. Journal of Geophysical Research, 1997, 102, 28153-28168.	3.3	54
207	Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short-lived and soluble species. Journal of Geophysical Research, 1997, 102, 28127-28138.	3.3	287
208	Cumulus parameterizations in chemical transport models. Journal of Geophysical Research, 1995, 100, 26173.	3.3	62
209	Ambient air audits of the National crop loss assessment network (1981–1986). Environmental Pollution, 1988, 53, 412-415.	7.5	0
210	Extreme eolian delivery of reactive iron to late Paleozoic icehouse seas. Geology, 0, , G37226.1.	4.4	6
211	The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the American Meteorological Society, 0, , 130204122247009.	3.3	103