Masahiko Inouye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3765639/publications.pdf

Version: 2024-02-01

109321 133252 3,895 114 35 59 citations g-index h-index papers 125 125 125 3019 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Saccharide-Dependent Induction of Chiral Helicity in Achiral Synthetic Hydrogen-Bonding Oligomers. Journal of the American Chemical Society, 2004, 126, 2022-2027.	13.7	254
2	Alkynylpyrenes as Improved Pyrene-Based Biomolecular Probes with the Advantages of High Fluorescence Quantum Yields and Long Absorption/Emission Wavelengths. Chemistry - A European Journal, 2006, 12, 824-831.	3.3	223
3	A Doubly Alkynylpyreneâ€Threaded [4]Rotaxane That Exhibits Strong Circularly Polarized Luminescence from the Spatially Restricted Excimer. Angewandte Chemie - International Edition, 2014, 53, 14392-14396.	13.8	182
4	Unambiguous Detection of Target DNAs by Excimerâ ^{^2} Monomer Switching Molecular Beacons. Journal of Organic Chemistry, 2004, 69, 3271-3275.	3.2	175
5	Translation of Mutarotation into Induced Circular Dichroism Signals through Helix Inversion of Host Polymers. Angewandte Chemie - International Edition, 2007, 46, 3059-3061.	13.8	132
6	Regulation of Saccharide Binding with Basic Poly(ethynylpyridine)s by H+-Induced Helix Formation. Journal of the American Chemical Society, 2005, 127, 16189-16196.	13.7	125
7	New Crown Spirobenzopyrans as Light- and Ion-Responsive Dual-Mode Signal Transducers. Journal of the American Chemical Society, 1997, 119, 9160-9165.	13.7	120
8	Single-nucleotide polymorphism detection with "wire-like" DNA probes that display quasi "on-off" digital action. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11606-11610.	7.1	98
9	Helix Formation in Synthetic Polymers by Hydrogen Bonding with Native Saccharides in Protic Media. Chemistry - A European Journal, 2006, 12, 7839-7847.	3.3	94
10	Synthesis and Molecular Recognition of Pyrenophanes with Polycationic or Amphiphilic Functionalities:Â Artificial Plate-Shaped Cavitant Incorporating Arenes and Nucleotides in Water. Journal of Organic Chemistry, 2004, 69, 495-504.	3.2	93
11	Saccharide Recognition-Induced Transformation of Pyridineâ 'Pyridone Alternate Oligomers from Self-Dimer to Helical Complex. Journal of Organic Chemistry, 2008, 73, 4650-4661.	3.2	90
12	Molecular Recognition of .betaRibofuranosides by Synthetic Polypyridine-Macrocyclic Receptors. Journal of the American Chemical Society, 1995, 117, 12416-12425.	13.7	87
13	Molecular Recognition Abilities of a New Class of Water-Soluble Cyclophanes Capable of Encompassing a Neutral Cavity. Journal of the American Chemical Society, 1999, 121, 1452-1458.	13.7	76
14	Highly Emissive π-Conjugated Alkynylpyrene Oligomers: Their Synthesis and Photophysical Properties. Journal of Organic Chemistry, 2007, 72, 1530-1533.	3.2	73
15	Nucleobase Recognition by Artificial Receptors Possessing a Ferrocene Skeleton as a Novel Modular Unit for Hydrogen Bonding and Stacking Interactions. Journal of Organic Chemistry, 1999, 64, 2704-2710.	3.2	69
16	Sensitive and Selective Coloration of Cryptand-Type Crown Spirobenzopyrans for Alkaline-Earth Metal Cations. Angewandte Chemie International Edition in English, 1994, 33, 1163-1166.	4.4	68
17	Artificial DNA Made Exclusively of Nonnatural C-Nucleosides with Four Types of Nonnatural Bases. Journal of the American Chemical Society, 2008, 130, 8762-8768.	13.7	65
18	Development of a Series of Crossâ€Linking Agents that Effectively Stabilize αâ€Helical Structures in Various Short Peptides. Chemistry - A European Journal, 2008, 14, 857-863.	3.3	62

#	Article	IF	CITATIONS
19	Remarkably Strong, Uncharged Hydrogen-Bonding Interactions of Polypyridine-Macrocyclic Receptors for Deoxyribofuranosides. Journal of the American Chemical Society, 1999, 121, 341-345.	13.7	58
20	Artificial allosteric receptors for nucleotide bases and alkali-metal cations. Journal of the American Chemical Society, 1993, 115, 8091-8095.	13.7	55
21	Artificial DNAs Based on Alkynyl <i>C</i> àê€Nucleosides as a Superior Scaffold for Homo―and Heteroexcimer Emissions. Chemistry - A European Journal, 2007, 13, 8124-8130.	3.3	55
22	Circularly polarized luminescence from pyrene excimers. Tetrahedron Letters, 2019, 60, 151232.	1.4	52
23	Stereoselective Synthesis of AlkynylC-2-Deoxy-β-d-ribofuranosides via Intramolecular Nicholas Reaction:  A Versatile Building Block for NonnaturalC-Nucleosides. Organic Letters, 2003, 5, 625-628.	4.6	51
24	A RigidC3v-Symmetrical Host for Saccharide Recognition: 1,3,5-Tris(2-hydroxyaryl)-2,4,6-trimethylbenzenes. Organic Letters, 2005, 7, 59-61.	4.6	51
25	Observation of Circularly Polarized Luminescence of the Excimer from Two Perylene Cores in the Form of [4]Rotaxane. Chemistry - A European Journal, 2018, 24, 14613-14616.	3.3	50
26	Specific Binding and Separation of Dinucleotides by Ferrocene-Modified Artificial Receptors. Angewandte Chemie - International Edition, 2001, 40, 1746-1748.	13.8	47
27	Reversible Photoregulation of Helical Structures in Short Peptides under Indoor Lighting/Dark Conditions. Organic Letters, 2006, 8, 285-287.	4.6	46
28	Azacrown-attached meta-ethynylpyridine polymer: saccharide recognition regulated by supramolecular device. Chemical Communications, 2009, , 2121.	4.1	45
29	Saccharide-Linked Ethynylpyridine Oligomers: Primary Structures Encode Chiral Helices. Macromolecules, 2008, 41, 6903-6909.	4.8	44
30	Synthesis of versatile fluorescent sensors based on Click chemistry: detection of unsaturated fatty acids by their pyrene-emission switching. Chemical Communications, 2009, , 7164.	4.1	44
31	Photoswitchable, DNAâ€Binding Helical Peptides Assembled with Two Independently Designed Sequences for Photoregulation and DNA Recognition. Chemistry - A European Journal, 2012, 18, 9834-9840.	3.3	42
32	An Alternative Synthetic Method for Polycyclic Aromatic Iodides. Synthesis, 1986, 1986, 121-122.	2.3	38
33	Detection of Mismatched Duplexes by Synchronizing the Pulse Potential Frequency with the Dynamics of Ferrocene/Isoquinoline Conjugateâ€Connected DNA Probes Immobilized onto Electrodes. Chemistry - A European Journal, 2009, 15, 4822-4828.	3.3	38
34	Formation of higher-order structures of chiral poly(ethynylpyridine)s depending on size, temperature, and saccharide recognition. Organic and Biomolecular Chemistry, 2012, 10, 6930.	2.8	37
35	Photophysical properties of 1,3,6,8-tetrakis(arylethynyl)pyrenes with donor or acceptor substituents: their fluorescence solvatochromism and lightfastness. Tetrahedron, 2009, 65, 9357-9361.	1.9	35
36	Glucopyranoside Recognition by Polypyridine-Macrocyclic Receptors Possessing a Wide Cavity with a Flexible Linkage. Journal of Organic Chemistry, 1999, 64, 8170-8176.	3.2	34

#	Article	IF	CITATIONS
37	Copper(ii)-mediated chiral helicity amplification and inversion of meta-ethynylpyridine polymers with metal coordination sites. Chemical Communications, 2011, 47, 7455.	4.1	33
38	Highly Efficient Recognition of Native TpT by Artificial Ditopic Hydrogen-Bonding Receptors Possessing a Conformationally Well-Defined Linkage. Journal of Organic Chemistry, 2003, 68, 1134-1137.	3.2	32
39	Effective stabilisation of \hat{l} ±-helical structures in short peptides with acetylenic cross-linking agents. Chemical Communications, 2004, , 1280-1281.	4.1	32
40	Alternating 2,6-/3,5-Substituted Pyridine-Acetylene Macrocycles: π-Stacking Self-Assemblies Enhanced by Intermolecular Dipole–Dipole Interaction. Organic Letters, 2014, 16, 828-831.	4.6	32
41	Native Mannoseâ€Dominant Extraction by Pyridine–Phenol Alternating Oligomers Having an Extremely Efficient Repeating Motif of Hydrogenâ€Bonding Acceptors and Donors. Chemistry - A European Journal, 2015, 21, 16504-16511.	3.3	31
42	Copper(ii)/phenanthroline-mediated CD-enhancement and chiral memory effect on a meta-ethynylpyridine oligomer. Chemical Communications, 2012, 48, 3330.	4.1	30
43	A DNA Duplex-Based, Tailor-Made Fluorescent Sensor for Porphyrin Derivatives. Bioconjugate Chemistry, 2008, 19, 1132-1134.	3.6	27
44	Development of a new class of photochromic peptides by using diarylethene-based non-natural amino acids. Tetrahedron, 2013, 69, 6170-6175.	1.9	27
45	A general and versatile molecular design for host molecules working in water: a duplex-based potassium sensor consisting of three functional regions. Chemical Communications, 2005, , 4780.	4.1	26
46	Selective Binding of D2h-Symmetrical, Acetylene-Linked Pyridine/Pyridone Macrocycles to Maltoside. Journal of Organic Chemistry, 2011, 76, 3366-3371.	3.2	26
47	Side-Chain Cross-Linked Short \hat{l}_{\pm} -Helices That Behave like Original Proteins in Biomacromolecular Interactions. Journal of the American Chemical Society, 2011, 133, 656-659.	13.7	21
48	Exotic DNAs Made of Nonnatural Bases and Natural Phosphodiester Bonds. Chemistry and Biodiversity, 2010, 7, 259-282.	2.1	20
49	Preparation of Ethynylpyridine Macrocycles by Oxidative Coupling of an Ethynylpyridine Trimer with Terminal Acetylenes. Journal of Organic Chemistry, 2011, 76, 309-311.	3.2	19
50	Glycosylâ€Templated Chiral Helix Stapling of Ethynylpyridine Oligomers by Alkene Metathesis between Interâ€Pitch Side Chains. Chemistry - A European Journal, 2015, 21, 9405-9413.	3.3	19
51	<i>D</i> _{3<i>h</i><fsub>‧ymmetrical Shapeâ€Persistent Macrocycles Consisting of Pyridine–Acetylene–Phenol Conjugates as an Efficient Host Architecture for Saccharide Recognition. Chemistry - A European Journal, 2016, 22, 18944-18952.</fsub>}	3.3	19
52	Ferrocene-modified bis(spiropyridopyran)s as synthetic signaling receptors for guanine-guanine dinucleoside derivatives. Chemical Communications, 2001, , 2432-2433.	4.1	18
53	Development of convergent synthetic method for saccharide-linked ethynylpyridine foldamers by Huisgen reaction. Tetrahedron, 2012, 68, 4353-4361.	1.9	18
54	Saccharide Recognition and Helix Formation in Water with an Amphiphilic Pyridine–Phenol Alternating Oligomer. European Journal of Organic Chemistry, 2017, 2017, 6975-6979.	2.4	18

#	Article	IF	CITATIONS
55	Photooxygenation of Alkynylperylenes. Formation of Dibenzo[<i>>jk</i> , <i>mn</i>)phenanthrene-4,5-diones. Journal of Organic Chemistry, 2007, 72, 8990-8993.	3.2	16
56	Electrochemical detection of insertion/deletion mutations based on enhanced flexibility of bulge-containing duplexes on electrodes. Chemical Communications, 2010, 46, 7563.	4.1	16
57	Stabilization of Chiral Helices for Saccharideâ€Linked Ethynylpyridine Oligomers Possessing a Conformationally Wellâ€Defined Linkage. European Journal of Organic Chemistry, 2013, 2013, 1677-1682.	2.4	16
58	A supramolecular DNA self-assembly based on β-cyclodextrin–adamantane complexation as a bioorthogonal sticky end motif. Chemical Communications, 2013, 49, 6454.	4.1	16
59	Highly efficient stabilisation of meta-ethynylpyridine polymers with amide side chains in water by coordination of rare-earth metals. Organic and Biomolecular Chemistry, 2015, 13, 1700-1707.	2.8	16
60	Unexpected chain length dependence on a chiral memory effect of â€~meta-ethynylpyridine' oligomers. Tetrahedron: Asymmetry, 2013, 24, 527-531.	1.8	15
61	Discrete Molecular Recognition Induced Higher-Order Structures: Fibrous Formation Triggered by Melamine Recognition with a Cationic Ethynylpyridine Macrocyclic Host. Organic Letters, 2016, 18, 320-323.	4.6	15
62	Tautomeric Self-Dimerization and Molecular Recognition Properties of 2-Aminopyrimidinone Derivatives as Triple Hydrogen-Bonding Modules in Molecular Assemblies. European Journal of Organic Chemistry, 2005, 2005, 2931-2940.	2.4	14
63	Electrochemical Genotyping by Using Two Ferrocene/Isoquinoline onnected DNA Probes with Different Redox Potentials on a Single Electrode. Chemistry - A European Journal, 2009, 15, 7048-7051.	3.3	14
64	Concentration- and Time-Dependent Eccentric Changes in Circular Dichroism of Saccharide-Linked Ethynylpyridine Oligomer with Copper(II) lons. Journal of Organic Chemistry, 2012, 77, 5209-5214.	3.2	14
65	Cyclodextrin-Isolated Alkynylpyrenes as UV-Stable and Blue-Light-Emitting Molecules Even in Condensed States. Organic Letters, 2016, 18, 1960-1963.	4.6	14
66	<i>D</i> _{3<i>h</i>} -Symmetrical Hydrogen-Bonding Unit as a Saccharide Recognition and Self-Assembling Module. Organic Letters, 2008, 10, 2685-2688.	4.6	13
67	Spiropyran Derivatives as Multifunctional Artificial Receptors for Biologically Important Species. Molecular Crystals and Liquid Crystals, 1994, 246, 169-172.	0.3	12
68	Enantioselective Solid–Liquid Extraction of Native Saccharides with Chiral BINOL-Based Pyridine–Phenol Type Macrocycles. Organic Letters, 2019, 21, 6202-6207.	4.6	12
69	Preferential Recognition and Extraction to Pentoses over Hexoses by a <i>D</i> _{6<i>h</i><foodbaselingtone (1)="" and="" approximately="" compan<="" companion="" of="" td="" the=""><td>3.2</td><td>12</td></foodbaselingtone>}	3.2	12
70	Saccharide Recognition by a Threeâ€Armâ€6haped Host Having Preorganized Threeâ€Dimensional Hydrogenâ€Bonding Sites. Chemistry - A European Journal, 2021, 27, 785-793.	3.3	12
71	Specific Induced Circular Dichroism and Enhanced B to Z Transitions of Duplexes Stabilized by Chromophoreâ€Linked Alkynylnucleoside Residues. Chemistry - A European Journal, 2010, 16, 2401-2406.	3.3	11
72	Nonplanar Macrocycle Consisting of Four Pyridine and Phenol Units Connected with Acetylene Bonds Displaying Preferential Binding to Maltoside over Monosaccharides. Journal of Organic Chemistry, 2018, 83, 5766-5770.	3.2	11

#	Article	IF	CITATIONS
73	Synthesis and molecular recognition properties of a self-assembling molecule consisted of a porphyrin core and two hydrogen-bonding moieties. Materials Science and Engineering C, 2007, 27, 142-147.	7.3	9
74	Hexamethyldisilazane-Promoted Sonogashira Reaction of Polyfunctionalized N-Containing Heterocycles. Heterocycles, 2010, 82, 1137.	0.7	9
75	A firmly hybridizable, DNA-like architecture with DAD/ADA- and ADD/DAA-type nonnatural base pairs as an extracellular genetic candidate. Chemical Communications, 2015, 51, 7043-7046.	4.1	9
76	Spontaneous Helix Formation of " <i>meta</i> à€•Ethynylphenol Oligomers by Sequential Intramolecular Hydrogen Bonding inside the Cavities. Journal of Organic Chemistry, 2018, 83, 8724-8730.	3.2	9
77	IMPROVEMENT OF HELIX-FORMING ABILITY OF MANNOSIDE-LINKED ETHYNYLPYRIDINE OLIGOMERS CONSTRUCTED BY CONVERGENT SYNTHESIS. Heterocycles, 2012, 86, 955.	0.7	8
78	Helixâ€Rotaxane Hybrid Systems: Rotaxaneâ€Stabilized, Saccharideâ€Induced Chiral Ethynylpyridine Helices by a Thermodynamic Process. European Journal of Organic Chemistry, 2017, 2017, 726-733.	2.4	8
79	Metathesisâ€Based Stapling of a Pyridine–Acetylene–Phenol Oligomer Having Alkenyl Side Chains after Intermolecular Templation by Native Saccharides. European Journal of Organic Chemistry, 2018, 2018, 3131-3138.	2.4	8
80	A Comparison of Electrochemical DNA Probes Possessing an Isomeric Ferrocene-Diamidopyridine Conjugate for SNPs Detection on Au(111). E-Journal of Surface Science and Nanotechnology, 2005, 3, 393-398.	0.4	7
81	In Situ, Digital‣ike, and Reagentless Discrimination of Labelâ€Free SNPs of 90â€mer Length with Easily Synthesized Electrochemical DNA Probes. ChemBioChem, 2007, 8, 2219-2222.	2.6	7
82	A Bis(phenylethynyl)pyreneâ€Based [3]Rotaxane as an Extremely Photostable Fluorescence Probe Suitable for Hardâ€Edged Irradiation Experiments. ChemPhotoChem, 2018, 2, 353-356.	3.0	7
83	A New Class of Structurally Simple and Highly Emissive Fluorophores with a Pyridine–Acetylene–Phenol Conjugate. Heterocycles, 2015, 90, 515.	0.7	7
84	Palladium-Catalyzed Selective and Sequential Functionalization of 2,4,6-Trihalopyridine Rings: Synthesis of Ethynylpyridine Polymers Directly Joined with Aza-Crown Ethers. Heterocycles, 2012, 84, 355.	0.7	6
85	Electrochemical direct detection of DNA deamination catalyzed by APOBEC3G. Chemical Communications, 2012, 48, 12115.	4.1	6
86	Furanose ring conformations in a $1\hat{a}\in^2$ -alkynyl C-nucleoside and the dinucleotide. Tetrahedron, 2012, 68, 9045-9049.	1.9	6
87	A Pyridineâ€Acetyleneâ€Aniline Oligomer: Saccharide Recognition and Influence of this Recognition Array on the Activity as Acylation Catalyst. ChemPlusChem, 2020, 85, 2565-2569.	2.8	6
88	Synthesis and Photochromic Properties of Ferrocene-Modified Bis(spirobenzopyran)s. Molecular Crystals and Liquid Crystals, 2000, 344, 313-318.	0.3	5
89	Reliable and Reproducible Separation of 3,9―and 3,10â€Dibromoperylenes and the Photophysical Properties of Their Alkynyl Derivatives. European Journal of Organic Chemistry, 2017, 2017, 4334-4337.	2.4	5
90	Investigation of Receptor-Mediated Cyanocobalamin (Vitamin B12) Transport across the Inner Blood–Retinal Barrier Using Fluorescence-Labeled Cyanocobalamin. Molecular Pharmaceutics, 2018, 15, 3583-3594.	4.6	5

#	Article	IF	Citations
91	Molecular Design and Synthesis of Signal Transducer Receptors. Molecular Crystals and Liquid Crystals, 1997, 298, 83-88.	0.3	4
92	Redox Regulation of Helical Structures in Short Peptides with an Intramolecular Ferrocenyl Cross-Linking Agent. Journal of Organic Chemistry, 2008, 73, 5123-5126.	3.2	4
93	Synthesis of Nonnatural Oligonucleotides Made Exclusively of Alkynyl C â€Nucleosides with Nonnatural Bases. Current Protocols in Nucleic Acid Chemistry, 2015, 61, 4.62.1-4.62.22.	0.5	4
94	Molecular Design and Synthetic Strategy for Multifunctional Artificial Receptors: Recent Examples Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1996, 54, 311-322.	0.1	4
95	Selective Coloration of Cryptand - Type Spirobenzopyran for Alkaline - Earth - Metal Cations. Molecular Crystals and Liquid Crystals, 1994, 246, 187-189.	0.3	3
96	Photo- and Electrochemical Properties of Novel 7-Substituted Naphthyridine Derivatives. Heterocycles, 2009, 79, 411.	0.7	3
97	Versatile synthesis of fluorescent, cross-linked peptides as biological probes with the advantage of high helix content. Research on Chemical Intermediates, 2013, 39, 311-319.	2.7	3
98	Tailorâ€Made Designer Helical Peptides that Induce Mitochondrionâ€Mediated Cell Death without Necrosis. ChemBioChem, 2014, 15, 2571-2576.	2.6	3
99	Preparation and Spectroscopic Study of Alternate meta-Ethynylpyridine Oligomer Involving 2,4,6-Trisubstituted and 3,5-Disubstituted Pyridine Rings. Heterocycles, 2014, 88, 547.	0.7	3
100	Synthetic Hydrogen-Bonding Receptors for Biologically Essential Monosaccharides Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2000, 58, 1077-1083.	0.1	3
101	Ethynylpyridine Polymers: Development of Polymeric Hosts for Saccharide Recognition. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 112-123.	0.1	3
102	Characteristic Fluorescence Behavior of Dialkynylpyrene Derivatives in Hydrophobic Cavity of Protein. Chemistry Letters, 2009, 38, 84-85.	1.3	2
103	Preparation and Higher-order Structures of 2,6-Pyridylene and 2,6-Pyrazylene Alternating Macrocycle with the Inner Nitrogen Atoms in All the Aromatic Rings. Chemistry Letters, 2017, 46, 1740-1742.	1.3	2
104	Hexaphenolic Rigid Cages Prepared by Self-Organization of <i>C</i> _{3<i>V</i>} Tridentates. Journal of Organic Chemistry, 2018, 83, 3132-3141.	3.2	2
105	Additiveâ€Free Enzymatic Phosphorylation and Ligation of Artificial Oligonucleotides with Câ€Nucleosides at the Reaction Points. ChemBioChem, 2019, 20, 1945-1952.	2.6	2
106	Synthesis of Alkynyl C-Nucleotide Triphosphates Toward Enzymatic Elongation of Artificial DNA. Heterocycles, 2018, 97, 612.	0.7	2
107	Design and Synthesis of a DNA-Like Structure Composed of Alkynyl C-Nucleotide with 2-Aminopyrimidin-4-one as a Nucleobase. Heterocycles, 2018, 97, 1149.	0.7	2
108	Freshly isolated retinal capillaries to determine efflux transporter function at the inner BRB. Journal of Controlled Release, 2022, 343, 434-442.	9.9	2

#	Article	IF	CITATION
109	Specific Binding and Separation of Dinucleotides by Ferrocene-Modified Artificial Receptors. Angewandte Chemie - International Edition, 2001, 40, 1746-1748.	13.8	2
110	Syntheses and electrochemical properties of novel aminopyrimidinone derivatives as a new class of abasic-site binders. Research on Chemical Intermediates, 2013, 39, 177-183.	2.7	1
111	Bcl-XL-binding helical peptides possessingd-Ala residues at their C-termini with the advantage of long-lasting intracellular stabilities. Chemical Communications, 2017, 53, 12104-12107.	4.1	O
112	Immobilization of Crosslinked Peptides that Possess High Helical Contents and Their Binding to Target DNAs on Au Surfaces. Chemistry Letters, 2018, 47, 365-368.	1.3	0
113	2-Aminopyridine as a Nucleobase Substitute for Adenine in DNA-like Architectures: Synthesis of Alkynyl C-Nucleotides and Their Hybridization Characteristics. Journal of Organic Chemistry, 2020, 85, 2666-2671.	3.2	O
114	Synthesis of Rigid Macrocyclic Phenols and Their Catalytic Applications in Dielsâ€Alder reactions. European Journal of Organic Chemistry, 0, , .	2.4	0