List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3765528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental and socioeconomic correlates of extinction risk in endemic species. Diversity and Distributions, 2022, 28, 53-64.	4.1	16
2	Effects of intrinsic precipitationâ€predictability on root traits, allocation strategies and the selective regimes acting on them. Oikos, 2022, 2022, .	2.7	5
3	Alien flora of Oman: invasion status, taxonomic composition, habitats, origin, and pathways of introduction. Biological Invasions, 2022, 24, 955-970.	2.4	10
4	The Matthew effect: Common species become more common and rare ones become more rare in response to artificial light at night. Global Change Biology, 2022, 28, 3674-3682.	9.5	11
5	Herbivory may mediate the effects of nutrients on the dominance of alien plants. Functional Ecology, 2022, 36, 1292-1302.	3.6	10
6	Vegetation changes over the last centuries in the Lower Lake Constance region reconstructed from sedimentâ€core environmental DNA. Environmental DNA, 2022, 4, 830-845.	5.8	7
7	Soil conditions drive belowâ€ground trait space in temperate agricultural grasslands. Journal of Ecology, 2022, 110, 1189-1200.	4.0	5
8	Direct and legacyâ€mediated drought effects on plant performance are speciesâ€specific and depend on soil community composition. Oikos, 2022, 2022, .	2.7	8
9	Introduction history mediates naturalization and invasiveness of cultivated plants. Global Ecology and Biogeography, 2022, 31, 1104-1119.	5.8	14
10	Soil heterogeneity tends to promote the growth of naturalized aliens when competing with native plant communities. Journal of Ecology, 2022, 110, 1161-1173.	4.0	5
11	Development of Pathways of Global Plant Invasions in Space and Time. , 2022, , 53-69.		5
12	Plant Invasions in Africa. , 2022, , 225-252.		9
13	European Plant Invasions. , 2022, , 151-165.		3
14	Traces of Genetic but Not Epigenetic Adaptation in the Invasive Goldenrod Solidago canadensis Despite the Absence of Population Structure. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	2
15	Invasional meltdown mediated by plant–soil feedbacks may depend on community diversity. New Phytologist, 2022, 235, 1589-1598.	7.3	6
16	Direct and plant community mediated effects of management intensity on annual nutrient leaching risk in temperate grasslands. Nutrient Cycling in Agroecosystems, 2022, 123, 83-104.	2.2	6
17	Manipulation of cytosine methylation does not remove latitudinal clines in two invasive goldenrod species in Central Europe. Molecular Ecology, 2021, 30, 222-236.	3.9	5
18	Unexpected sensitivity of the highly invasive spider Mermessus trilobatus to soil disturbance in grasslands. Biological Invasions, 2021, 23, 1-6.	2.4	10

#	Article	IF	CITATIONS
19	Effect of allelopathy on plant performance: a metaâ€analysis. Ecology Letters, 2021, 24, 348-362.	6.4	133
20	Latitudinal patterns of alien plant invasions. Journal of Biogeography, 2021, 48, 253-262.	3.0	28
21	Below―and aboveground traits explain local abundance, and regional, continental and global occurrence frequencies of grassland plants. Oikos, 2021, 130, 110-120.	2.7	15
22	Source pools and disharmony of the world's island floras. Ecography, 2021, 44, 44-55.	4.5	30
23	Role of diversification rates and evolutionary history as a driver of plant naturalization success. New Phytologist, 2021, 229, 2998-3008.	7.3	19
24	Drought Effects on Nitrogen Provisioning in Different Agricultural Systems: Insights Gained and Lessons Learned from a Field Experiment. Nitrogen, 2021, 2, 1-17.	1.3	2
25	Drought alters plantâ€soil feedback effects on biomass allocation but not on plant performance. Plant and Soil, 2021, 462, 285-296.	3.7	15
26	Biomass responses of widely and lessâ€widely naturalized alien plants to artificial light at night. Journal of Ecology, 2021, 109, 1819-1827.	4.0	21
27	Population genomic and historical analysis suggests a global invasion by bridgehead processes in Mimulus guttatus. Communications Biology, 2021, 4, 327.	4.4	24
28	Anthropogenic and environmental drivers shape diversity of naturalized plants across the Pacific. Diversity and Distributions, 2021, 27, 1120-1133.	4.1	8
29	The alien flora of Sudan and South Sudan: taxonomic and biogeographical composition. Biological Invasions, 2021, 23, 2033-2045.	2.4	12
30	Declines in occurrence of plants characteristic for a nutrientâ€poor meadow habitat are partly explained by their responses to nutrient addition and competition. Ecology and Evolution, 2021, 11, 4058-4070.	1.9	3
31	A parasite indirectly affects nutrient distribution by common mycorrhizal networks between host and neighboring plants. Ecology, 2021, 102, e03339.	3.2	8
32	Investigating the Invasion Pattern of the Alien Plant Solanum elaeagnifolium Cav. (Silverleaf) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 222 1
33	Climate and socioâ€economic factors explain differences between observed and expected naturalization patterns of European plants around the world. Global Ecology and Biogeography, 2021, 30, 1514-1531.	5.8	8
34	Persistent soil seed banks promote naturalisation and invasiveness in flowering plants. Ecology Letters, 2021, 24, 1655-1667.	6.4	30
35	Dimensions of invasiveness: Links between local abundance, geographic range size, and habitat breadth in Europe's alien and native floras. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	47
36	Allelopathic and competitive interactions between native and alien plants. Biological Invasions, 2021, 23, 3077-3090.	2.4	25

#	Article	IF	CITATIONS
37	Reciprocal heterospecific pollen interference among alien and native species. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 50, 125610.	2.7	1
38	Around the world in 500 years: Interâ€regional spread of alien species over recent centuries. Global Ecology and Biogeography, 2021, 30, 1621-1632.	5.8	29
39	Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species. Diversity and Distributions, 2021, 27, 2063-2076.	4.1	7
40	Plant–Soil Feedbacks and Temporal Dynamics of Plant Diversity–Productivity Relationships. Trends in Ecology and Evolution, 2021, 36, 651-661.	8.7	74
41	Plant invasion alters latitudinal pattern of plantâ€defense syndromes. Ecology, 2021, 102, e03511.	3.2	10
42	Phylogenetic structure of alien plant species pools from European donor habitats. Global Ecology and Biogeography, 2021, 30, 2354-2367.	5.8	7
43	Proportion of non-native plants in urban parks correlates with climate, socioeconomic factors and plant traits. Urban Forestry and Urban Greening, 2021, 63, 127215.	5.3	10
44	Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 2021, 27, 970-982.	9.5	327
45	Mycorrhizal types influence island biogeography of plants. Communications Biology, 2021, 4, 1128.	4.4	12
46	Widespread vulnerability of flowering plant seed production to pollinator declines. Science Advances, 2021, 7, eabd3524.	10.3	92
47	Characteristics of the naturalized flora of Southern Africa largely reflect the nonâ€random introduction of alien species for cultivation. Ecography, 2021, 44, 1812-1825.	4.5	12
48	The global loss of floristic uniqueness. Nature Communications, 2021, 12, 7290.	12.8	39
49	Testing the shifting defense hypothesis for constitutive and induced resistance and tolerance. Journal of Pest Science, 2020, 93, 355-364.	3.7	13
50	Responses of Rhizospheric Microbial Communities of Native and Alien Plant Species to Cuscuta Parasitism. Microbial Ecology, 2020, 79, 617-630.	2.8	8
51	A microplastic used as infill material in artificial sport turfs reduces plant growth. Plants People Planet, 2020, 2, 157-166.	3.3	67
52	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
53	Similar factors underlie tree abundance in forests in native and alien ranges. Global Ecology and Biogeography, 2020, 29, 281-294.	5.8	21
54	Do floral traits and the selfing capacity of Mimulus guttatus plastically respond to experimental temperature changes?. Oecologia, 2020, 192, 261-272.	2.0	5

#	Article	IF	CITATIONS
55	Soil-microorganism-mediated invasional meltdown in plants. Nature Ecology and Evolution, 2020, 4, 1612-1621.	7.8	50
56	Drivers of future alien species impacts: An expertâ€based assessment. Global Change Biology, 2020, 26, 4880-4893.	9.5	145
57	Allelopathic effects of native and invasive <i>Brassica nigra</i> do not support the novelâ€weapons hypothesis. American Journal of Botany, 2020, 107, 1106-1113.	1.7	19
58	Evidence for Elton's diversity–invasibility hypothesis from belowground. Ecology, 2020, 101, e03187.	3.2	23
59	Towards Unraveling Macroecological Patterns in Rhizosphere Microbiomes. Trends in Plant Science, 2020, 25, 1017-1029.	8.8	42
60	Towards a General Understanding of Bacterial Interactions. Trends in Microbiology, 2020, 28, 783-785.	7.7	26
61	A conceptual map of invasion biology: Integrating hypotheses into a consensus network. Global Ecology and Biogeography, 2020, 29, 978-991.	5.8	150
62	Economic use of plants is key to their naturalization success. Nature Communications, 2020, 11, 3201.	12.8	79
63	Scientists' warning on invasive alien species. Biological Reviews, 2020, 95, 1511-1534.	10.4	928
64	Distinct Biogeographic Phenomena Require a Specific Terminology: A Reply to Wilson and Sagoff. BioScience, 2020, 70, 112-114.	4.9	5
65	Patterns of pollen dispersal and mating in a population of the clonal plant Sagittaria latifolia. Journal of Ecology, 2020, 108, 1941-1955.	4.0	3
66	Bacterial Flagella Loss under Starvation. Trends in Microbiology, 2020, 28, 785-788.	7.7	17
67	A shift towards the annual habit in selfing <i>Arabidopsis lyrata</i> . Biology Letters, 2020, 16, 20200402.	2.3	4
68	Limited phenological and pollinator-mediated isolation among selfing and outcrossing <i>Arabidopsis lyrata</i> populations. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202323.	2.6	5
69	Effects of land-use change and related pressures on alien and native subsets of island communities. PLoS ONE, 2020, 15, e0227169.	2.5	13
70	South Africa as a Donor of Naturalised and Invasive Plants to Other Parts of the World. , 2020, , 759-785.		10
71	Evolution of increased intraspecific competitive ability following introduction: The importance of relatedness among genotypes. Journal of Ecology, 2019, 107, 387-395.	4.0	17
72	Tall-statured grasses: a useful functional group for invasion science. Biological Invasions, 2019, 21, 37-58.	2.4	36

#	Article	IF	CITATIONS
73	Linking Darwin's naturalisation hypothesis and Elton's diversity–invasibility hypothesis in experimental grassland communities. Journal of Ecology, 2019, 107, 794-805.	4.0	24
74	Nonlinear effects of phylogenetic distance on earlyâ€stage establishment of experimentally introduced plants in grassland communities. Journal of Ecology, 2019, 107, 781-793.	4.0	15
75	Salinity-induced changes in the rhizosphere microbiome improve salt tolerance of Hibiscus hamabo. Plant and Soil, 2019, 443, 525-537.	3.7	31
76	Microbial invasions in terrestrial ecosystems. Nature Reviews Microbiology, 2019, 17, 621-631.	28.6	74
77	Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB PLANTS, 2019, 11, plz051.	2.3	72
78	Rapid and positive responses of plants to lower precipitation predictability. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191486.	2.6	14
79	No evidence for local adaptation and an epigenetic underpinning in native and nonâ€native ruderal plant species in Germany. Ecology and Evolution, 2019, 9, 9412-9426.	1.9	12
80	Invasive alien clonal plants are competitively superior over co-occurring native clonal plants. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 40, 125484.	2.7	55
81	Sibling competition does not magnify inbreeding depression in North American Arabidopsis lyrata. Heredity, 2019, 123, 723-732.	2.6	10
82	A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience, 2019, 69, 908-919.	4.9	113
83	Nitrogen acquisition of Central European herbaceous plants that differ in their global naturalization success. Functional Ecology, 2019, 33, 566-575.	3.6	15
84	Domestic gardens play a dominant role in selecting alien species with adaptive strategies that facilitate naturalization. Global Ecology and Biogeography, 2019, 28, 628-639.	5.8	47
85	Contrasting patterns of naturalized plant richness in the Americas: Numbers are higher in the North but expected to rise sharply in the South. Global Ecology and Biogeography, 2019, 28, 779-783.	5.8	12
86	Common alien plants are more competitive than rare natives but not than common natives. Ecology Letters, 2019, 22, 1378-1386.	6.4	66
87	The role of fruit heteromorphism in the naturalization of Asteraceae. Annals of Botany, 2019, 123, 1043-1052.	2.9	11
88	Diversity- and density-mediated allelopathic effects of resident plant communities on invasion by an exotic plant. Plant and Soil, 2019, 440, 581-592.	3.7	30
89	Effects of climate change and horticultural use on the spread of naturalized alien garden plants in Europe. Ecography, 2019, 42, 1548-1557.	4.5	2
90	Make EU trade with Brazil sustainable. Science, 2019, 364, 341-341.	12.6	49

#	Article	IF	CITATIONS
91	Patterns of genetic variation reflect multiple introductions and pre-admixture sources of common ragweed (Ambrosia artemisiifolia) in China. Biological Invasions, 2019, 21, 2191-2209.	2.4	13
92	Climate change and climate change velocity analysis across Germany. Scientific Reports, 2019, 9, 2196.	3.3	15
93	Mycorrhizal fungi influence global plant biogeography. Nature Ecology and Evolution, 2019, 3, 424-429.	7.8	74
94	Facultative mycorrhizal associations promote plant naturalization worldwide. Ecosphere, 2019, 10, e02937.	2.2	16
95	Autofertility and self ompatibility moderately benefit island colonization of plants. Global Ecology and Biogeography, 2019, 28, 341-352.	5.8	17
96	Introduced garden plants are strong competitors of native and alien residents under simulated climate change. Journal of Ecology, 2019, 107, 1328-1342.	4.0	14
97	The Global Naturalized Alien Flora (Glo <scp>NAF</scp>) database. Ecology, 2019, 100, e02542.	3.2	189
98	Naturalized and invasive alien flora of Ghana. Biological Invasions, 2019, 21, 669-683.	2.4	24
99	Oviposition by the Mountain Alcon Blue butterfly increases with host plant flower number and host ant abundance. Basic and Applied Ecology, 2018, 28, 87-96.	2.7	6
100	The changing role of ornamental horticulture in alien plant invasions. Biological Reviews, 2018, 93, 1421-1437.	10.4	251
101	Invasive alien plants of Russia: insights from regional inventories. Biological Invasions, 2018, 20, 1931-1943.	2.4	51
102	Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2264-E2273.	7.1	416
103	Phenological shifts and flower visitation of 185 lowland and alpine species in a lowland botanical garden. Alpine Botany, 2018, 128, 23-33.	2.4	6
104	Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants. Ecology, 2018, 99, 866-875.	3.2	67
105	Functional trait differences and trait plasticity mediate biotic resistance to potential plant invaders. Journal of Ecology, 2018, 106, 1607-1620.	4.0	50
106	Admixture increases performance of an invasive plant beyond firstâ€generation heterosis. Journal of Ecology, 2018, 106, 1595-1606.	4.0	21
107	Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions. Journal of Applied Ecology, 2018, 55, 92-98.	4.0	108
108	Simulating plant invasion dynamics in mountain ecosystems under global change scenarios. Global Change Biology, 2018, 24, e289-e302.	9.5	54

#	Article	IF	CITATIONS
109	Naturalized alien flora of the Indian states: biogeographic patterns, taxonomic structure and drivers of species richness. Biological Invasions, 2018, 20, 1625-1638.	2.4	42
110	Context-Dependent Parental Effects on Clonal Offspring Performance. Frontiers in Plant Science, 2018, 9, 1824.	3.6	18
111	Remoteness promotes biological invasions on islands worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9270-9275.	7.1	114
112	The role of adaptive strategies in plant naturalization. Ecology Letters, 2018, 21, 1380-1389.	6.4	69
113	The effects of changes in water and nitrogen availability on alien plant invasion into a stand of a native grassland species. Oecologia, 2018, 188, 441-450.	2.0	28
114	Design and Manual to Construct Rainout-Shelters for Climate Change Experiments in Agroecosystems. Frontiers in Environmental Science, 2018, 6, .	3.3	43
115	Which Taxa Are Alien? Criteria, Applications, and Uncertainties. BioScience, 2018, 68, 496-509.	4.9	153
116	Increases and fluctuations in nutrient availability do not promote dominance of alien plants in synthetic communities of common natives. Functional Ecology, 2018, 32, 2594-2604.	3.6	33
117	The Ecology and Evolution of Alien Plants. Annual Review of Ecology, Evolution, and Systematics, 2018, 49, 25-47.	8.3	138
118	European ornamental garden flora as an invasion debt under climate change. Journal of Applied Ecology, 2018, 55, 2386-2395.	4.0	45
119	Responses of common and rare aliens and natives to nutrient availability and fluctuations. Journal of Ecology, 2017, 105, 1111-1122.	4.0	78
120	Small reductions in corolla size and pollen: ovule ratio, but no changes in flower shape in selfing populations of the North American Arabidopsis lyrata. Oecologia, 2017, 183, 401-413.	2.0	30
121	No saturation in the accumulation of alien species worldwide. Nature Communications, 2017, 8, 14435.	12.8	1,543
122	The effects of climate warming and disturbance on the colonization potential of ornamental alien plant species. Journal of Ecology, 2017, 105, 1698-1708.	4.0	38
123	Will climate change increase hybridization risk between potential plant invaders and their congeners in Europe?. Diversity and Distributions, 2017, 23, 934-943.	4.1	19
124	Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology and Evolution, 2017, 1, .	7.8	315
125	In the presence of specialist root and shoot herbivory, invasiveâ€range <i>Brassica nigra</i> populations have stronger competitive effects than nativeâ€range populations. Journal of Ecology, 2017, 105, 1679-1686.	4.0	14
126	Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytologist, 2017, 216, 1072-1078.	7.3	152

#	Article	IF	CITATIONS
127	Naturalization of ornamental plant species in public green spaces and private gardens. Biological Invasions, 2017, 19, 3613-3627.	2.4	44
128	Relatively weak inbreeding depression in selfing but also in outcrossing populations of North American <i>Arabidopsis lyrata</i> . Journal of Evolutionary Biology, 2017, 30, 1994-2004.	1.7	14
129	Naturalization of European plants on other continents: The role of donor habitats. Proceedings of the United States of America, 2017, 114, 13756-13761.	7.1	57
130	Climate change will increase the naturalization risk from garden plants in Europe. Global Ecology and Biogeography, 2017, 26, 43-53.	5.8	87
131	Do invasive alien plants benefit more from global environmental change than native plants?. Global Change Biology, 2017, 23, 3363-3370.	9.5	226
132	Conservation physiology and the quest for a †good' Anthropocene. , 2017, 5, cox003.		14
133	A Small Number of Low-abundance Bacteria Dominate Plant Species-specific Responses during Rhizosphere Colonization. Frontiers in Microbiology, 2017, 8, 975.	3.5	87
134	Naturalized alien flora of the world. Preslia, 2017, 89, 203-274.	2.8	350
135	Phylogenetic and functional mechanisms of direct and indirect interactions among alien and native plants. Journal of Ecology, 2016, 104, 1136-1148.	4.0	18
136	Invasive plant species are locally adapted just as frequently and at least as strongly as native plant species. Journal of Ecology, 2016, 104, 957-968.	4.0	166
137	Niche dynamics of alien species do not differ among sexual and apomictic flowering plants. New Phytologist, 2016, 209, 1313-1323.	7.3	38
138	Does greater specific leaf area plasticity help plants to maintain a high performance when shaded?. Annals of Botany, 2016, 118, 1329-1336.	2.9	100
139	Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Global Ecology and Biogeography, 2016, 25, 1500-1509.	5.8	60
140	Latitudinal and longitudinal clines of phenotypic plasticity in the invasive herb Solidago canadensis in China. Oecologia, 2016, 182, 755-764.	2.0	49
141	Alien and native plant establishment in grassland communities is more strongly affected by disturbance than above―and belowâ€ground enemies. Journal of Ecology, 2016, 104, 1233-1242.	4.0	11
142	Introduction history, climatic suitability, native range size, species traits and their interactions explain establishment of Chinese woody species in Europe. Global Ecology and Biogeography, 2016, 25, 1356-1366.	5.8	32
143	Allelopathy of a native grassland community as a potential mechanism of resistance against invasion by introduced plants. Biological Invasions, 2016, 18, 3481-3493.	2.4	25
144	Plants capable of selfing are more likely to become naturalized. Nature Communications, 2016, 7, 13313.	12.8	91

#	Article	IF	CITATIONS
145	Evolutionary potential in the Alpine: trait heritabilities and performance variation of the dwarf willow <i>Salix herbacea</i> from different elevations and microhabitats. Ecology and Evolution, 2016, 6, 3940-3952.	1.9	98
146	Nonâ€invasive naturalized alien plants were not more pollenâ€limited than invasive aliens and natives in a common garden. Functional Ecology, 2016, 30, 1511-1520.	3.6	14
147	Transgenerational effects of land use on offspring performance and growth in Trifolium repens. Oecologia, 2016, 180, 409-420.	2.0	6
148	Commonness and rarity of alien and native plant species – the relative roles of intraspecific competition and plant–soil feedback. Oikos, 2016, 125, 1458-1466.	2.7	17
149	The snow and the willows: earlier spring snowmelt reduces performance in the lowâ€lying alpine shrub <i>Salix herbacea</i> . Journal of Ecology, 2016, 104, 1041-1050.	4.0	110
150	No consistent legacy effects of invasion by giant goldenrod (<i>Solidago gigantea</i>) <i>via</i> soil biota on native plant growth. Journal of Plant Ecology, 2016, 9, 320-327.	2.3	8
151	Global trade will accelerate plant invasions in emerging economies under climate change. Global Change Biology, 2015, 21, 4128-4140.	9.5	301
152	The Interaction between Root Herbivory and Competitive Ability of Native and Invasive-Range Populations of Brassica nigra. PLoS ONE, 2015, 10, e0141857.	2.5	7
153	Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species. Frontiers in Plant Science, 2015, 6, 273.	3.6	43
154	Challenging the view that invasive non-native plants are not a significant threat to the floristic diversity of Great Britain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2988-9.	7.1	32
155	Testing the Plant Growth-Defense Hypothesis Belowground: Do Faster-Growing Herbaceous Plant Species Suffer More Negative Effects from Soil Biota than Slower-Growing Ones?. American Naturalist, 2015, 186, 264-271.	2.1	34
156	Costs associated with the evolution of selfing in North American populations of Arabidopsis lyrata?. Evolutionary Ecology, 2015, 29, 749-764.	1.2	13
157	Consequences of clonality for sexual fitness: Clonal expansion enhances fitness under spatially restricted dispersal. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8929-8936.	7.1	36
158	A new perspective on trait differences between native and invasive exotic plants: comment. Ecology, 2015, 96, 1150-1152.	3.2	10
159	Admixture between native and invasive populations may increase invasiveness of <i>Mimulus guttatus</i> . Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151487.	2.6	36
160	Global exchange and accumulation of non-native plants. Nature, 2015, 525, 100-103.	27.8	746
161	Characteristics of successful alien plants. Molecular Ecology, 2015, 24, 1954-1968.	3.9	163
162	Non-naturalized alien plants receive fewer flower visits than naturalized and native plants in a Swiss botanical garden. Biological Conservation, 2015, 182, 109-116.	4.1	23

#	Article	IF	CITATIONS
163	The Response of the Alpine Dwarf Shrub Salix herbacea to Altered Snowmelt Timing: Lessons from a Multi-Site Transplant Experiment. PLoS ONE, 2015, 10, e0122395.	2.5	101
164	Conservation physiology of plants. , 2014, 2, cou007-cou007.		7
165	Responses to shading of naturalized and non-naturalized exotic woody species. Annals of Botany, 2014, 114, 981-989.	2.9	20
166	Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones. Oecologia, 2014, 174, 1055-1064.	2.0	76
167	The more the merrier: Multi-species experiments in ecology. Basic and Applied Ecology, 2014, 15, 1-9.	2.7	83
168	Little evidence for release from herbivores as a driver of plant invasiveness from a multiâ€species herbivoreâ€removal experiment. Oikos, 2014, 123, 1509-1518.	2.7	20
169	Invasion by Solidago species has limited impacts on soil seed bank communities. Basic and Applied Ecology, 2014, 15, 573-580.	2.7	15
170	The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 2014, 17, 1351-1364.	6.4	802
171	Small-scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea. Heredity, 2014, 113, 233-239.	2.6	101
172	What role do plant–soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?. Basic and Applied Ecology, 2014, 15, 305-315.	2.7	95
173	Central European plant species from more productive habitats are more invasive at a global scale. Global Ecology and Biogeography, 2013, 22, 64-72.	5.8	73
174	Movement, impacts and management of plant distributions in response to climate change: insights from invasions. Oikos, 2013, 122, 1265-1274.	2.7	36
175	Determinants of plant establishment success in a multispecies introduction experiment with native and alien species. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12727-12732.	7.1	93
176	Plant invasiveness is not linked to the capacity of regeneration from small fragments: an experimental test with 39 stoloniferous species. Biological Invasions, 2013, 15, 1367-1376.	2.4	19
177	Enemy damage of exotic plant species is similar to that of natives and increases with productivity. Journal of Ecology, 2013, 101, 388-399.	4.0	27
178	United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia, 2013, 171, 317-327.	2.0	219
179	Pollinators, mates and Allee effects: the importance of selfâ€pollination for fecundity in an invasive lily. Functional Ecology, 2013, 27, 1023-1033.	3.6	29
180	Effects of native pollinator specialization, selfâ€compatibility and flowering duration of <scp>E</scp> uropean plant species on their invasiveness elsewhere. Journal of Ecology, 2013, 101, 916-923.	4.0	14

#	Article	IF	CITATIONS
181	Plantâ€microbeâ€herbivore interactions in invasive and nonâ€invasive alien plant species. Functional Ecology, 2013, 27, 498-508.	3.6	37
182	The cobblers stick to their lasts: pollinators prefer native over alien plant species in a multi-species experiment. Biological Invasions, 2013, 15, 2577-2588.	2.4	26
183	Root Foraging Increases Performance of the Clonal Plant Potentilla reptans in Heterogeneous Nutrient Environments. PLoS ONE, 2013, 8, e58602.	2.5	26
184	Alien plant species with a wider global distribution are better able to capitalize on increased resource availability. New Phytologist, 2012, 194, 859-867.	7.3	127
185	Increased Phenotypic Plasticity to Climate May Have Boosted the Invasion Success of Polyploid Centaurea stoebe. PLoS ONE, 2012, 7, e50284.	2.5	79
186	Different genetic clines in response to temperature across the native and introduced ranges of a global plant invader. Journal of Ecology, 2012, 100, 771-781.	4.0	46
187	Common and rare plant species respond differently to fertilisation and competition, whether they are alien or native. Ecology Letters, 2012, 15, 873-880.	6.4	102
188	Establishment success of 25 rare wetland species introduced into restored habitats is best predicted by ecological distance to source habitats. Biological Conservation, 2011, 144, 602-609.	4.1	64
189	Research on invasive-plant traits tells us a lot. Trends in Ecology and Evolution, 2011, 26, 317.	8.7	55
190	The maximum relative growth rate of common UK plant species is positively associated with their global invasiveness. Global Ecology and Biogeography, 2011, 20, 299-306.	5.8	91
191	Preadapted for invasiveness: do species traits or their plastic response to shading differ between invasive and non-invasive plant species in their native range?. Journal of Biogeography, 2011, 38, 1294-1304.	3.0	98
192	Introduction bias: Cultivated alien plant species germinate faster and more abundantly than native species in Switzerland. Basic and Applied Ecology, 2011, 12, 244-250.	2.7	70
193	A test of baker's law: breeding systems of invasive species of Asteraceae in China. Biological Invasions, 2011, 13, 571-580.	2.4	90
194	Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5685-5689.	7.1	208
195	Population responses within a landscape matrix: a macrophysiological approach to understanding climate change impacts. Evolutionary Ecology, 2010, 24, 601-616.	1.2	24
196	A multiâ€species experiment in their native range indicates preâ€adaptation of invasive alien plant species. New Phytologist, 2010, 185, 1087-1099.	7.3	130
197	A metaâ€analysis of trait differences between invasive and nonâ€invasive plant species. Ecology Letters, 2010, 13, 235-245.	6.4	1,442
198	The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance. Ecology Letters, 2010, 13, 937-946.	6.4	134

#	Article	IF	CITATIONS
199	Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecology Letters, 2010, 13, 947-958.	6.4	383
200	Experiment meets biogeography: plants of river corridor distribution are not more stress tolerant but benefit less from more benign conditions elsewhere. Journal of Plant Ecology, 2010, 3, 149-155.	2.3	14
201	Does Specialized Pollination Impede Plant Invasions?. International Journal of Plant Sciences, 2010, 171, 382-391.	1.3	45
202	Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 2010, 15, 684-692.	8.8	1,571
203	Introduction history and species characteristics partly explain naturalization success of North American woody species in Europe. Journal of Ecology, 2009, 97, 230-238.	4.0	90
204	Release from foliar and floral fungal pathogen species does not explain the geographic spread of naturalized North American plants in Europe. Journal of Ecology, 2009, 97, 385-392.	4.0	83
205	Macrophysiology: A Conceptual Reunification. American Naturalist, 2009, 174, 595-612.	2.1	298
206	Selection on floral traits through male fertility in a natural plant population. Evolutionary Ecology, 2008, 22, 39-54.	1.2	22
207	Adaptive rather than non-adaptive evolution of Mimulus guttatus in its invasive range. Basic and Applied Ecology, 2008, 9, 213-223.	2.7	60
208	Phylogenetically Independent Associations between Autonomous Selfâ€Fertilization and Plant Invasiveness. American Naturalist, 2008, 171, 195-201.	2.1	161
209	Support for the predictions of the pollinator-mediated stabilizing selection hypothesis. Journal of Plant Ecology, 2008, 1, 173-178.	2.3	19
210	Genetic rescue persists beyond first-generation outbreeding in small populations of a rare plant. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2357-2364.	2.6	84
211	The Role of Beetle Marks and Flower Colour on Visitation by Monkey Beetles (Hopliini) in the Greater Cape Floral Region, South Africa. Annals of Botany, 2007, 100, 1483-1489.	2.9	60
212	Invasion biology and conservation biology: time to join forces to explore the links between species traits and extinction risk and invasiveness. Progress in Physical Geography, 2007, 31, 447-450.	3.2	60
213	Reproductive assurance through selfâ€fertilization does not vary with population size in the alien invasive plant <i>Datura stramonium</i> . Oikos, 2007, 116, 1400-1412.	2.7	39
214	Selection on phenotypic plasticity of morphological traits in response to flooding and competition in the clonal shore plant <i>Ranunculus reptans</i> . Journal of Evolutionary Biology, 2007, 20, 2126-2137.	1.7	26
215	South African Iridaceae with rapid and profuse seedling emergence are more likely to become naturalized in other regions. Journal of Ecology, 2007, 95, 674-681.	4.0	62
216	Predicting naturalization of southern African Iridaceae in other regions. Journal of Applied Ecology, 2007, 44, 594-603.	4.0	51

#	Article	IF	CITATIONS
217	Progress in the detection of costs of phenotypic plasticity in plants. New Phytologist, 2007, 176, 727-730.	7.3	44
218	Effects of Selfâ€Compatibility on the Distribution Range of Invasive European Plants in North America. Conservation Biology, 2007, 21, 1537-1544.	4.7	92
219	Adaptive genetic differentiation in life-history traits between populations of Mimulus guttatus with annual and perennial life-cycles. Evolutionary Ecology, 2007, 21, 185-199.	1.2	60
220	Reproductive assurance through self-fertilization does not vary with population size in the alien invasive plant Datura stramonium. Oikos, 2007, 116, 1400-1412.	2.7	1
221	[CO2]- and density-dependent competition between grassland species. Global Change Biology, 2006, 12, 2175-2186.	9.5	12
222	Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytologist, 2005, 166, 49-60.	7.3	569
223	Three generations under low versus high neighborhood density affect the life history of a clonal plant through differential selection and genetic drift. Oikos, 2005, 108, 573-581.	2.7	11
224	Testing for ecological and genetic Allee effects in the invasive shrub <i>Senna didymobotrya</i> (Fabaceae). American Journal of Botany, 2005, 92, 1124-1130.	1.7	37
225	Estimating Heritabilities and Genetic Correlations with Marker-Based Methods: An Experimental Test in Mimulus guttatus. Journal of Heredity, 2005, 96, 368-375.	2.4	22
226	Predicting evolution of floral traits associated with mating system in a natural plant population. Journal of Evolutionary Biology, 2004, 17, 1389-1399.	1.7	56
227	Local adaptation of the clonal plant Ranunculus reptans to flooding along a small-scale gradient. Journal of Ecology, 2004, 92, 696-706.	4.0	95
228	Effects of herbivory simulated by clipping and jasmonic acid on Solidago canadensis. Basic and Applied Ecology, 2004, 5, 173-181.	2.7	41
229	Effects of habitat fragmentation on the fitness of two common wetland species, Carex davalliana and Succisa pratensis. Oecologia, 2003, 134, 350-359.	2.0	65
230	Effects of four generations of densityâ€dependent selection on life history traits and their plasticity in a clonally propagated plant. Journal of Evolutionary Biology, 2003, 16, 474-484.	1.7	32
231	Experimental life-history evolution: selection on growth form and its plasticity in a clonal plant. Journal of Evolutionary Biology, 2003, 17, 331-341.	1.7	37
232	NO EVIDENCE FOR AN EVOLUTIONARY INCREASED COMPETITIVE ABILITY IN AN INVASIVE PLANT. Ecology, 2003, 84, 2816-2823.	3.2	110
233	EXPERIMENTAL LIFE-HISTORY EVOLUTION: SELECTION ON THE ALLOCATION TO SEXUAL REPRODUCTION AND ITS PLASTICITY IN A CLONAL PLANT. Evolution; International Journal of Organic Evolution, 2002, 56, 2168-2177.	2.3	71
234	On the evolution of clonal plant life histories. , 2002, , 343-360.		1

On the evolution of clonal plant life histories. , 2002, , 343-360. 234

#	Article	IF	CITATIONS
235	EXPERIMENTAL LIFE-HISTORY EVOLUTION: SELECTION ON THE ALLOCATION TO SEXUAL REPRODUCTION AND ITS PLASTICITY IN A CLONAL PLANT. Evolution; International Journal of Organic Evolution, 2002, 56, 2168.	2.3	46
236	Experimental life-history evolution: selection on the allocation to sexual reproduction and its plasticity in a clonal plant. Evolution; International Journal of Organic Evolution, 2002, 56, 2168-77.	2.3	15
237	Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. Oikos, 2001, 94, 515-524.	2.7	110
238	On the evolution of clonal plant life histories. Evolutionary Ecology, 2001, 15, 565-582.	1.2	93
239	ADAPTIVE EVOLUTION OF PLASTIC FORAGING RESPONSES IN A CLONAL PLANT. Ecology, 2001, 82, 3309-3319.	3.2	168
240	Adaptive Evolution of Plastic Foraging Responses in a Clonal Plant. Ecology, 2001, 82, 3309.	3.2	8
241	RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). American Journal of Botany, 2000, 87, 1128-1137.	1.7	156
242	Clonal integration in Ranunculus reptans: by-product or adaptation?. Journal of Evolutionary Biology, 2000, 13, 237-248.	1.7	82
243	COSTS OF PLASTICITY IN FORAGING CHARACTERISTICS OF THE CLONAL PLANT RANUNCULUS REPTANS. Evolution; International Journal of Organic Evolution, 2000, 54, 1947-1955.	2.3	64
244	COSTS OF PLASTICITY IN FORAGING CHARACTERISTICS OF THE CLONAL PLANT RANUNCULUS REPTANS. Evolution; International Journal of Organic Evolution, 2000, 54, 1947.	2.3	56
245	Genetic Allee effects on performance, plasticity and developmental stability in a clonal plant. Ecology Letters, 2000, 3, 530-539.	6.4	23
246	Genetic Allee effects on performance, plasticity and developmental stability in a clonal plant. Ecology Letters, 2000, 3, 530-539.	6.4	64
247	Costs of plasticity in foraging characteristics of the clonal plant Ranunculus reptans. Evolution; International Journal of Organic Evolution, 2000, 54, 1947-55.	2.3	20
248	Quantifying the Effects of Reciprocal Assimilate and Water Translocation in a Clonal Plant by the Use of Steam-Girdling. Oikos, 1999, 85, 135.	2.7	62
249	Key impacts of climate engineering on biodiversity and ecosystems, with priorities for future research. Journal of Integrative Environmental Sciences, 0, , 1-26.	2.5	11
250	Horticultural plant use as a soâ€far neglected pillar of ex situ conservation. Conservation Letters, 0, , e12825.	5.7	7
251	Correlations between global and regional measures ofÂinvasiveness vary with region size. NeoBiota, 0, 16, 59-80.	1.0	9
252	EMAPi 2015: Highlighting links between science and management of alien plant invasions. NeoBiota, 0,	1.0	5

30, 1-3.

#	Article	IF	CITATIONS
253	Open minded and open access: introducing NeoBiota, a new peer-reviewed journal of biological invasions. NeoBiota, 0, 9, 1-12.	1.0	9
254	Open minded and open access: introducing NeoBiota, a new peer-reviewed journal of biological invasions. NeoBiota, 0, 9, 1-12.	1.0	1
255	Diversity of resident plant communities could weaken their allelopathic resistance against alien and native invaders. Biological Invasions, 0, , 1.	2.4	3
256	Leaf trait differences between 97 pairs of invasive and native plants across China: effects of identities of both the invasive and native species. NeoBiota, 0, 71, 1-22.	1.0	9
257	Introducing the Combined Atlas Framework for largeâ€scale webâ€based data visualization – The GloNAF Atlas of Plant Invasion. Methods in Ecology and Evolution, 0, , .	5.2	Ο
258	Competitive effects of plant invaders on and their responses to native species assemblages change over time. NeoBiota, 0, 73, 19-37.	1.0	4