

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3768025/publications.pdf Version: 2024-02-01

Årcet å8œ

#	Article	IF	CITATIONS
1	One-step high-efficiency CRISPR/Cas9-mediated genome editing in <italic>Streptomyces</italic> . Acta Biochimica Et Biophysica Sinica, 2015, 47, 231-243.	2.0	257
2	CRISPR/Cas9-Based Efficient Genome Editing in <i>Clostridium ljungdahlii</i> , an Autotrophic Gas-Fermenting Bacterium. ACS Synthetic Biology, 2016, 5, 1355-1361.	3.8	171
3	CRISPRâ€based genome editing and expression control systems in <i>Clostridium acetobutylicum</i> and <i>Clostridium beijerinckii</i> . Biotechnology Journal, 2016, 11, 961-972.	3.5	153
4	Current status and prospects of industrial bio-production of n-butanol in China. Biotechnology Advances, 2015, 33, 1493-1501.	11.7	148
5	CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces. Applied and Environmental Microbiology, 2018, 84, .	3.1	107
6	Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metabolic Engineering, 2017, 40, 80-92.	7.0	83
7	High-Efficiency Scarless Genetic Modification in Escherichia coli by Using Lambda Red Recombination and I-Scel Cleavage. Applied and Environmental Microbiology, 2014, 80, 3826-3834.	3.1	81
8	A stepwise increase in pristinamycin II biosynthesis by Streptomyces pristinaespiralis through combinatorial metabolic engineering. Metabolic Engineering, 2015, 29, 12-25.	7.0	71
9	Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering. Current Opinion in Biotechnology, 2014, 29, 124-131.	6.6	69
10	CRISPR/dCas9â€Mediated Multiplex Gene Repression in <i>Streptomyces</i> . Biotechnology Journal, 2018, 13, e1800121.	3.5	62
11	Redox-Responsive Repressor Rex Modulates Alcohol Production and Oxidative Stress Tolerance in Clostridium acetobutylicum. Journal of Bacteriology, 2014, 196, 3949-3963.	2.2	60
12	Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum. Metabolic Engineering, 2015, 28, 169-179.	7.0	58
13	Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii. Metabolic Engineering, 2019, 52, 293-302.	7.0	58
14	Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. Biotechnology Advances, 2019, 37, 730-745.	11.7	57
15	CRISPR–Cas9 ^{D10A} nickaseâ€assisted base editing in the solvent producer <i>Clostridium beijerinckii</i> . Biotechnology and Bioengineering, 2019, 116, 1475-1483.	3.3	57
16	CRISPR-Cas12a-Mediated Gene Deletion and Regulation in <i>Clostridium ljungdahlii</i> and Its Application in Carbon Flux Redirection in Synthesis Gas Fermentation. ACS Synthetic Biology, 2019, 8, 2270-2279.	3.8	54
17	Enhanced alcohol titre and ratio in carbon monoxide-rich off-gas fermentation of Clostridium carboxidivorans through combination of trace metals optimization with variable-temperature cultivation. Bioresource Technology, 2017, 239, 236-243.	9.6	49
18	Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces. Nucleic Acids Research, 2020, 48, 8188-8202.	14.5	46

Å≪Ç⁰¢ ŧŒ

#	Article	IF	CITATIONS
19	Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria. Nature Communications, 2021, 12, 790.	12.8	46
20	A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria. MBio, 2017, 8, .	4.1	44
21	aMSCE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metabolic Engineering, 2019, 52, 153-167.	7.0	42
22	New strategies and approaches for engineering biosynthetic gene clusters of microbial natural products. Biotechnology Advances, 2017, 35, 936-949.	11.7	41
23	Clostridia: a flexible microbial platform for the production of alcohols. Current Opinion in Chemical Biology, 2016, 35, 65-72.	6.1	39
24	A Transcriptional Regulator Sll0794 Regulates Tolerance to Biofuel Ethanol in Photosynthetic Synechocystis sp. PCC 6803. Molecular and Cellular Proteomics, 2014, 13, 3519-3532.	3.8	37
25	I-Scel-mediated scarless gene modification via allelic exchange in Clostridium. Journal of Microbiological Methods, 2015, 108, 49-60.	1.6	37
26	Combined overexpression of genes involved in pentose phosphate pathway enables enhanced d-xylose utilization by Clostridium acetobutylicum. Journal of Biotechnology, 2014, 173, 7-9.	3.8	32
27	Rapid Generation of Universal Synthetic Promoters for Controlled Gene Expression in Both Gas-Fermenting and Saccharolytic <i>Clostridium</i> Species. ACS Synthetic Biology, 2017, 6, 1672-1678.	3.8	32
28	Complete genome sequence of Clostridium carboxidivorans P7T, a syngas-fermenting bacterium capable of producing long-chain alcohols. Journal of Biotechnology, 2015, 211, 44-45.	3.8	31
29	Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production. Science China Life Sciences, 2017, 60, 948-957.	4.9	30
30	Metabolic regulation in solventogenic clostridia: regulators, mechanisms and engineering. Biotechnology Advances, 2018, 36, 905-914.	11.7	30
31	Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces. Science China Life Sciences, 2020, 63, 1053-1062.	4.9	28
32	Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals. Current Opinion in Chemical Biology, 2020, 59, 54-61.	6.1	28
33	Metabolic Engineering of Gas-Fermenting <i>Clostridium ljungdahlii</i> for Efficient Co-production of Isopropanol, 3-Hydroxybutyrate, and Ethanol. ACS Synthetic Biology, 2021, 10, 2628-2638.	3.8	28
34	Recent Advances in Synthetic Biology Approaches to Optimize Production of Bioactive Natural Products in Actinobacteria. Frontiers in Microbiology, 2019, 10, 2467.	3.5	27
35	A novel regulatory pathway consisting of a two-component system and an ABC-type transporter contributes to butanol tolerance in Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 2020, 104, 5011-5023.	3.6	26
36	A Novel Dual- <i>cre</i> Motif Enables Two-Way Autoregulation of CcpA in Clostridium acetobutylicum. Applied and Environmental Microbiology, 2018, 84, .	3.1	25

Å**«Ç⁰¢ ŧŒ**

#	Article	IF	CITATIONS
37	<scp>PTS</scp> regulation domainâ€containing transcriptional activator Cel <scp>R</scp> and sigma factor ïf ⁵⁴ control cellobiose utilization in <scp><i>C</i></scp> <i>lostridium acetobutylicum</i> . Molecular Microbiology, 2016, 100, 289-302.	2.5	24
38	Roles of two-component system AfsQ1/Q2 in regulating biosynthesis of the yellow-pigmented coelimycin P2 in <i>Streptomyces coelicolor</i> . FEMS Microbiology Letters, 2016, 363, fnw160.	1.8	23
39	Molecular mechanism of environmental <scp>d</scp> -xylose perception by a XylFII-LytS complex in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8235-8240.	7.1	22
40	A Modified Gibson Assembly Method for Cloning Large DNA Fragments with High GC Contents. Methods in Molecular Biology, 2018, 1671, 203-209.	0.9	20
41	Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system. Scientific Reports, 2019, 9, 8123.	3.3	20
42	The SCIFFâ€Derived Ranthipeptides Participate in Quorum Sensing in Solventogenic Clostridia. Biotechnology Journal, 2020, 15, 2000136.	3.5	20
43	A Novel Two-Component System, GluR-GluK, Involved in Glutamate Sensing and Uptake in Streptomyces coelicolor. Journal of Bacteriology, 2017, 199, .	2.2	19
44	Improvement of pristinamycin I (PI) production in Streptomyces pristinaespiralis by metabolic engineering approaches. Synthetic and Systems Biotechnology, 2017, 2, 130-136.	3.7	19
45	Expression of penicillin G acylase from the cloned pac gene of Escherichia coli ATCC11105. FEBS Journal, 2001, 268, 1298-1303.	0.2	17
46	Development of an inducible transposon system for efficient random mutagenesis in <i>Clostridium acetobutylicum</i> . FEMS Microbiology Letters, 2016, 363, fnw065.	1.8	17
47	Roles of three AbrBs in regulating two-phase Clostridium acetobutylicum fermentation. Applied Microbiology and Biotechnology, 2016, 100, 9081-9089.	3.6	17
48	Improving the performance of solventogenic clostridia by reinforcing the biotin synthetic pathway. Metabolic Engineering, 2016, 35, 121-128.	7.0	16
49	MilR2, a novel TetR family regulator involved in 5-oxomilbemycin A3/A4 biosynthesis in Streptomyces hygroscopicus. Applied Microbiology and Biotechnology, 2018, 102, 8841-8853.	3.6	14
50	PapR6, a Putative Atypical Response Regulator, Functions as a Pathway-Specific Activator of Pristinamycin II Biosynthesis in Streptomyces pristinaespiralis. Journal of Bacteriology, 2015, 197, 441-450.	2.2	13
51	Involvement of the TetR-Type Regulator PaaR in the Regulation of Pristinamycin I Biosynthesis through an Effect on Precursor Supply in Streptomyces pristinaespiralis. Journal of Bacteriology, 2015, 197, 2062-2071.	2.2	12
52	Interactive Regulation of Formate Dehydrogenase during CO ₂ Fixation in Gas-Fermenting Bacteria. MBio, 2020, 11, .	4.1	11
53	The orphan histidine kinase PdtaS-p regulates both morphological differentiation and antibiotic biosynthesis together with the orphan response regulator PdtaR-p in Streptomyces. Microbiological Research, 2020, 233, 126411.	5.3	11
54	Functional analysis of TetR-family regulator AmtRsav in Streptomyces avermitilis. Microbiology (United Kingdom), 2013, 159, 2571-2583.	1.8	10

Å≪Ç⁰¢ ŧŒ

#	Article	IF	CITATIONS
55	Protein acetylation-mediated cross regulation of acetic acid and ethanol synthesis in the gas-fermenting Clostridium ljungdahlii. Journal of Biological Chemistry, 2022, 298, 101538.	3.4	10
56	Metabolic Engineering and Adaptive Evolution of <i>Clostridium beijerinckii</i> To Increase Solvent Production from Corn Stover Hydrolysate. Journal of Agricultural and Food Chemistry, 2020, 68, 7916-7925.	5.2	9
57	Overexpression of the diguanylate cyclase CdgD blocks developmental transitions and antibiotic biosynthesis in Streptomyces coelicolor. Science China Life Sciences, 2019, 62, 1492-1505.	4.9	8
58	Control of solvent production by sigmaâ€54 factor and the transcriptional activator AdhR in <i>Clostridium beijerinckii</i> . Microbial Biotechnology, 2020, 13, 328-338.	4.2	7
59	Identification of the cognate response regulator of the orphan histidine kinase OhkA involved in both secondary metabolism and morphological differentiation in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2021, 105, 5905-5914.	3.6	7
60	Ferrous-Iron-Activated Transcriptional Factor AdhR Regulates Redox Homeostasis in <i>Clostridium beijerinckii</i> . Applied and Environmental Microbiology, 2020, 86, .	3.1	6
61	Functional dissection and modulation of the BirA protein for improved autotrophic growth of gasâ€fermenting <i>ClostridiumÂljungdahlii</i> . Microbial Biotechnology, 2021, 14, 2072-2089.	4.2	6
62	The complete genome sequence of a high pristinamycin-producing strain Streptomyces pristinaespiralis HCCB10218. Journal of Biotechnology, 2015, 214, 45-46.	3.8	5
63	Crossregulation of rapamycin and elaiophylin biosynthesis by RapH in Streptomyces rapamycinicus. Applied Microbiology and Biotechnology, 2022, 106, 2147-2159.	3.6	5
64	The Small RNA sr8384 Is a Crucial Regulator of Cell Growth in Solventogenic Clostridia. Applied and Environmental Microbiology, 2020, 86, .	3.1	3
65	Cloning, sequencing and expression of a recA gene from Amycolatopsis mediterranei. Biotechnology Letters, 2002, 24, 909-913.	2.2	0