
Ronald D Sands

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3766820/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Land-based climate change mitigation measures can affect agricultural markets and food security. Nature Food, 2022, 3, 110-121.	14.0	61
2	Global biomass supply modeling for long-run management of the climate system. Climatic Change, 2022, 172, .	3.6	8
3	World agricultural baseline scenarios through 2050. Applied Economic Perspectives and Policy, 2022, 44, 2034-2048.	5.6	6
4	Integrated assessment model diagnostics: key indicators and model evolution. Environmental Research Letters, 2021, 16, 054046.	5.2	36
5	Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Climatic Change, 2020, 163, 1553-1568.	3.6	112
6	EMF-33 insights on bioenergy with carbon capture and storage (BECCS). Climatic Change, 2020, 163, 1621-1637.	3.6	30
7	Food security under high bioenergy demand toward long-term climate goals. Climatic Change, 2020, 163, 1587-1601.	3.6	33
8	The vulnerabilities of agricultural land and food production to future water scarcity. Global Environmental Change, 2019, 58, 101944.	7.8	120
9	Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160455.	3.4	48
10	U.S. CARBON TAX SCENARIOS AND BIOENERGY. Climate Change Economics, 2018, 09, 1840010.	5.0	7
11	Biophysical and economic implications for agriculture of +1.5Ű and +2.0ŰC global warming using AgMIP Coordinated Global and Regional Assessments. Climate Research, 2018, 76, 17-39.	1.1	49
12	Assessing uncertainties in land cover projections. Global Change Biology, 2017, 23, 767-781.	9.5	103
13	Hotspots of uncertainty in landâ€use and landâ€cover change projections: a globalâ€scale model comparison. Global Change Biology, 2016, 22, 3967-3983.	9.5	171
14	Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environmental Research Letters, 2015, 10, 085010.	5.2	216
15	Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3274-3279.	7.1	568
16	The future of food demand: understanding differences in global economic models. Agricultural Economics (United Kingdom), 2014, 45, 51-67.	3.9	357
17	Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison. Agricultural Economics (United Kingdom), 2014, 45, 3-20.	3.9	183
18	Bio-electricity and land use in the Future Agricultural Resources Model (FARM). Climatic Change, 2014, 123, 719-730.	3.6	21

RONALD D SANDS

#	Article	IF	CITATIONS
19	Agriculture and climate change in global scenarios: why don't the models agree. Agricultural Economics (United Kingdom), 2014, 45, 85-101.	3.9	172
20	Economic effects of bioenergy policy in the United States and Europe: A general equilibrium approach focusing on forest biomass. Renewable Energy, 2014, 69, 428-436.	8.9	34
21	U.S. CO2 Mitigation in a Global Context: Welfare, Trade and Land Use. Energy Journal, 2014, 35, .	1.7	8
22	Impact of Agricultural Productivity Gains on Greenhouse Gas Emissions: A Global Analysis. American Journal of Agricultural Economics, 2013, 95, 1309-1316.	4.3	14
23	EUROPEAN ENERGY EFFICIENCY AND DECARBONIZATION STRATEGIES BEYOND 2030 — A SECTORAL MULTI-MODEL DECOMPOSITION. Climate Change Economics, 2013, 04, 1340004.	5.0	29
24	EUROPEAN-LED CLIMATE POLICY VERSUS GLOBAL MITIGATION ACTION: IMPLICATIONS ON TRADE, TECHNOLOGY, AND ENERGY. Climate Change Economics, 2013, 04, 1340002.	5.0	7
25	A Global General Equilibrium Analysis of Biofuel Mandates and Greenhouse Gas Emissions. American Journal of Agricultural Economics, 2011, 93, 334-341.	4.3	15
26	Intra-annual changes in biomass, carbon, and nitrogen dynamics at 4-year old switchgrass field trials in west Tennessee, USAâ~†. Agriculture, Ecosystems and Environment, 2010, 136, 177-184.	5.3	72
27	Economic comparison of greenhouse gas mitigation options in Germany. Energy Efficiency, 2009, 2, 17-36.	2.8	18
28	Greenhouse gas mitigation in a carbon constrained world–the role of CCS in Germany. Energy Procedia, 2009, 1, 3755-3762.	1.8	4
29	Implications of Limiting CO ₂ Concentrations for Land Use and Energy. Science, 2009, 324, 1183-1186.	12.6	778
30	Impact of bioenergy crops in a carbon dioxide constrained world: an application of the MiniCAM energy-agriculture and land use model. Mitigation and Adaptation Strategies for Global Change, 2008, 13, 675-701.	2.1	38
31	Representing technology in CGE models: a comparison of SGM and AMIGA for electricity sector CO _{2 mitigation. International Journal of Energy Technology and Policy, 2008, 6, 323.}	0.2	6
32	Insights from EMF-associated agricultural and forestry greenhouse gas mitigation studies. , 2007, , 238-251.		1
33	Competitiveness of terrestrial greenhouse gas offsets: are they a bridge to the future?. Climatic Change, 2007, 80, 109-126.	3.6	36
34	Where are the industrial technologies in energy–economy models? An innovative CGE approach for steel production in Germany. Energy Economics, 2007, 29, 799-825.	12.1	57
35	Innovative energy technologies and climate policy in Germany. Energy Policy, 2006, 34, 3929-3941.	8.8	44
36	Non-CO2 Greenhouse Gases in the Second Generation Model. Energy Journal, 2006, 27, 305-322.	1.7	3

RONALD D SANDS

#	Article	IF	CITATIONS
37	Climate Change Impacts for the Conterminous USA: An Integrated Assessment. Climatic Change, 2005, 69, 127-150.	3.6	14
38	Climate Change Impacts for the Conterminous USA: An Integrated Assessment. , 2005, , 127-150.		4
39	Integrating agricultural and forestry GHG mitigation response into general economy frameworks: Developing a family of response functions. Mitigation and Adaptation Strategies for Global Change, 2004, 9, 241-259.	2.1	3
40	Dynamics of carbon abatement in the Second Generation Model. Energy Economics, 2004, 26, 721-738.	12.1	35
41	Modeling Agriculture and Land Use in an Integrated Assessment Framework. Climatic Change, 2003, 56, 185-210.	3.6	83
42	What are the costs of limiting CO2 concentrations?. , 2003, , .		6
43	Future N2O from US agriculture: projecting effects of changing land use, agricultural technology, and climate on N2O emissions. Global Environmental Change, 2002, 12, 105-115.	7.8	19
44	Uncertainty in integrated assessment models: modeling with MiniCAM 1.0. Energy Policy, 1999, 27, 855-879.	8.8	31
45	The Economics of the Kyoto Protocol. Energy Journal, 1999, 20, 25-71.	1.7	64
46	Climate Change Impacts on U.S. Commercial Building Energy Consumption: An Analysis Using Sample Survey Data. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 1996, 18, 177-201.	0.5	72