Sheng Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/376507/publications.pdf

Version: 2024-02-01

661 papers 38,560 citations

92 h-index 161 g-index

706 all docs

706 docs citations

706 times ranked 37757 citing authors

#	Article	IF	CITATIONS
1	Metal–Organic Framework Derived Hybrid Co ₃ O ₄ -Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. Journal of the American Chemical Society, 2014, 136, 13925-13931.	6.6	1,744
2	Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10, 459-464.	15.6	1,372
3	Graphitic Carbon Nitride Nanosheet–Carbon Nanotube Threeâ€Dimensional Porous Composites as Highâ€Performance Oxygen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2014, 53, 7281-7285.	7.2	737
4	Phosphorusâ€Doped Graphitic Carbon Nitrides Grown Inâ€Situ on Carbonâ€Fiber Paper: Flexible and Reversible Oxygen Electrodes. Angewandte Chemie - International Edition, 2015, 54, 4646-4650.	7.2	722
5	Materials for the Recovery of Uranium from Seawater. Chemical Reviews, 2017, 117, 13935-14013.	23.0	639
6	Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy, 2016, 19, 373-381.	8.2	597
7	pH-Responsive polymers: synthesis, properties and applications. Soft Matter, 2008, 4, 435.	1.2	593
8	Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO ₂ . Journal of the American Chemical Society, 2017, 139, 14150-14165.	6.6	525
9	Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nature Catalysis, 2019, 2, 495-503.	16.1	464
10	Ionic liquids and derived materials for lithium and sodium batteries. Chemical Society Reviews, 2018, 47, 2020-2064.	18.7	452
11	Protonâ€Functionalized Twoâ€Dimensional Graphitic Carbon Nitride Nanosheet: An Excellent Metalâ€∤Labelâ€Free Biosensing Platform. Small, 2014, 10, 2382-2389.	5.2	441
12	Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nature Materials, 2019, 18, 746-751.	13.3	404
13	A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Research, 2008, 1, 229-234.	5.8	398
14	Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. ACS Nano, 2017, 11, 7293-7300.	7.3	357
15	Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nature Sustainability, 2021, 4, 233-241.	11.5	350
16	Mechanochemicalâ€Assisted Synthesis of Highâ€Entropy Metal Nitride via a Soft Urea Strategy. Advanced Materials, 2018, 30, e1707512.	11.1	325
17	Polydopamineâ€Inspired, Dual Heteroatomâ€Doped Carbon Nanotubes for Highly Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1602068.	10.2	319
18	Defectâ€Tailoring Mediated Electron–Hole Separation in Singleâ€Unitâ€Cell Bi ₃ O ₄ Br Nanosheets for Boosting Photocatalytic Hydrogen Evolution and Nitrogen Fixation. Advanced Materials, 2019, 31, e1807576.	11.1	311

#	Article	IF	Citations
19	High-entropy materials for catalysis: A new frontier. Science Advances, 2021, 7, .	4.7	294
20	Shape Control of Mn ₃ O ₄ Nanoparticles on Nitrogenâ€Doped Graphene for Enhanced Oxygen Reduction Activity. Advanced Functional Materials, 2014, 24, 2072-2078.	7.8	283
21	Self-supported electrocatalysts for advanced energy conversion processes. Materials Today, 2016, 19, 265-273.	8.3	268
22	Multiâ€Molar Absorption of CO ₂ by the Activation of Carboxylate Groups in Amino Acid Ionic Liquids. Angewandte Chemie - International Edition, 2016, 55, 7166-7170.	7.2	264
23	Hydrate morphology: Physical properties of sands with patchy hydrate saturation. Journal of Geophysical Research, 2012, 117, .	3.3	231
24	Dynamical Observation and Detailed Description of Catalysts under Strong Metal–Support Interaction. Nano Letters, 2016, 16, 4528-4534.	4.5	230
25	Mesoporous MnCo ₂ O ₄ with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. Journal of Materials Chemistry A, 2014, 2, 8676-8682.	5.2	227
26	A Sacrificial Coating Strategy Toward Enhancement of Metal–Support Interaction for Ultrastable Au Nanocatalysts. Journal of the American Chemical Society, 2016, 138, 16130-16139.	6.6	217
27	Rational Design of Bi Nanoparticles for Efficient Electrochemical CO ₂ Reduction: The Elucidation of Size and Surface Condition Effects. ACS Catalysis, 2016, 6, 6255-6264.	5.5	212
28	Electrode material–ionic liquid coupling for electrochemical energy storage. Nature Reviews Materials, 2020, 5, 787-808.	23.3	210
29	High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis. Journal of the American Chemical Society, 2020, 142, 4550-4554.	6.6	208
30	<i>In Situ</i> Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO ₂ Capture Performance. Journal of the American Chemical Society, 2016, 138, 11497-11500.	6.6	200
31	Hydrophobic Solid Acids and Their Catalytic Applications in Green and Sustainable Chemistry. ACS Catalysis, 2018, 8, 372-391.	5.5	200
32	Developing Functionalized Dendrimerâ€Like Silica Nanoparticles with Hierarchical Pores as Advanced Delivery Nanocarriers. Advanced Materials, 2013, 25, 5981-5985.	11.1	199
33	Synthesis of Porous Polymeric Catalysts for the Conversion of Carbon Dioxide. ACS Catalysis, 2018, 8, 9079-9102.	5.5	196
34	Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. Journal of Materials Chemistry A, 2018, 6, 11129-11133.	5.2	196
35	Reconstructed covalent organic frameworks. Nature, 2022, 604, 72-79.	13.7	190
36	Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with <i>in Situ</i> TEM and IR. Journal of the American Chemical Society, 2017, 139, 4551-4558.	6.6	186

#	Article	IF	CITATIONS
37	Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation. Journal of the American Chemical Society, 2017, 139, 8846-8854.	6.6	181
38	Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nature Communications, 2020, 11, 3908.	5.8	172
39	Uniformity Is Key in Defining Structure–Function Relationships for Atomically Dispersed Metal Catalysts: The Case of Pt/CeO ₂ . Journal of the American Chemical Society, 2020, 142, 169-184.	6.6	170
40	Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nature Communications, 2019, 10, 1611.	5 . 8	168
41	In Situ Coupling Strategy for the Preparation of FeCo Alloys and Co ₄ N Hybrid for Highly Efficient Oxygen Evolution. Advanced Materials, 2017, 29, 1704091.	11.1	165
42	Anisotropic and hierarchical SiC@SiO ₂ nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Science Advances, 2020, 6, eaay6689.	4.7	164
43	Solventâ€Free Selfâ€Assembly to the Synthesis of Nitrogenâ€Doped Ordered Mesoporous Polymers for Highly Selective Capture and Conversion of CO ₂ . Advanced Materials, 2017, 29, 1700445.	11.1	162
44	Mechanochemical synthesis of metal–organic frameworks. Polyhedron, 2019, 162, 59-64.	1.0	161
45	Holey Lamellar Highâ€Entropy Oxide as an Ultraâ€Highâ€Activity Heterogeneous Catalyst for Solventâ€free Aerobic Oxidation of Benzyl Alcohol. Angewandte Chemie - International Edition, 2020, 59, 19503-19509.	7.2	157
46	Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nature Catalysis, 2022, 5 , $99-108$.	16.1	155
47	Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries. Nature Communications, 2021, 12, 4564.	5.8	153
48	Boric acid-based ternary deep eutectic solvent for extraction and oxidative desulfurization of diesel fuel. Green Chemistry, 2019, 21, 3074-3080.	4.6	151
49	Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates. Nature Communications, 2014, 5, 3705.	5. 8	143
50	Mechanochemical Synthesis of High Entropy Oxide Materials under Ambient Conditions: Dispersion of Catalysts via Entropy Maximization., 2019, 1, 83-88.		143
51	New Class of Type III Porous Liquids: A Promising Platform for Rational Adjustment of Gas Sorption Behavior. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32-36.	4.0	142
52	Efficient CO ₂ Capture by a 3D Porous Polymer Derived from Tröger's Base. ACS Macro Letters, 2013, 2, 660-663.	2.3	138
53	Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity: Microbial consortia could make differences. Chemical Engineering Journal, 2018, 332, 647-657.	6.6	137
54	Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nature Communications, 2022, 13, 2193.	5.8	137

#	Article	IF	CITATIONS
55	Efficient removal of organic dye pollutants using covalent organic frameworks. AICHE Journal, 2017, 63, 3470-3478.	1.8	136
56	Transformation Strategy for Highly Crystalline Covalent Triazine Frameworks: From Staggered AB to Eclipsed AA Stacking. Journal of the American Chemical Society, 2020, 142, 6856-6860.	6.6	136
57	Isothermal Titration Calorimetry Studies of Binding Interactions between Polyethylene Glycol and Ionic Surfactants. Journal of Physical Chemistry B, 2001, 105, 10759-10763.	1.2	134
58	Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. Journal of Industrial and Engineering Chemistry, 2015, 21, 653-661.	2.9	133
59	Hierarchical Mesoporous/Macroporous Perovskite La _{0.5} Sr _{0.5} CoO _{3–<i>x</i>} Nanotubes: A Bifunctional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen Batteries. ACS Applied Materials &: Interfaces. 2015. 7. 22478-22486.	4.0	130
60	Entropyâ€Maximized Synthesis of Multimetallic Nanoparticle Catalysts via a Ultrasonicationâ€Assisted Wet Chemistry Method under Ambient Conditions. Advanced Materials Interfaces, 2019, 6, 1900015.	1.9	130
61	Surfactantâ€Assisted Stabilization of Au Colloids on Solids for Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2017, 56, 4494-4498.	7.2	129
62	Synergistic Effect of F ^{â€"} Doping and LiF Coating on Improving the High-Voltage Cycling Stability and Rate Capacity of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Diterfaces, 2018, 10, 34153-34162.	4.0	129
63	Direct Recycling of Spent NCM Cathodes through Ionothermal Lithiation. Advanced Energy Materials, 2020, 10, 2001204.	10.2	129
64	Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low oncentration CO ₂ by Ionic Liquids. Angewandte Chemie - International Edition, 2017, 56, 13293-13297.	7.2	128
65	The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. RSC Advances, 2013, 3, 15518.	1.7	127
66	Spaceâ€Confined Polymerization: Controlled Fabrication of Nitrogenâ€Doped Polymer and Carbon Microspheres with Refined Hierarchical Architectures. Advanced Materials, 2019, 31, e1807876.	11.1	127
67	Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability. ACS Catalysis, 2017, 7, 4372-4380.	5.5	124
68	Confined Ultrathin Pdâ€Ce Nanowires with Outstanding Moisture and SO ₂ Tolerance in Methane Combustion. Angewandte Chemie - International Edition, 2018, 57, 8953-8957.	7.2	124
69	Synergistic effect of dual Brønsted acidic deep eutectic solvents for oxidative desulfurization of diesel fuel. Chemical Engineering Journal, 2020, 394, 124831.	6.6	123
70	Catalysts in Coronas: A Surface Spatial Confinement Strategy for High-Performance Catalysts in Methane Dry Reforming. ACS Catalysis, 2019, 9, 9072-9080.	5.5	121
71	The aggregation behavior of O-carboxymethylchitosan in dilute aqueous solution. Colloids and Surfaces B: Biointerfaces, 2005, 43, 143-149.	2.5	119
72	Platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with promising performance for oxygen reduction reaction. Nature Communications, 2019, 10, 440.	5.8	115

#	Article	IF	CITATIONS
73	Deep Understanding of Strong Metal Interface Confinement: A Journey of Pd/FeO _{<i>x</i>} Catalysts. ACS Catalysis, 2020, 10, 8950-8959.	5.5	113
74	Origin of the unusually strong and selective binding of vanadium by polyamidoximes in seawater. Nature Communications, 2017, 8, 1560.	5.8	110
75	Ion-Gated Gas Separation through Porous Graphene. Nano Letters, 2017, 17, 1802-1807.	4.5	109
76	Entropyâ€Driven Mechanochemical Synthesis of Polymetallic Zeolitic Imidazolate Frameworks for CO ₂ Fixation. Angewandte Chemie - International Edition, 2019, 58, 5018-5022.	7.2	107
77	Rapid gas-assisted exfoliation promises V2O5 nanosheets for high performance lithium-sulfur batteries. Nano Energy, 2020, 67, 104253.	8.2	106
78	Silica-Supported Au–CuO _{<i>x</i>} Hybrid Nanocrystals as Active and Selective Catalysts for the Formation of Acetaldehyde from the Oxidation of Ethanol. ACS Catalysis, 2012, 2, 2537-2546.	5 . 5	105
79	Polydopamine–graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. Nanoscale, 2015, 7, 12598-12605.	2.8	104
80	Roomâ€Temperature Synthesis of Highâ€Entropy Perovskite Oxide Nanoparticle Catalysts through Ultrasonicationâ€Based Method. ChemSusChem, 2020, 13, 111-115.	3.6	104
81	A Novel Electrolyte Salt Additive for Lithiumâ€lon Batteries with Voltages Greater than 4.7 V. Advanced Energy Materials, 2017, 7, 1601397.	10.2	103
82	Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery. Chemistry of Materials, 2011, 23, 4420-4427.	3.2	102
83	Nitrogenâ€Doped CN <i></i> /CNTs Heteroelectrocatalysts for Highly Efficient Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2017, 7, 1602276.	10.2	102
84	In situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles. Nature Communications, 2017, 8, 204.	5. 8	102
85	Isothermal Titration Calorimetric Studies on the Temperature Dependence of Binding Interactions between Poly(propylene glycol)s and Sodium Dodecyl Sulfate. Langmuir, 2004, 20, 2177-2183.	1.6	101
86	Transforming Porous Organic Cages into Porous Ionic Liquids via a Supramolecular Complexation Strategy. Angewandte Chemie - International Edition, 2020, 59, 2268-2272.	7.2	101
87	Novel pH-Responsive Amphiphilic Diblock Copolymers with Reversible Micellization Properties. Langmuir, 2003, 19, 5175-5177.	1.6	100
88	Sizeâ€Dependent Nickelâ€Based Electrocatalysts for Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 18572-18577.	7.2	100
89	Mesoporous Carbon Nanospheres as a Multifunctional Carrier for Cancer Theranostics. Theranostics, 2018, 8, 663-675.	4.6	99
90	"Brickâ€andâ€Mortar―Selfâ€Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites. Advanced Functional Materials, 2011, 21, 2208-2215.	7.8	98

#	Article	IF	Citations
91	Aggregation Behavior of C60-End-Capped Poly(ethylene oxide)s. Langmuir, 2003, 19, 4798-4803.	1.6	97
92	Significant Improvement of Catalytic Performance for Chlorinated Volatile Organic Compound Oxidation over RuO <i></i> > Supported on Acid-Etched Co ₃ O ₄ . Environmental Science & Description of the Support of Suppo	4.6	97
93	The water retention curve and relative permeability for gas production from hydrateâ€bearing sediments: poreâ€network model simulation. Geochemistry, Geophysics, Geosystems, 2016, 17, 3099-3110.	1.0	96
94	Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes. Journal of Membrane Science, 2016, 503, 25-30.	4.1	95
95	Confining Noble Metal (Pd, Au, Pt) Nanoparticles in Surfactant Ionic Liquids: Active Non-Mercury Catalysts for Hydrochlorination of Acetylene. ACS Catalysis, 2015, 5, 6724-6731.	5 . 5	94
96	Lanthanide-Containing Polymer Microspheres by Multiple-Stage Dispersion Polymerization for Highly Multiplexed Bioassays. Journal of the American Chemical Society, 2009, 131, 15276-15283.	6.6	92
97	Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction. Physical Chemistry Chemical Physics, 2011, 13, 2571.	1.3	92
98	Efficient Absorption of SO ₂ by EmimCl-EG Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2017, 5, 6382-6386.	3.2	92
99	Two-in-one: construction of hydroxyl and imidazolium-bifunctionalized ionic networks in one-pot toward synergistic catalytic CO ₂ fixation. Chemical Communications, 2020, 56, 3309-3312.	2.2	92
100	Chemical Approaches to Carbonâ€Based Metalâ€Free Catalysts. Advanced Materials, 2019, 31, e1804863.	11.1	90
101	Lowâ€Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition. Angewandte Chemie - International Edition, 2015, 54, 13263-13267.	7.2	87
102	Mechanochemical synthesis of pillar[5] quinone derived multi-microporous organic polymers for radioactive organic iodide capture and storage. Nature Communications, 2020, 11, 1086.	5.8	87
103	Constructing Hierarchical Interfaces: TiO ₂ -Supported PtFe–FeO _{<i>x</i>} Nanowires for Room Temperature CO Oxidation. Journal of the American Chemical Society, 2015, 137, 10156-10159.	6.6	86
104	Nearâ€Infrared Active Lead Chalcogenide Quantum Dots: Preparation, Postâ€Synthesis Ligand Exchange, and Applications in Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 5202-5224.	7.2	86
105	Isothermal Titration Calorimetric Studies on Interactions of Ionic Surfactant and Poly(oxypropylene)â^Poly(oxyethylene)â^Poly(oxypropylene) Triblock Copolymers in Aqueous Solutions. Macromolecules, 2001, 34, 7049-7055.	2.2	85
106	Smart Pd Catalyst with Improved Thermal Stability Supported on High-Surface-Area LaFeO ₃ Prepared by Atomic Layer Deposition. Journal of the American Chemical Society, 2018, 140, 4841-4848.	6.6	85
107	Photoinduced Strong Metal–Support Interaction for Enhanced Catalysis. Journal of the American Chemical Society, 2021, 143, 8521-8526.	6.6	85
108	Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release. Acta Biomaterialia, 2009, 5, 1489-1498.	4.1	84

#	Article	IF	Citations
109	Siderophore-inspired chelator hijacks uranium from aqueous medium. Nature Communications, 2019, 10, 819.	5.8	84
110	Harnessing strong metal–support interactions via a reverse route. Nature Communications, 2020, 11, 3042.	5.8	84
111	Porous Carbon Supports: Recent Advances with Various Morphologies and Compositions. ChemCatChem, 2015, 7, 2788-2805.	1.8	83
112	Electrochemically Driven Transformation of Amorphous Carbons to Crystalline Graphite Nanoflakes: A Facile and Mild Graphitization Method. Angewandte Chemie - International Edition, 2017, 56, 1751-1755.	7.2	83
113	Highly Efficient Carbon Monoxide Capture by Carbanionâ€Functionalized Ionic Liquids through Câ€Site Interactions. Angewandte Chemie - International Edition, 2017, 56, 6843-6847.	7.2	83
114	Porous liquid zeolites: hydrogen bonding-stabilized H-ZSM-5 in branched ionic liquids. Nanoscale, 2019, 11, 1515-1519.	2.8	82
115	Boosting electrosynthesis of ammonia on surface-engineered MXene Ti3C2. Nano Energy, 2020, 72, 104681.	8.2	82
116	Highly Ethyleneâ€Selective Electrocatalytic CO ₂ Reduction Enabled by Isolated Cuâ^'S Motifs in Metalâ€"Organic Framework Based Precatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	81
117	Comparative UVâ^'Vis Studies of Uranyl Chloride Complex in Two Basic Ambient-Temperature Melt Systems:  The Observation of Spectral and Thermodynamic Variations Induced via Hydrogen Bonding. Inorganic Chemistry, 1997, 36, 4900-4902.	1.9	79
118	Mechanochemical synthesis of porous organic materials. Journal of Materials Chemistry A, 2017, 5, 16118-16127.	5.2	79
119	Solventâ€Induced Selfâ€Assembly Strategy to Synthesize Wellâ€Defined Hierarchically Porous Polymers. Advanced Materials, 2019, 31, e1806254.	11.1	79
120	Solvothermal synthesis of hierarchically nanoporous organic polymers with tunable nitrogen functionality for highly selective capture of CO ₂ . Journal of Materials Chemistry A, 2016, 4, 13063-13070.	5.2	78
121	Enhanced Oxygen Activation Achieved by Robust Single Chromium Atom-Derived Catalysts in Aerobic Oxidative Desulfurization. ACS Catalysis, 2022, 12, 8623-8631.	5 . 5	78
122	Twoâ€Dimensional Materials as Prospective Scaffolds for Mixedâ€Matrix Membraneâ€Based CO ₂ Separation. ChemSusChem, 2017, 10, 3304-3316.	3.6	77
123	Multistage Triaxial Tests on Laboratoryâ€Formed Methane Hydrateâ€Bearing Sediments. Journal of Geophysical Research: Solid Earth, 2018, 123, 3347-3357.	1.4	77
124	SO ₂ absorption in EmimCl–TEG deep eutectic solvents. Physical Chemistry Chemical Physics, 2018, 20, 15168-15173.	1.3	76
125	Boron Supercapacitors. ACS Energy Letters, 2016, 1, 1241-1246.	8.8	7 5
126	Exploring <i>N</i> -Imidazolyl- <i>O</i> -Carboxymethyl Chitosan for High Performance Gene Delivery. Biomacromolecules, 2012, 13, 146-153.	2.6	74

#	Article	IF	Citations
127	Prediction of Carbon Dioxide Adsorption via Deep Learning. Angewandte Chemie - International Edition, 2019, 58, 259-263.	7.2	74
128	Insights from machine learning of carbon electrodes for electric double layer capacitors. Carbon, 2020, 157, 147-152.	5.4	74
129	A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy. Pharmacological Research, 2011, 64, 410-419.	3.1	73
130	Surpassing Robeson Upper Limit for CO2/N2 Separation with Fluorinated Carbon Molecular Sieve Membranes. CheM, 2020, 6, 631-645.	5.8	73
131	Hollow mesoporous silica nanoparticles: A peculiar structure for thin film nanocomposite membranes. Journal of Membrane Science, 2016, 519, 1-10.	4.1	72
132	Enhanced Cycling Performance for Lithium–Sulfur Batteries by a Laminated 2D gâ€C ₃ N ₄ /Graphene Cathode Interlayer. ChemSusChem, 2019, 12, 213-223.	3.6	72
133	An ultrastable heterostructured oxide catalyst based on high-entropy materials: A new strategy toward catalyst stabilization via synergistic interfacial interaction. Applied Catalysis B: Environmental, 2020, 276, 119155.	10.8	72
134	Revealing Surface Elemental Composition and Dynamic Processes Involved in Facet-Dependent Oxidation of Pt ₃ Co Nanoparticles via <i>in Situ</i> Transmission Electron Microscopy. Nano Letters, 2017, 17, 4683-4688.	4.5	71
135	Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles as Oil Lubricant Additives: Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and Lubrication Property. ACS Applied Materials & Amp; Interfaces, 2017, 9, 25038-25048.	4.0	70
136	lonic Liquidâ€Directed Nanoporous TiNb ₂ O ₇ Anodes with Superior Performance for Fastâ€Rechargeable Lithiumâ€lon Batteries. Small, 2020, 16, e2001884.	5.2	69
137	Tailoring Polymer Colloids Derived Porous Carbon Spheres Based on Specific Chemical Reactions. Advanced Materials, 2020, 32, e2002475.	11.1	69
138	Atomically Dispersed Highâ€Density Al–N ₄ Sites in Porous Carbon for Efficient Photodriven CO ₂ Cycloaddition. Advanced Materials, 2021, 33, e2103186.	11.1	69
139	Aggregation behavior of two-arm fullerene-containing poly(ethylene oxide). Polymer, 2003, 44, 2529-2536.	1.8	68
140	Windowed Carbon Nanotubes for Efficient CO ₂ Removal from Natural Gas. Journal of Physical Chemistry Letters, 2012, 3, 3343-3347.	2.1	68
141	Lithiophilic V2O5 nanobelt arrays decorated 3D framework hosts for highly stable composite lithium metal anodes. Chemical Engineering Journal, 2020, 384, 123313.	6.6	68
142	Solventâ€Free Selfâ€Assembly for Scalable Preparation of Highly Crystalline Mesoporous Metal Oxides. Angewandte Chemie - International Edition, 2020, 59, 11053-11060.	7.2	68
143	One-step synthesis of nitrogen-doped graphene-like meso-macroporous carbons as highly efficient and selective adsorbents for CO ₂ capture. Journal of Materials Chemistry A, 2016, 4, 14567-14571.	5.2	67
144	Aminopolymer functionalization of boron nitride nanosheets for highly efficient capture of carbon dioxide. Journal of Materials Chemistry A, 2017, 5, 16241-16248.	5.2	67

#	Article	IF	CITATIONS
145	Polypyrrole-Based Nitrogen-Doped Carbon Replicas of SBA-15 and SBA-16 Containing Magnetic Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 13126-13133.	1.5	66
146	Distinctive Nanoscale Organization of Dicationic versus Monocationic Ionic Liquids. Journal of Physical Chemistry C, 2013, 117, 18251-18257.	1.5	66
147	Mechanochemical Nonhydrolytic Sol–Gel-Strategy for the Production of Mesoporous Multimetallic Oxides. Chemistry of Materials, 2019, 31, 5529-5536.	3.2	65
148	Total Oxidation of Light Alkane over Phosphate-Modified Pt/CeO ₂ Catalysts. Environmental Science & Environmental Sc	4.6	65
149	Engineering the Interlayer Spacing by Preâ€Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid. Advanced Functional Materials, 2021, 31, 2104007.	7.8	64
150	Electron-Beam-Induced Elastic–Plastic Transition in Si Nanowires. Nano Letters, 2012, 12, 2379-2385.	4.5	63
151	Effects of amine loading on the properties of cellulose nanofibrils aerogel and its CO2 capturing performance. Carbohydrate Polymers, 2018, 194, 252-259.	5.1	63
152	Label-free dendrimer-like silica nanohybrids for traceable and controlled gene delivery. Biomaterials, 2014, 35, 5580-5590.	5.7	62
153	Functionalized thermo-responsive microgels for high performance forward osmosis desalination. Water Research, 2015, 70, 385-393.	5.3	62
154	Benzyl-Functionalized Room Temperature Ionic Liquids for CO ₂ /N ₂ Separation. Industrial & Engineering Chemistry Research, 2011, 50, 14061-14069.	1.8	61
155	Microengineered 3D cellâ€laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnology and Bioengineering, 2017, 114, 217-231.	1.7	61
156	Organic Cathode Materials for Lithiumâ€lon Batteries: Past, Present, and Future. Advanced Energy and Sustainability Research, 2021, 2, 2000044.	2.8	61
157	Biomimetic three-dimensional microenvironment for controlling stem cell fate. Interface Focus, 2011, 1, 792-803.	1.5	60
158	Elastic Properties of GaN Nanowires: Revealing the Influence of Planar Defects on Young's Modulus at Nanoscale. Nano Letters, 2015, 15, 8-15.	4.5	60
159	Tailoring Nâ€√erminated Defective Edges of Porous Boron Nitride for Enhanced Aerobic Catalysis. Small, 2017, 13, 1701857.	5.2	60
160	Intracellular Microenvironmentâ€Responsive Dendrimer‣ike Mesoporous Nanohybrids for Traceable, Effective, and Safe Gene Delivery. Advanced Functional Materials, 2014, 24, 7627-7637.	7.8	59
161	Open and Hierarchical Carbon Framework with Ultralarge Pore Volume for Efficient Capture of Carbon Dioxide. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36961-36968.	4.0	59
162	Understanding functionalized silica nanoparticles incorporation in thin film composite membranes: Interactions and desalination performance. Journal of Membrane Science, 2017, 521, 53-64.	4.1	58

#	Article	IF	Citations
163	Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithiumâ€lon Batteries. ChemSusChem, 2018, 11, 763-772.	3.6	58
164	Investigating the Nature of the Active Sites for the CO ₂ Reduction Reaction on Carbon-Based Electrocatalysts. ACS Catalysis, 2019, 9, 7668-7678.	5.5	58
165	Self-Assembly Behavior of a Stimuli-Responsive Water-Soluble [60]Fullerene-Containing Polymer. Langmuir, 2004, 20, 8569-8575.	1.6	57
166	Active and stable Pt-Ceria nanowires@silica shell catalyst: Design, formation mechanism and total oxidation of CO and toluene. Applied Catalysis B: Environmental, 2019, 256, 117807.	10.8	57
167	Boosting High-Rate Zinc-Storage Performance by the Rational Design of Mn2O3 Nanoporous Architecture Cathode. Nano-Micro Letters, 2020, 12, 14.	14.4	57
168	Porous Liquids: The Next Frontier. CheM, 2020, 6, 3263-3287.	5.8	57
169	Insights into the Enhanced Cycle and Rate Performances of the Fâ€Substituted P2â€Type Oxide Cathodes for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000135.	10.2	57
170	Microstructure of Dilute Hydrophobically Modified Alkali Soluble Emulsion in Aqueous Salt Solution. Macromolecules, 2000, 33, 404-411.	2.2	56
171	Electrochemically Driven Transformation of Amorphous Carbons to Crystalline Graphite Nanoflakes: A Facile and Mild Graphitization Method. Angewandte Chemie, 2017, 129, 1777-1781.	1.6	56
172	Electrostaticâ€Assisted Liquefaction of Porous Carbons. Angewandte Chemie - International Edition, 2017, 56, 14958-14962.	7.2	56
173	Integrated Surface Functionalization of Li-Rich Cathode Materials for Li-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41802-41813.	4.0	56
174	Tetrahydrofuran Hydrate in Clayey Sedimentsâ€"Laboratory Formation, Morphology, and Wave Characterization. Journal of Geophysical Research: Solid Earth, 2019, 124, 3307-3319.	1.4	56
175	Funtionalized Solâ^'Gels for Selective Copper(II) Separation. Environmental Science & Emp; Technology, 2000, 34, 2209-2214.	4.6	55
176	Self-Assembly of Alkali-Soluble [60] Fullerene Containing Poly (methacrylic acid) in Aqueous Solution. Macromolecules, 2005, 38, 933-939.	2.2	55
177	Rational design and synthesis of a porous, task-specific polycarbazole for efficient CO ₂ capture. Chemical Communications, 2016, 52, 4454-4457.	2.2	55
178	Polyethylenimine modified silica nanoparticles enhance interfacial interactions and desalination performance of thin film nanocomposite membranes. Journal of Membrane Science, 2017, 541, 19-28.	4.1	55
179	Enabling chloride salts for thermal energy storage: implications of salt purity. RSC Advances, 2019, 9, 25602-25608.	1.7	55
180	Construction of a Nanoporous Highly Crystalline Hexagonal Boron Nitride from an Amorphous Precursor for Catalytic Dehydrogenation. Angewandte Chemie - International Edition, 2019, 58, 10626-10630.	7.2	55

#	Article	IF	Citations
181	Highly Stretchable, Crack-Insensitive and Compressible Ceramic Aerogel. ACS Nano, 2021, 15, 18354-18362.	7.3	55
182	Isothermal titration calorimetric studies of alkyl phenol ethoxylate surfactants in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 229, 157-168.	2.3	54
183	γâ€PGAâ€Coated Mesoporous Silica Nanoparticles with Covalently Attached Prodrugs for Enhanced Cellular Uptake and Intracellular GSHâ€Responsive Release. Advanced Healthcare Materials, 2015, 4, 771-781.	3.9	54
184	Facile Synthesis of Highly Porous Metal Oxides by Mechanochemical Nanocasting. Chemistry of Materials, 2018, 30, 2924-2929.	3.2	54
185	Synthesis of Ionic Ultramicroporous Polymers for Selective Separation of Acetylene from Ethylene. Advanced Materials, 2020, 32, e1907601.	11.1	54
186	Room temperature synthesis of high-entropy Prussian blue analogues. Nano Energy, 2021, 79, 105464.	8.2	54
187	Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 Reduction. Applied Catalysis B: Environmental, 2021, 298, 120581.	10.8	54
188	Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes. Nature Communications, 2022, 13, 295.	5.8	54
189	N-cyclic quaternary ammonium-functionalized anion exchange membrane with improved alkaline stability enabled by aryl-ether free polymer backbones for alkaline fuel cells. Journal of Membrane Science, 2019, 587, 117135.	4.1	53
190	Carbon Coated Porous Titanium Niobium Oxides as Anode Materials of Lithium-Ion Batteries for Extreme Fast Charge Applications. ACS Applied Energy Materials, 2020, 3, 5657-5665.	2.5	53
191	Preparation of Well-Dispersed Superparamagnetic Iron Oxide Nanoparticles in Aqueous Solution with Biocompatible <i>N</i> -Succinyl- <i>O</i> -carboxymethylchitosan. Journal of Physical Chemistry C, 2008, 112, 5432-5438.	1.5	52
192	Poly(<i>N</i> â€isopropylacrylamide) hydrogel/chitosan scaffold hybrid for threeâ€dimensional stem cell culture and cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2016, 104, 2764-2774.	2.1	52
193	Electrochemical Graphitization: An Efficient Conversion of Amorphous Carbons to Nanostructured Graphites. Chemistry - A European Journal, 2017, 23, 11455-11459.	1.7	52
194	Interface Engineering of Earth-Abundant Transition Metals Using Boron Nitride for Selective Electroreduction of CO ₂ . ACS Applied Materials & Samp; Interfaces, 2018, 10, 6694-6700.	4.0	52
195	Defect Engineering in Polymeric Cobalt Phthalocyanine Networks for Enhanced Electrochemical CO ₂ Reduction. ChemElectroChem, 2018, 5, 2717-2721.	1.7	52
196	Self-Assembly of Stimuli-Responsive Water-Soluble [60]Fullerene End-Capped Ampholytic Block Copolymer. Journal of Physical Chemistry B, 2005, 109, 4431-4438.	1.2	51
197	Nitrogenâ€Enriched Carbons from Alkali Salts with High Coulombic Efficiency for Energy Storage Applications. Advanced Energy Materials, 2013, 3, 708-712.	10.2	51
198	<i>In Situ</i> Observation of Rh-CaTiO ₃ Catalysts during Reduction and Oxidation Treatments by Transmission Electron Microscopy. ACS Catalysis, 2017, 7, 1579-1582.	5.5	51

#	Article	IF	CITATIONS
199	Improved Lubricating Performance by Combining Oil-Soluble Hairy Silica Nanoparticles and an Ionic Liquid as an Additive for a Synthetic Base Oil. ACS Applied Materials & Diterfaces, 2018, 10, 15129-15139.	4.0	51
200	Selective methane electrosynthesis enabled by a hydrophobic carbon coated copper core–shell architecture. Energy and Environmental Science, 2022, 15, 234-243.	15.6	51
201	Light Scattering of Dilute Hydrophobically Modified Alkali-Soluble Emulsion Solutions:Â Effects of Hydrophobicity and Spacer Length of Macromonomer. Macromolecules, 2000, 33, 7021-7028.	2.2	50
202	Origin of Active Oxygen in a Ternary CuO _{<i>x</i>} /Co ₃ O ₄ â€"CeO ₂ Catalyst for CO Oxidation. Journal of Physical Chemistry C, 2014, 118, 27870-27877.	1.5	50
203	Design and Synthesis of Highly-Dispersed WO ₃ Catalyst with Highly Effective NH ₃ –SCR Activity for NO _{<i>x</i>} Abatement. ACS Catalysis, 2019, 9, 11557-11562.	5.5	50
204	Achieving an exceptionally high loading of isolated cobalt single atoms on a porous carbon matrix for efficient visible-light-driven photocatalytic hydrogen production. Chemical Science, 2019, 10, 2585-2591.	3.7	50
205	Developing a chitosan supported imidazole Schiff-base for high-efficiency gene delivery. Polymer Chemistry, 2013, 4, 840-850.	1.9	49
206	Effect of Surface Structure of TiO ₂ Nanoparticles on CO ₂ Adsorption and SO ₂ Resistance. ACS Sustainable Chemistry and Engineering, 2017, 5, 9295-9306.	3.2	49
207	Elucidating Ionic Correlations Beyond Simple Charge Alternation in Molten MgCl ₂ –KCl Mixtures. Journal of Physical Chemistry Letters, 2019, 10, 7603-7610.	2.1	49
208	Interfacial-confined coordination to single-atom nanotherapeutics. Nature Communications, 2022, 13, 91.	5.8	49
209	Nitrogen-Doped Mesoporous Carbon for Carbon Capture – A Molecular Simulation Study. Journal of Physical Chemistry C, 2012, 116, 7106-7110.	1.5	48
210	Molecular Dynamics Simulation of Anion Effect on Solubility, Diffusivity, and Permeability of Carbon Dioxide in Ionic Liquids. Industrial & Engineering Chemistry Research, 2014, 53, 10485-10490.	1.8	48
211	Electrocatalytic Activity of a 2D Phosphoreneâ€Based Heteroelectrocatalyst for Photoelectrochemical Cells. Angewandte Chemie - International Edition, 2018, 57, 2644-2647.	7.2	48
212	Supramolecular Selfâ€Assembled Multiâ€Electronâ€Acceptor Organic Molecule as Highâ€Performance Cathode Material for Liâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2100330.	10.2	48
213	Structure–Activity Relationships of Copper- and Potassium-Modified Iron Oxide Catalysts during Reverse Water–Gas Shift Reaction. ACS Catalysis, 2021, 11, 12609-12619.	5.5	48
214	An efficient low-temperature route to nitrogen-doping and activation of mesoporous carbons for CO ₂ capture. Chemical Communications, 2015, 51, 17261-17264.	2.2	47
215	Influence of fluorination on CO ₂ adsorption in materials derived from fluorinated covalent triazine framework precursors. Journal of Materials Chemistry A, 2019, 7, 17277-17282.	5.2	47
216	Bis(trimethylsilyl) 2-fluoromalonate derivatives as electrolyte additives for high voltage lithium ion batteries. Journal of Power Sources, 2019, 412, 527-535.	4.0	47

#	Article	IF	Citations
217	Formation and development of salt crusts on soil surfaces. Acta Geotechnica, 2016, 11, 1103-1109.	2.9	46
218	Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization from Chlorinated Polypropylene and Polyethylene Trunk Fibers. Industrial & Engineering Chemistry Research, 2016, 55, 4130-4138.	1.8	46
219	Fullerene Containing Polymers: A Review on Their Synthesis and Supramolecular Behavior in Solution. Journal of Nanoscience and Nanotechnology, 2007, 7, 1176-1196.	0.9	45
220	Incorporating Rich Mesoporosity into a Ceria-Based Catalyst via Mechanochemistry. Chemistry of Materials, 2017, 29, 7323-7329.	3.2	45
221	Prediction of Carbon Dioxide Adsorption via Deep Learning. Angewandte Chemie, 2019, 131, 265-269.	1.6	45
222	Controlled Gas Exfoliation of Boron Nitride into Few‣ayered Nanosheets. Angewandte Chemie, 2016, 128, 10924-10928.	1.6	44
223	Accelerating Membraneâ€based CO ₂ Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling. Angewandte Chemie - International Edition, 2018, 57, 2816-2821.	7.2	44
224	All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries. Journal of Materials Chemistry A, 2018, 6, 14847-14855.	5.2	44
225	Operando Highâ€Valence Crâ€Modified NiFe Hydroxides for Water Oxidation. Small, 2022, 18, e2200303.	5.2	44
226	Binding Characteristics of Hydrophobic Ethoxylated Urethane (HEUR) and an Anionic Surfactant:Â Microcalorimetry and Laser Light Scattering Studies. Journal of Physical Chemistry B, 2001, 105, 10189-10196.	1.2	43
227	Metal-containing polystyrene beads as standards for mass cytometry. Journal of Analytical Atomic Spectrometry, 2010, 25, 260.	1.6	43
228	A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells. RSC Advances, 2014, 4, 63951-63961.	1.7	43
229	Synthesis and Characterization of Lithium Bis(fluoromalonato)borate for Lithiumâ€ion Battery Applications. Advanced Energy Materials, 2014, 4, 1301368.	10.2	43
230	Thickness―and Particleâ€Sizeâ€Dependent Electrochemical Reduction of Carbon Dioxide on Thinâ€Layer Porous Silver Electrodes. ChemSusChem, 2016, 9, 428-432.	3.6	43
231	Engineering Permanent Porosity into Liquids. Advanced Materials, 2021, 33, e2005745.	11.1	43
232	Molecularly Dispersed Cobalt Phthalocyanine Mediates Selective and Durable CO ₂ Reduction in a Membrane Flow Cell. Advanced Functional Materials, 2022, 32, 2107301.	7.8	43
233	Synthesis of Highly Active and Stable Spinelâ€Type Oxygen Evolution Electrocatalysts by a Rapid Inorganic Selfâ€Templating Method. Chemistry - A European Journal, 2014, 20, 12669-12676.	1.7	42
234	Elastic Properties of GaN Nanowires: Revealing the influence of planar defects on Young's modulus at nanoscale. Microscopy and Microanalysis, 2015, 21, 1915-1916.	0.2	42

#	Article	IF	Citations
235	Solid-State Synthesis of Conjugated Nanoporous Polycarbazoles. ACS Macro Letters, 2017, 6, 1056-1059.	2.3	42
236	Sinter-Resistant Nanoparticle Catalysts Achieved by 2D Boron Nitride-Based Strong Metal–Support Interactions: A New Twist on an Old Story. ACS Central Science, 2020, 6, 1617-1627.	5 . 3	42
237	Sustainable development and energy geotechnology — Potential roles for geotechnical engineering. KSCE Journal of Civil Engineering, 2011, 15, 611-621.	0.9	41
238	Stability and Core-Level Signature of Nitrogen Dopants in Carbonaceous Materials. Chemistry of Materials, 2015, 27, 5775-5781.	3.2	41
239	Thermoresponsive Acidic Microgels as Functional Draw Agents for Forward Osmosis Desalination. Environmental Science & Environm	4.6	41
240	Pyrolysis of conjugated nanoporous polycarbazoles to mesoporous N-doped carbon nanotubes as efficient electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 4507-4512.	5.2	41
241	Persistent Electrochemical Performance in Epitaxial VO ₂ (B). Nano Letters, 2017, 17, 2229-2233.	4.5	41
242	Promotion of Ternary Pt–Sn–Ag Catalysts toward Ethanol Oxidation Reaction: Revealing Electronic and Structural Effects of Additive Metals. ACS Energy Letters, 2018, 3, 2550-2557.	8.8	41
243	Combining <i>In-Situ</i> Transmission Electron Microscopy and Infrared Spectroscopy for Understanding Dynamic and Atomic-Scale Features of Supported Metal Catalysts. Journal of Physical Chemistry C, 2018, 122, 25143-25157.	1.5	41
244	Stable Pd–Cu Hydride Catalyst for Efficient Hydrogen Evolution. Nano Letters, 2022, 22, 1391-1397.	4.5	41
245	Synthesis and Aggregation Behavior of Amphiphilic Block Copolymers in Aqueous Solution:Â Di- and Triblock Copolymers of Poly(ethylene oxide) and Poly(ethyl acrylate). Langmuir, 2004, 20, 1597-1604.	1.6	40
246	Synthesis of Naphthalimidedioxime Ligand-Containing Fibers for Uranium Adsorption from Seawater. Industrial & Discourse Engineering Chemistry Research, 2016, 55, 4161-4169.	1.8	40
247	Toward the Design of a Hierarchical Perovskite Support: Ultra-Sintering-Resistant Gold Nanocatalysts for CO Oxidation. ACS Catalysis, 2017, 7, 3388-3393.	5.5	40
248	Confinement of subnanometric PdCo bimetallic oxide clusters in zeolites for methane complete oxidation. Chemical Engineering Journal, 2021, 418, 129398.	6.6	40
249	lodine-Doping-Induced Electronic Structure Tuning of Atomic Cobalt for Enhanced Hydrogen Evolution Electrocatalysis. ACS Nano, 2021, 15, 18125-18134.	7.3	40
250	Preparation of C70-Doped Solid Silica Gel via Sol-Gel Process. Journal of the American Ceramic Society, 1992, 75, 2865-2866.	1.9	39
251	Thermo- and photo-responsive polymeric systems. Soft Matter, 2009, , .	1.2	39
252	Interaction of Gold Clusters with a Hydroxylated Surface. Journal of Physical Chemistry Letters, 2011, 2, 1211-1215.	2.1	39

#	Article	IF	CITATIONS
253	Structures and Energetics of Pt Clusters on TiO ₂ : Interplay between Metal–Metal Bonds and Metal–Oxygen Bonds. Journal of Physical Chemistry C, 2012, 116, 21880-21885.	1.5	39
254	Water retention curve for hydrateâ€bearing sediments. Geophysical Research Letters, 2013, 40, 5637-5641.	1.5	39
255	Strainâ€Based In Situ Study of Anion and Cation Insertion into Porous Carbon Electrodes with Different Pore Sizes. Advanced Energy Materials, 2014, 4, 1300683.	10.2	39
256	TiN-coated micron-sized tantalum-doped Li4Ti5O12 with enhanced anodic performance for lithium-ion batteries. Journal of Alloys and Compounds, 2016, 687, 746-753.	2.8	39
257	Few‣ayer Boron Nitride with Engineered Nitrogen Vacancies for Promoting Conversion of Polysulfide as a Cathode Matrix for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, 8112-8117.	1.7	39
258	First-Principles Molecular Dynamics Simulations of UCl _{<i>n</i>} â€"NaCl (<i>n</i> Applied Energy Materials, 2019, 2, 2122-2128.	2.5	39
259	Confinement of Ultrasmall Cobalt Oxide Clusters within Silicalite-1 Crystals for Efficient Conversion of Fructose into Methyl Lactate. ACS Catalysis, 2019, 9, 1923-1930.	5.5	39
260	Solvent-free and mechanochemical synthesis of N-doped mesoporous carbon from tannin and related gas sorption property. Chemical Engineering Journal, 2020, 381, 122579.	6.6	39
261	Broadening the Gas Separation Utility of Monolayer Nanoporous Graphene Membranes by an Ionic Liquid Gating. Nano Letters, 2020, 20, 7995-8000.	4.5	39
262	Exsolution–Dissolution of Supported Metals on High-Entropy Co ₃ MnNiCuZnO <i>_x</i> : Toward Sintering-Resistant Catalysis. ACS Catalysis, 2021, 11, 12247-12257.	5 . 5	39
263	Substitution Effect Guided Synthesis of Task-Specific Nanoporous Polycarbazoles with Enhanced Carbon Capture. Macromolecules, 2016, 49, 5325-5330.	2.2	38
264	Recent advances in gold-metal oxide core-shell nanoparticles: Synthesis, characterization, and their application for heterogeneous catalysis. Frontiers of Chemical Science and Engineering, 2016, 10, 39-56.	2.3	38
265	Controlled synthesis of hierarchical ZSM-5 for catalytic fast pyrolysis of cellulose to aromatics. Journal of Materials Chemistry A, 2018, 6, 21178-21185.	5.2	38
266	Perfect Andreev reflection due to the Klein paradox in a topological superconducting state. Nature, 2019, 570, 344-348.	13.7	38
267	Temperature Dependence of Short and Intermediate Range Order in Molten MgCl ₂ and Its Mixture with KCl. Journal of Physical Chemistry B, 2020, 124, 2892-2899.	1.2	38
268	Sacrificial Synthesis of Supported Ru Single Atoms and Clusters on Nâ€doped Carbon Derived from Covalent Triazine Frameworks: A Charge Modulation Approach. Advanced Science, 2021, 8, 2001493.	5.6	38
269	Aggregation behavior of methacrylic acid/ethyl acrylate copolymer in dilute solutions. European Polymer Journal, 2000, 36, 2671-2677.	2.6	37
270	Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations. Nature Communications, 2018, 9, 4485.	5.8	37

#	Article	IF	CITATIONS
271	Highly ordered ZnMnO ₃ nanotube arrays from a "self-sacrificial―ZnO template as high-performance electrodes for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 16318-16323.	5.2	36
272	Efficient Functionalization of Polyethylene Fibers for the Uranium Extraction from Seawater through Atom Transfer Radical Polymerization. Industrial & Engineering Chemistry Research, 2017, 56, 10826-10832.	1.8	36
273	Tuning Electronic Structure and Lattice Diffusion Barrier of Ternary Pt–In–Ni for Both Improved Activity and Stability Properties in Oxygen Reduction Electrocatalysis. ACS Catalysis, 2019, 9, 11431-11437.	5.5	36
274	Probing microstructure and electrolyte concentration dependent cell chemistry <i>via operando</i> small angle neutron scattering. Energy and Environmental Science, 2019, 12, 1866-1877.	15.6	36
275	Formation of three-dimensional bicontinuous structures via molten salt dealloying studied in real-time by in situ synchrotron X-ray nano-tomography. Nature Communications, 2021, 12, 3441.	5.8	36
276	Highly Perfluorinated Covalent Triazine Frameworks Derived from a Lowâ€Temperature Ionothermal Approach Towards Enhanced CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2021, 60, 25688-25694.	7.2	36
277	New Polymer Colloidal and Carbon Nanospheres: Stabilizing Ultrasmall Metal Nanoparticles for Solvent-Free Catalysis. Chemistry of Materials, 2017, 29, 4044-4051.	3.2	35
278	A dicyanobenzoquinone based cathode material for rechargeable lithium and sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 17888-17895.	5.2	35
279	Silicalite-1 Stabilizes Zn-Hydride Species for Efficient Propane Dehydrogenation. ACS Catalysis, 2022, 12, 5997-6006.	5.5	35
280	ABC block copolymer as "smart―pH-responsive carrier for intracellular delivery of hydrophobic drugs. Polymer, 2011, 52, 3396-3404.	1.8	34
281	Polycationâ€mediated gene delivery: Challenges and considerations for the process of plasmid DNA transfection. Engineering in Life Sciences, 2015, 15, 489-498.	2.0	34
282	Chemical impact of catholytes on Bacillus subtilis-catalysed microbial fuel cell performance for degrading 2,4-dichlorophenol. Chemical Engineering Journal, 2016, 301, 103-114.	6.6	34
283	High-surface-area, iron-oxide films prepared by atomic layer deposition on Î ³ -Al2O3. Applied Catalysis A: General, 2017, 534, 70-77.	2.2	34
284	Insights into CO ₂ /N ₂ Selectivity in Porous Carbons from Deep Learning. , 2019, 1, 558-563.		34
285	Coupling FeNi alloys and hollow nitrogen-enriched carbon frameworks leads to high-performance oxygen electrocatalysts for rechargeable zinc–air batteries. Sustainable Energy and Fuels, 2019, 3, 136-141.	2.5	34
286	Continuously Tunable Pore Size for Gas Separation via a Bilayer Nanoporous Graphene Membrane. ACS Applied Nano Materials, 2019, 2, 379-384.	2.4	34
287	Self-regenerative noble metal catalysts supported on high-entropy oxides. Chemical Communications, 2020, 56, 15056-15059.	2.2	34
288	Enhanced OER performance of composite Co–Fe-based MOF catalysts <i>via</i> a one-pot ultrasonic-assisted synthetic approach. Sustainable Energy and Fuels, 2021, 5, 1095-1102.	2.5	33

#	Article	IF	CITATIONS
289	Enhanced CO ₂ Electrochemical Reduction Performance over Cu@AuCu Catalysts at High Noble Metal Utilization Efficiency. Nano Letters, 2021, 21, 9293-9300.	4.5	33
290	Formation of Oriented Nanostructures from Single Molecules of Conjugated Polymers in Microdroplets of Solution:Â The Role of Solvent. Macromolecules, 2004, 37, 6132-6140.	2.2	32
291	What can molecular simulation do for global warming?. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 173-197.	6.2	32
292	Selective separation of americium from europium using 2,9-bis(triazine)-1,10-phenanthrolines in ionic liquids: a new twist on an old story. Chemical Communications, 2017, 53, 2744-2747.	2.2	32
293	Superacid-promoted synthesis of highly porous hypercrosslinked polycarbazoles for efficient CO ₂ capture. Chemical Communications, 2017, 53, 7645-7648.	2.2	32
294	Electrostaticâ€Assisted Liquefaction of Porous Carbons. Angewandte Chemie, 2017, 129, 15154-15158.	1.6	32
295	NIPAM-based Microgel Microenvironment Regulates the Therapeutic Function of Cardiac Stromal Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37783-37796.	4.0	32
296	Topotactic Synthesis of Phosphabenzeneâ€Functionalized Porous Organic Polymers: Efficient Ligands in CO ₂ Conversion. Angewandte Chemie - International Edition, 2019, 58, 13763-13767.	7.2	32
297	Solvent-free and one-pot synthesis of ultramicroporous carbons with ultrahigh nitrogen contents for sulfur dioxide capture. Chemical Engineering Journal, 2020, 391, 123579.	6.6	32
298	Ambient Temperature Graphitization Based on Mechanochemical Synthesis. Angewandte Chemie - International Edition, 2020, 59, 21935-21939.	7.2	32
299	Surpassing the Organic Cathode Performance for Lithium-lon Batteries with Robust Fluorinated Covalent Quinazoline Networks. ACS Energy Letters, 2021, 6, 41-51.	8.8	32
300	Solvent-Induced Large Compound Vesicle of [60]Fullerene Containing Poly(tert-butyl methacrylate). Langmuir, 2004, 20, 9882-9884.	1.6	31
301	Synthesis and Self-Assembly of [60]Fullerene Containing Sulfobetaine Polymer in Aqueous Solution. Journal of Physical Chemistry B, 2005, 109, 22791-22798.	1.2	31
302	Self-Assembly of Well-Defined Mono and Dual End-Capped C60Containing Polyacrylic Acids in Aqueous Solution. Langmuir, 2006, 22, 7167-7174.	1.6	31
303	Frabicating hydroxyapatite nanorods using a biomacromolecule template. Applied Surface Science, 2011, 257, 3174-3179.	3.1	31
304	Exploring thermal reversible hydrogels for stem cell expansion in three-dimensions. Soft Matter, 2012, 8, 7250.	1.2	31
305	An integrated statistic and systematic approach to study correlation of synthesis condition and desalination performance of thin film composite membranes. Desalination, 2016, 394, 138-147.	4.0	31
306	Effect of pore density on gas permeation through nanoporous graphene membranes. Nanoscale, 2018, 10, 14660-14666.	2.8	31

#	Article	IF	CITATIONS
307	Heterogeneous viologen catalysts for metal-free and selective oxidations. Green Chemistry, 2019, 21, 1455-1460.	4.6	31
308	A new trick for an old support: Stabilizing gold single atoms on LaFeO3 perovskite. Applied Catalysis B: Environmental, 2020, 261, 118178.	10.8	31
309	Design of a multi-functional gel polymer electrolyte with a 3D compact stacked polymer micro-sphere matrix for high-performance lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 12563-12574.	5.2	31
310	Isothermal Titration Calorimetric and Electromotive Force Studies on Binding Interactions of Hydrophobic Ethoxylated Urethane and Sodium Dodecyl Sulfate of Different Molecular Masses. Journal of Physical Chemistry B, 2004, 108, 4979-4988.	1.2	30
311	Design and synthesis of micro–meso–macroporous polymers with versatile active sites and excellent activities in the production of biofuels and fine chemicals. Green Chemistry, 2016, 18, 6536-6544.	4.6	30
312	Manipulation of nanofiber-based \hat{l}^2 -galactosidase nanoenvironment for enhancement of galacto-oligosaccharide production. Journal of Biotechnology, 2016, 222, 56-64.	1.9	30
313	Influence of polymer molecular weight on the in vitro cytotoxicity of poly (N-isopropylacrylamide). Materials Science and Engineering C, 2016, 59, 509-513.	3.8	30
314	Aqueous and Templateâ€Free Synthesis of Meso–Macroporous Polymers for Highly Selective Capture and Conversion of Carbon Dioxide. ChemSusChem, 2017, 10, 4144-4149.	3.6	30
315	Oxidation-Induced Atom Diffusion and Surface Restructuring in Faceted Ternary Pt–Cu–Ni Nanoparticles. Chemistry of Materials, 2019, 31, 1720-1728.	3.2	30
316	Molecular dynamics simulations of structural and transport properties of molten NaCl-UCl3 using the polarizable-ion model. Journal of Molecular Liquids, 2020, 299, 112184.	2.3	30
317	Sizeâ€Dependent Nickelâ€Based Electrocatalysts for Selective CO ₂ Reduction. Angewandte Chemie, 2020, 132, 18731-18736.	1.6	30
318	A Principle for Highly Active Metal Oxide Catalysts via NaCl-Based Solid Solution. CheM, 2020, 6, 1723-1741.	5.8	30
319	Insight into the Solid Electrolyte Interphase Formation in Bis(fluorosulfonyl)Imide Based Ionic Liquid Electrolytes. Advanced Functional Materials, 2021, 31, 2008708.	7.8	30
320	Self-regeneration of supported transition metals by a high entropy-driven principle. Nature Communications, 2021, 12, 5917.	5.8	30
321	Solar Photocatalytic Oxidation of Methane to Methanol with Water over RuO _{<i>x</i>} /ZnO/CeO ₂ Nanorods. ACS Sustainable Chemistry and Engineering, 2022, 10, 16-22.	3.2	30
322	Polymer-Induced Fractal Patterns of [60]Fullerene Containing Poly(methacrylic acid) in Salt Solutions. Langmuir, 2004, 20, 9901-9904.	1.6	29
323	Sigmoid Correlations for Gas Solubility and Enthalpy Change of Chemical Absorption of CO ₂ . Industrial & Engineering Chemistry Research, 2015, 54, 10126-10133.	1.8	29
324	Polythiophene coated aromatic polyimide enabled ultrafast and sustainable lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 24083-24090.	5.2	29

#	Article	IF	CITATIONS
325	Pyrolyzed Triazine-Based Nanoporous Frameworks Enable Electrochemical CO ₂ Reduction in Water. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43588-43594.	4.0	29
326	Non-ionic copolymer microgels as high-performance draw materials for forward osmosis desalination. Journal of Membrane Science, 2019, 572, 480-488.	4.1	29
327	Ligand Defect Density Regulation in Metal–Organic Frameworks by Functional Group Engineering on Linkers. Nano Letters, 2022, 22, 838-845.	4.5	29
328	Self-assembly of C60 containing poly(methyl methacrylate) in ethyl acetate/decalin mixtures solvent. Polymer, 2005, 46, 4714-4721.	1.8	28
329	Formation of Iron Oxyfluoride Phase on the Surface of Nano-Fe3O4 Conversion Compound for Electrochemical Energy Storage. Journal of Physical Chemistry Letters, 2013, 4, 3798-3805.	2.1	28
330	Intracellular Microenvironmentâ€Responsive Labelâ€Free Autofluorescent Nanogels for Traceable Gene Delivery. Advanced Healthcare Materials, 2014, 3, 1839-1848.	3.9	28
331	Reversible Control of Interfacial Magnetism through Ionic-Liquid-Assisted Polarization Switching. Nano Letters, 2017, 17, 1665-1669.	4.5	28
332	Gas-responsive cationic microgels for forward osmosis desalination. Chemical Engineering Journal, 2018, 347, 424-431.	6.6	28
333	A benzoquinone-derived porous hydrophenazine framework for efficient and reversible iodine capture. Chemical Communications, 2018, 54, 12706-12709.	2.2	28
334	Solvothermal and template-free synthesis of N-Functionalized mesoporous polymer for amine impregnation and CO2 adsorption. Microporous and Mesoporous Materials, 2019, 290, 109653.	2.2	28
335	High-performance electrolytic oxygen evolution with a seamless armor core–shell FeCoNi oxynitride. Nanoscale, 2019, 11, 7239-7246.	2.8	28
336	Fluorination of MXene by Elemental F ₂ as Electrode Material for Lithiumâ€ion Batteries. ChemSusChem, 2019, 12, 1316-1324.	3.6	28
337	Theoretical study of the coordination behavior of formate and formamidoximate with dioxovanadium(<scp>v</scp>) cation: implications for selectivity towards uranyl. Physical Chemistry Chemical Physics, 2015, 17, 31715-31726.	1.3	27
338	A mechanistic study on tumour spheroid formation in thermosensitive hydrogels: experiments and mathematical modelling. RSC Advances, 2016, 6, 73282-73291.	1.7	27
339	Ordered Mesoporous Polymers for Biomass Conversions and Crossâ€Coupling Reactions. ChemSusChem, 2016, 9, 2496-2504.	3.6	27
340	New Atomic-Scale Insight into Self-Regeneration of Pt-CaTiO ₃ Catalysts: Incipient Redox-Induced Structures Revealed by a Small-Angle Tilting STEM Technique. Journal of Physical Chemistry C, 2017, 121, 17348-17353.	1.5	27
341	Trimethyl phosphate based neutral ligand room temperature ionic liquids for electrodeposition of rare earth elements. Electrochemistry Communications, 2018, 96, 88-92.	2.3	27
342	Bioelectrochemical Reaction Kinetics, Mechanisms, and Pathways of Chlorophenol Degradation in MFC Using Different Microbial Consortia. ACS Sustainable Chemistry and Engineering, 2019, 7, 17263-17272.	3.2	27

#	Article	IF	Citations
343	Entropyâ€Driven Mechanochemical Synthesis of Polymetallic Zeolitic Imidazolate Frameworks for CO ₂ Fixation. Angewandte Chemie, 2019, 131, 5072-5076.	1.6	27
344	Benzene Ring Knitting Achieved by Ambientâ€Temperature Dehalogenation via Mechanochemical Ullmannâ€Type Reductive Coupling. Advanced Materials, 2021, 33, e2008685.	11.1	27
345	Ionothermal Synthesis of Carbon/TiO ₂ Nanocomposite for Supercapacitors. ChemNanoMat, 2022, 8, .	1.5	27
346	Effect of Cosolvents on the Binding Interaction between Poly(ethylene oxide) and Sodium Dodecyl Sulfate. Journal of Physical Chemistry B, 2006, 110, 20794-20800.	1.2	26
347	Endosomal pH responsive polymers for efficient cancer targeted gene therapy. Colloids and Surfaces B: Biointerfaces, 2014, 119, 55-65.	2.5	26
348	Probing the Role of Zr Addition versus Textural Properties in Enhancement of CO ₂ Adsorption Performance in Silica/PEI Composite Sorbents. Langmuir, 2015, 31, 9356-9365.	1.6	26
349	Surface Structure Dependence of SO ₂ Interaction with Ceria Nanocrystals with Well-Defined Surface Facets. Journal of Physical Chemistry C, 2015, 119, 28895-28905.	1.5	26
350	In Situ Atomic-Scale Observation of the Two-Dimensional Co(OH) ₂ Transition at Atmospheric Pressure. Chemistry of Materials, 2017, 29, 4572-4579.	3.2	26
351	Highly Efficient Carbon Monoxide Capture by Carbanionâ€Functionalized Ionic Liquids through Câ€Site Interactions. Angewandte Chemie, 2017, 129, 6947-6951.	1.6	26
352	Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La _{<math>1\hat{a}^*xSrxCoO$3\hat{a}^*\hat{l}^*$ perovskite composite electrodes. Physical Chemistry Chemical Physics, 2019, 21, 3327-3338.</math>}	1.3	26
353	Prediction by Convolutional Neural Networks of CO ₂ /N ₂ Selectivity in Porous Carbons from N ₂ Adsorption Isotherm at 77 K. Angewandte Chemie - International Edition, 2020, 59, 19645-19648.	7.2	26
354	Low-Cost Transformation of Biomass-Derived Carbon to High-Performing Nano-graphite via Low-Temperature Electrochemical Graphitization. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4393-4401.	4.0	26
355	Perovskite Oxide–Halide Solid Solutions: A Platform for Electrocatalysts. Angewandte Chemie - International Edition, 2021, 60, 9953-9958.	7.2	26
356	Exploring low-positively charged thermosensitive copolymers as gene delivery vectors. Soft Matter, 2012, 8, 1385-1394.	1.2	25
357	A thermally responsive cationic nanogel-based platform for three-dimensional cell culture and recovery. RSC Advances, 2014, 4, 29146.	1.7	25
358	Nanoprecipitation and Spectroscopic Characterization of Curcumin-Encapsulated Polyester Nanoparticles. Langmuir, 2015, 31, 11419-11427.	1.6	25
359	Thermoresponsive cationic copolymer microgels as high performance draw agents in forward osmosis desalination. Journal of Membrane Science, 2016, 518, 273-281.	4.1	25
360	A sodium–aluminum hybrid battery. Journal of Materials Chemistry A, 2017, 5, 6589-6596.	5.2	25

#	Article	IF	CITATIONS
361	Confined Ultrathin Pdâ€Ce Nanowires with Outstanding Moisture and SO 2 Tolerance in Methane Combustion. Angewandte Chemie, 2018, 130, 9091-9095.	1.6	25
362	A Polymerâ€Oriented Selfâ€Assembly Strategy toward Mesoporous Metal Oxides with Ultrahigh Surface Areas. Advanced Science, 2019, 6, 1801543.	5.6	25
363	Characterization and Engineering Properties of Dry and Ponded Class-F Fly Ash. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, .	1.5	25
364	Photo-functionalized TiO2 nanotubes decorated with multifunctional Ag nanoparticles for enhanced vascular biocompatibility. Bioactive Materials, 2021, 6, 45-54.	8.6	25
365	In Operando Identification of In Situ Formed Metalloid Zinc $<$ sup $>$ Î $'+<$ sup $>$ Active Sites for Highly Efficient Electrocatalyzed Carbon Dioxide Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
366	Defect Engineering of Ceria Nanocrystals for Enhanced Catalysis via a High-Entropy Oxide Strategy. ACS Central Science, 2022, 8, 1081-1090.	5.3	25
367	Rheological properties of hydrophobic ethoxylated urethane (HEUR) in the presence of methylated \hat{l}^2 -cyclodextrin. Polymer, 2004, 45, 8339-8348.	1.8	24
368	Laser light scattering and isothermal titration calorimetric studies of poly(ethylene oxide) aqueous solution in presence of sodium dodecyl sulfate. Journal of Colloid and Interface Science, 2005, 292, 79-85.	5.0	24
369	Salt effects on aggregation of O-carboxymethylchitosan in aqueous solution. Colloids and Surfaces B: Biointerfaces, 2006, 47, 20-28.	2.5	24
370	Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40949-40958.	4.0	24
371	Transmission electron microscopy with atomic resolution under atmospheric pressures. MRS Communications, 2017, 7, 798-812.	0.8	24
372	Supported bicyclic amidine ionic liquids as a potential CO2/N2 separation medium. Journal of Membrane Science, 2018, 565, 203-212.	4.1	24
373	In situ polymerized succinonitrile-based solid polymer electrolytes for lithium ion batteries. Solid State Ionics, 2020, 345, 115159.	1.3	24
374	Connections between the Speciation and Solubility of Ni(II) and Co(II) in Molten ZnCl ₂ . Journal of Physical Chemistry B, 2020, 124, 1253-1258.	1.2	24
375	Rh nanoparticle functionalized heteroatom-doped hollow carbon spheres for efficient electrocatalytic hydrogen evolution. Materials Chemistry Frontiers, 2021, 5, 3125-3131.	3.2	24
376	Quantifying the binding strength of salicylaldoxime–uranyl complexes relative to competing salicylaldoxime–transition metal ion complexes in aqueous solution: a combined experimental and computational study. Dalton Transactions, 2016, 45, 9051-9064.	1.6	23
377	Moltenâ€NaNH ₂ Densified Graphene with Inâ€Plane Nanopores and Nâ€Doping for Compact Capacitive Energy Storage. Advanced Energy Materials, 2017, 7, 1700766.	10.2	23
378	Versatile PbS Quantum Dot Ligand Exchange Systems in the Presence of Pbâ€Thiolates. Small, 2017, 13, 1602956.	5.2	23

#	Article	IF	CITATIONS
379	Synergistic Activation of Palladium Nanoparticles by Polyoxometalateâ€Attached Melem for Boosting Formic Acid Dehydrogenation Efficiency. ChemSusChem, 2018, 11, 3396-3401.	3.6	23
380	Deep eutectic solvents formed by quaternary ammonium salts and aprotic organic compound succinonitrile. Journal of Molecular Liquids, 2019, 274, 414-417.	2.3	23
381	Alkaline salt-promoted construction of hydrophilic and nitrogen deficient graphitic carbon nitride with highly improved photocatalytic efficiency. Journal of Materials Chemistry A, 2021, 9, 4700-4706.	5.2	23
382	Unraveling Local Structure of Molten Salts via X-ray Scattering, Raman Spectroscopy, and <i>Ab Initio</i> Molecular Dynamics. Journal of Physical Chemistry B, 2021, 125, 5971-5982.	1.2	23
383	Light Scattering of Hydrophobically Modified Alkali-Soluble Emulsion (HASE) Polymer: Ionic Strength and Temperature Effects. Macromolecular Chemistry and Physics, 2001, 202, 335-342.	1.1	22
384	Towards the selective modification of soft-templated mesoporous carbon materials by elemental fluorine for energy storage devices. Journal of Materials Chemistry A, 2013, 1, 9327.	5.2	22
385	Hyper-crosslinked cyclodextrin porous polymer: an efficient CO ₂ capturing material with tunable porosity. RSC Advances, 2016, 6, 110307-110311.	1.7	22
386	Sustainable synthesis of alkaline metal oxide-mesoporous carbons <i>via</i> mechanochemical coordination self-assembly. Journal of Materials Chemistry A, 2017, 5, 23446-23452.	5.2	22
387	lon Dynamics in Ionicâ€Liquidâ€Based Liâ€Ion Electrolytes Investigated by Neutron Scattering and Dielectric Spectroscopy. ChemSusChem, 2018, 11, 3512-3523.	3.6	22
388	From Highly Purified Boron Nitride to Boron Nitrideâ€Based Heterostructures: An Inorganic Precursorâ€Based Strategy. Advanced Functional Materials, 2019, 29, 1906284.	7.8	22
389	Structure and dynamics of the molten alkali-chloride salts from an X-ray, simulation, and rate theory perspective. Physical Chemistry Chemical Physics, 2020, 22, 22900-22917.	1.3	22
390	Highly efficient alloyed NiCu/Nb ₂ O ₅ catalyst for the hydrodeoxygenation of biofuel precursors into liquid alkanes. Catalysis Science and Technology, 2020, 10, 4256-4263.	2.1	22
391	Intracellular Microenvironment Responsive Polymers: A Multipleâ€stage Transport Platform for Highâ€Performance Gene Delivery. Small, 2014, 10, 871-877.	5.2	21
392	Correlation of morphology with catalytic performance of CrO /Ce0.2Zr0.8O2 catalysts for NO oxidation via in-situ STEM. Chemical Engineering Journal, 2016, 288, 238-245.	6.6	21
393	Porous Structure Design of Polymeric Membranes for Gas Separation. Small Methods, 2017, 1, 1600051.	4.6	21
394	A chelation-induced cooperative self-assembly methodology for the synthesis of mesoporous metal hydroxide and oxide nanospheres. Nanoscale, 2018, 10, 5731-5737.	2.8	21
395	Understanding Electric Double-Layer Gating Based on Ionic Liquids: from Nanoscale to Macroscale. ACS Applied Materials & Diterfaces, 2018, 10, 43211-43218.	4.0	21
396	Simultaneously Boosting the Ionic Conductivity and Mechanical Strength of Polymer Gel Electrolyte Membranes by Confining Ionic Liquids into Hollow Silica Nanocavities. Batteries and Supercaps, 2019, 2, 985-991.	2.4	21

#	Article	IF	CITATIONS
397	Transforming Porous Organic Cages into Porous Ionic Liquids via a Supramolecular Complexation Strategy. Angewandte Chemie, 2020, 132, 2288-2292.	1.6	21
398	In Situ TEM Studies of Catalysts Using Windowed Gas Cells. Catalysts, 2020, 10, 779.	1.6	21
399	Modified coal char materials with high rate performance for battery applications. Carbon, 2021, 172, 414-421.	5.4	21
400	Mechanistic insight into the nucleation and growth of oleic acid capped lead sulphide quantum dots. Physical Chemistry Chemical Physics, 2016, 18, 14055-14062.	1.3	20
401	Effects of Confinement and Pressure on the Vibrational Behavior of Nano-Confined Propane. Journal of Physical Chemistry A, 2018, 122, 6736-6745.	1.1	20
402	Aluminum hydroxide-mediated synthesis of mesoporous metal oxides by a mechanochemical nanocasting strategy. Journal of Materials Chemistry A, 2019, 7, 22977-22985.	5.2	20
403	Confined Ionic Liquid in an Ionic Porous Aromatic Framework for Gas Separation. ACS Applied Polymer Materials, 2019, 1, 95-102.	2.0	20
404	Revealing 3D Morphological and Chemical Evolution Mechanisms of Metals in Molten Salt by Multimodal Microscopy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17321-17333.	4.0	20
405	Hierarchical Lignin-Based Carbon Matrix and Carbon Dot Composite Electrodes for High-Performance Supercapacitors. ACS Omega, 2021, 6, 7851-7861.	1.6	20
406	Fabrication of Ionic Covalent Triazine Framework-Linked Membranes via a Facile Sol–Gel Approach. Chemistry of Materials, 2021, 33, 3386-3393.	3.2	20
407	A Holistic Approach for Elucidating Local Structure, Dynamics, and Speciation in Molten Salts with High Structural Disorder. Journal of the American Chemical Society, 2021, 143, 15298-15308.	6.6	20
408	Dynamic Light Scattering of Semi-Dilute Hydrophobically Modified Alkali-Soluble Emulsion Solutions with Varying Length of Hydrophobic Alkyl Chains. Macromolecular Chemistry and Physics, 2002, 203, 2312-2321.	1.1	19
409	Isothermal titration calorimetric studies on the interaction between sodium dodecyl sulfate and polyethylene glycols of different molecular weights and chain architectures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 289, 200-206.	2.3	19
410	Polydopamineâ€Derived, In Situ Nâ€Doped 3D Mesoporous Carbons for Highly Efficient Oxygen Reduction. ChemNanoMat, 2018, 4, 417-422.	1.5	19
411	Engineering nanoporous organic frameworks to stabilize naked Au clusters: a charge modulation approach. Chemical Communications, 2018, 54, 5058-5061.	2.2	19
412	Simultaneous activation and N-doping of hydrothermal carbons by NaNH2: An effective approach to CO2 adsorbents. Journal of CO2 Utilization, 2019, 33, 405-412.	3.3	19
413	Hysteretic order-disorder transitions of ionic liquid double layer structure on graphite. Nano Energy, 2019, 60, 886-893.	8.2	19
414	Sub-nanometer Pt cluster decoration enhances the oxygen reduction reaction performances of NiO _x supported Pd nano-islands. Sustainable Energy and Fuels, 2020, 4, 809-823.	2.5	19

#	Article	IF	Citations
415	Interfacial atomic Ni tetragon intercalation in a NiO ₂ -to-Pd hetero-structure triggers superior HER activity to the Pt catalyst. Journal of Materials Chemistry A, 2021, 9, 12019-12028.	5.2	19
416	Hydrophobic 1-octadecanethiol functionalized copper catalyst promotes robust high-current CO2 gas-diffusion electrolysis. Nano Research, 2022, 15, 1393-1398.	5.8	19
417	Molar Conductance of Sodium Bromide and Sodium Iodide in Methanol + Water at 298.15 K. Journal of Chemical & C	1.0	18
418	Microstructure of Dilute Telechelic Associative Polymer in Sodium Dodecyl Sulfate Solutions. Macromolecules, 2001, 34, 4673-4675.	2.2	18
419	Polymer Microbead-Based Surface Enhanced Raman Scattering Immunoassays. Journal of Physical Chemistry C, 2012, 116, 17174-17181.	1.5	18
420	Fabricating polystyrene fiber-dehydrogenase assemble as a functional biocatalyst. Enzyme and Microbial Technology, 2015, 68, 15-22.	1.6	18
421	Probing the interaction of ionic liquids with graphene using surfaceâ€enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2016, 47, 585-590.	1.2	18
422	Surfactantâ€Assisted Stabilization of Au Colloids on Solids for Heterogeneous Catalysis. Angewandte Chemie, 2017, 129, 4565-4569.	1.6	18
423	Alcohol-Induced Low-Temperature Blockage of Supported-Metal Catalysts for Enhanced Catalysis. ACS Catalysis, 2020, 10, 8515-8523.	5.5	18
424	What Fluorine Can Do in CO ₂ Chemistry: Applications from Homogeneous to Heterogeneous Systems. ChemSusChem, 2020, 13, 6182-6200.	3.6	18
425	Local synergetic collaboration between Pd and local tetrahedral symmetric Ni oxide enables ultra-high-performance CO ₂ thermal methanation. Journal of Materials Chemistry A, 2020, 8, 12744-12756.	5.2	18
426	A low-valent cobalt oxide co-catalyst to boost photocatalytic water oxidation <i>via</i> enhanced hole-capturing ability. Journal of Materials Chemistry A, 2021, 9, 14786-14792.	5.2	18
427	Selfâ€Organized Co ₃ O ₄ â€6rCO ₃ Percolative Composites Enabling Nanosized Hole Transport Pathways for Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2106121.	7.8	18
428	Quantifying the defect-dominated size effect of fracture strain in single crystalline ZnO nanowires. Journal of Applied Physics, 2011, 109, 123504.	1.1	17
429	Smart surface-enhanced Raman scattering traceable drug delivery systems. Nanoscale, 2016, 8, 12803-12811.	2.8	17
430	Use of steric encumbrance to develop conjugated nanoporous polymers for metal-free catalytic hydrogenation. Chemical Communications, 2016, 52, 11919-11922.	2.2	17
431	Multicellular Spheroids Formation and Recovery in Microfluidics-generated Thermoresponsive Microgel Droplets. Colloids and Interface Science Communications, 2016, 14, 4-7.	2.0	17
432	Ultraâ€Stable and Highâ€Cobaltâ€Loaded Cobalt@Ordered Mesoporous Carbon Catalysts: Allâ€inâ€One Deoxygenation of Ketone into Alkylbenzene. ChemCatChem, 2018, 10, 3299-3304.	1.8	17

#	Article	IF	Citations
433	Unexpected Strong Thermally Induced Phonon Energy Shift for Mapping Local Temperature. Nano Letters, 2019, 19, 7494-7502.	4.5	17
434	Reply to the Correspondence on "Preorganization and Cooperation for Highly Efficient and Reversible Capture of Lowâ€Concentration CO ₂ by Ionic Liquids― Angewandte Chemie - International Edition, 2019, 58, 386-389.	7.2	17
435	Across the Board: Sheng Dai on Catalyst Design by Entropic Factors. ChemSusChem, 2020, 13, 1915-1917.	3.6	17
436	Poreâ€Scale Controls on the Gas and Water Transport in Hydrateâ€Bearing Sediments. Geophysical Research Letters, 2020, 47, e2020GL086990.	1.5	17
437	Sulphur as medium: Directly converting pitch into porous carbon. Fuel, 2021, 286, 119393.	3.4	17
438	Design of Graphene/Ionic Liquid Composites for Carbon Capture. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17511-17516.	4.0	17
439	Graphitic Azaâ€Fused Ï€â€Conjugated Networks: Construction, Engineering, and Taskâ€Specific Applications. Advanced Materials, 2022, 34, e2107947.	11.1	17
440	Deep Oxidative Desulfurization of Model Fuels Catalyzed by Subnanosized Ti Oxoclusters. Energy & Samp; Fuels, 2022, 36, 1402-1416.	2.5	17
441	xmins:mmi="http://www.w3.org/1998/Math/Math/ML" altimg="si16.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub> // xml:msub> // xmml:mrow> // xmml:mrow> // xmml:msub> // xmml:msub> // xmml:msub>	3.8	17
442	Defect-Regulated Frustrated-Lewis-Pair Behavior of Boron Nitride in Ambient Pressure Hydrogen Activation. Journal of the American Chemical Society, 2022, 144, 10688-10693.	6.6	17
443	Not All Anionic Polyelectrolytes Complex with DTAB. Langmuir, 2009, 25, 13712-13717.	1.6	16
444	Self-assembly of N-maleoylchitosan in aqueous media. Colloids and Surfaces B: Biointerfaces, 2010, 76, 221-225.	2.5	16
445	Observing Framework Expansion of Ordered Mesoporous Hard Carbon Anodes with Ionic Liquid Electrolytes via in Situ Small-Angle Neutron Scattering. ACS Energy Letters, 2017, 2, 1698-1704.	8.8	16
446	Developed one-pot synthesis of dual-color CdSe quantum dots for white light-emitting diode application. Journal of Materials Chemistry C, 2018, 6, 3089-3096.	2.7	16
447	Enhanced multi-lineage differentiation of human mesenchymal stem/stromal cells within poly(<i>N</i> -isopropylacrylamide-acrylic acid) microgel-formed three-dimensional constructs. Journal of Materials Chemistry B, 2018, 6, 1799-1814.	2.9	16
448	Gold Cluster–CeO ₂ Nanostructured Hybrid Architectures as Catalysts for Selective Oxidation of Inert Hydrocarbons. Chemistry of Materials, 2018, 30, 8579-8586.	3.2	16
449	Electrophoretic Deposition of Mesoporous Niobium(V)Oxide Nanoscopic Films. Chemistry of Materials, 2018, 30, 6549-6558.	3.2	16
450	Effects of water on the stochastic motions of propane confined in MCM-41-S pores. Physical Chemistry Chemical Physics, 2019, 21, 25035-25046.	1.3	16

#	Article	IF	Citations
451	Collaboration between a Pt-dimer and neighboring Co–Pd atoms triggers efficient pathways for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2021, 23, 1822-1834.	1.3	16
452	Chitosan-poly(acrylic acid) complex modified paramagnetic Fe3O4 nanoparticles for camptothecin loading and release. Journal of Materials Research, 2009, 24, 2307-2315.	1.2	15
453	Degradation of 2,4-Dichlorophenol by Bacillus Subtilis with Concurrent Electricity Generation in Microbial Fuel Cell. Procedia Engineering, 2016, 148, 370-377.	1.2	15
454	Controlling interfacial properties in supported metal oxide catalysts through metal–organic framework templating. Journal of Materials Chemistry A, 2017, 5, 13565-13572.	5.2	15
455	Sproutâ€ike Growth of Mesoporous Mo ₂ C/NC Nanonetworks as Efficient Electrocatalysts for Hydrogen Evolution. ChemCatChem, 2018, 10, 625-631.	1.8	15
456	Microporous and hollow carbon spheres derived from soft drinks: Promising CO2 separation materials. Microporous and Mesoporous Materials, 2019, 286, 199-206.	2.2	15
457	Direct Transformation of Glycerol to Propanal using Zirconium Phosphateâ€Supported Bimetallic Catalysts. ChemSusChem, 2020, 13, 4954-4966.	3.6	15
458	Facilitation of microbially induced calcite precipitation with kaolinite nucleation. Geotechnique, 2021, 71, 728-734.	2.2	15
459	lon-gated carbon molecular sieve gas separation membranes. Journal of Membrane Science, 2020, 604, 118013.	4.1	15
460	Uniphase ruthenium–iridium alloy-based electronic regulation for electronic structure–function study in methane oxidation to methanol. Journal of Materials Chemistry A, 2020, 8, 24024-24030.	5.2	15
461	Operando Analysis of Gas Evolution in TiNb ₂ O ₇ (TNO)-Based Anodes for Advanced High-Energy Lithium-Ion Batteries under Fast Charging. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55145-55155.	4.0	15
462	Waferâ€Scale Demonstration of MBCâ€FET and Câ€FET Arrays Based on Twoâ€Dimensional Semiconductors. Small, 2022, 18, e2107650.	5.2	15
463	Interaction between Fluorocarbon End-Capped Poly(ethylene oxide) and Cyclodextrins. Macromolecules, 2007, 40, 2936-2945.	2.2	14
464	Preparation of N-Maleoylchitosan Nanocapsules for Loading and Sustained Release of Felodipine. Biomacromolecules, 2009, 10, 1997-2002.	2.6	14
465	lonic Liquid and Silica Sol-Gel Composite Materials Doped with N,N,N′,N′-tetra(⟨i⟩n⟨ i⟩-octyl)diglycolamide for Extraction of La⟨sup⟩3+⟨ sup⟩and Ba⟨sup⟩2+⟨ sup⟩. Separation Science and Technology, 2012, 47, 244-249.	1.3	14
466	Mechanical properties of pH-responsive poly(2-hydroxyethyl methacrylate/methacrylic acid) microgels prepared by inverse microemulsion polymerization. Reactive and Functional Polymers, 2014, 74, 101-106.	2.0	14
467	Role of precursor chemistry in the direct fluorination to form titanium based conversion anodes for lithium ion batteries. RSC Advances, 2015, 5, 88876-88885.	1.7	14
468	Mineral Weathering and Bedrock Weakening: Modeling Microscale Bedrock Damage Under Biotite Weathering. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2623-2646.	1.0	14

#	Article	IF	Citations
469	The coefficient of earth pressure at rest in hydrate-bearing sediments. Acta Geotechnica, 2021, 16, 2729-2739.	2.9	14
470	Polymer-Grafted Porous Silica Nanoparticles with Enhanced CO ₂ Permeability and Mechanical Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27411-27418.	4.0	14
471	Radiation-Assisted Formation of Metal Nanoparticles in Molten Salts. Journal of Physical Chemistry Letters, 2021, 12, 157-164.	2.1	14
472	Metal–Tannin Coordination Assembly Route to Nanostructured High-Entropy Oxide Perovskites with Abundant Defects. Chemistry of Materials, 2022, 34, 1746-1755.	3.2	14
473	Synthesis of sulfur-containing aryl and heteroaryl vinyls via Suzuki–Miyaura cross-coupling for the preparation of SERS-active polymers. Tetrahedron Letters, 2009, 50, 5467-5469.	0.7	13
474	Interactions of Organic Solvents at Graphene/ \hat{l} ±-Al ₂ O ₃ and Graphene Oxide/ \hat{l} ±-Al ₂ O ₃ Interfaces Studied by Sum Frequency Generation. Journal of Physical Chemistry C, 2014, 118, 17745-17755.	1.5	13
475	High-Surface Area Ceria-Zirconia Films Prepared by Atomic Layer Deposition. Catalysis Letters, 2017, 147, 1464-1470.	1.4	13
476	Carbon/tin oxide composite electrodes for improved lithium-ion batteries. Journal of Applied Electrochemistry, 2018, 48, 811-817.	1.5	13
477	Promoting Pt catalysis for CO oxidation <i>via</i> the Mott–Schottky effect. Nanoscale, 2019, 11, 18568-18574.	2.8	13
478	Encapsulated Sb and Sb ₂ O ₃ particles in waste-tire derived carbon as stable composite anodes for sodium-ion batteries. Sustainable Energy and Fuels, 2020, 4, 3613-3622.	2.5	13
479	Formation of LiF Surface Layer During Direct Fluorination of High-Capacity Co-Free Disordered Rocksalt Cathodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38221-38228.	4.0	13
480	Ultrasound-driven fabrication of high-entropy alloy nanocatalysts promoted by alcoholic ionic liquids. Nano Research, 2022, 15, 4792-4798.	5.8	13
481	Rheology and Aggregation Behavior of Hydrophobically Modified Urethane Ethoxylate in Ethylene Glycolâ ^{^*} Water Mixtures. Macromolecules, 2003, 36, 6260-6266.	2.2	12
482	Synthesis and Physicochemical Properties of Biocompatible N-carboxyethylchitosan. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 981-992.	1.9	12
483	Pdâ∈Metalated Conjugated Nanoporous Polycarbazoles for Additiveâ∈Free Cyanation of Aryl Halides: Boosting Catalytic Efficiency through Spatial Modulation. ChemSusChem, 2017, 10, 2348-2351.	3.6	12
484	Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low oncentration CO ₂ by Ionic Liquids. Angewandte Chemie, 2017, 129, 13478-13482.	1.6	12
485	Heterogeneity of polyoxometalates by confining within ordered mesopores: toward efficient oxidation of benzene to phenol. Catalysis Science and Technology, 2019, 9, 2173-2179.	2.1	12
486	Cation Molecular Structure Affects Mobility and Transport of Electrolytes in Porous Carbons. Journal of the Electrochemical Society, 2019, 166, A507-A514.	1.3	12

#	Article	IF	Citations
487	Layer-by-Layer Assembly Strategy for Reinforcing the Mechanical Strength of an Ionogel Electrolyte without Affecting Ionic Conductivity. ACS Applied Energy Materials, 2020, 3, 1265-1270.	2.5	12
488	Thermoregulated Ionic Liquid-Stabilizing Ru/CoO Nanocomposites for Catalytic Hydrogenation. Langmuir, 2020, 36 , $11589-11599$.	1.6	12
489	Synthesizing Highâ€Capacity Oxyfluoride Conversion Anodes by Direct Fluorination of Molybdenum Dioxide (MoO ₂). ChemSusChem, 2020, 13, 3825-3834.	3.6	12
490	Photofunctionalized and Drug-Loaded TiO ₂ Nanotubes with Improved Vascular Biocompatibility as a Potential Material for Polymer-Free Drug-Eluting Stents. ACS Biomaterials Science and Engineering, 2020, 6, 2038-2049.	2.6	12
491	Stable Bismuthâ€Doped Lead Halide Perovskite Coreâ€Shell Nanocrystals by Surface Segregation Effect. Small, 2022, 18, e2104399.	5.2	12
492	Dual Rate-Modulation Approach for the Preparation of Crystalline Covalent Triazine Frameworks Displaying Efficient Sodium Storage. ACS Macro Letters, 2022, 11, 60-65.	2.3	12
493	Deposition–Precipitation and Stabilization of a Silica-Supported Au Catalyst by Surface Modification with Carbon Nitride. Catalysis Letters, 2013, 143, 1339-1345.	1.4	11
494	Experimental evaluation of calcein and alizarin red S for immersion marking of silver carp <i>Hypophthalmichthys molitrix</i> (Valenciennes, 1844). Journal of Applied Ichthyology, 2016, 32, 83-91.	0.3	11
495	Stiffness Evolution in Frozen Sands Subjected to Stress Changes. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2017, 143, .	1.5	11
496	Impact of gate geometry on ionic liquid gated ionotronic systems. APL Materials, 2017, 5, .	2.2	11
497	Synthesis of Porous Sulfonamide Polymers by Capturing Atmospheric Sulfur Dioxide. ChemSusChem, 2018, 11, 1751-1755.	3.6	11
498	Optimization of Pt–Oxygen-Containing Species Anodes for Ethanol Oxidation Reaction: High Performance of Pt-AuSnO _{<i>x</i>} Electrocatalyst. Journal of Physical Chemistry Letters, 2020, 11, 2846-2853.	2.1	11
499	<i>De novo</i> fabrication of multi-heteroatom-doped carbonaceous materials <i>via</i> an <i>iin situ</i> doping strategy. Journal of Materials Chemistry A, 2020, 8, 4740-4746.	5.2	11
500	Investigating the Degradation of Nb ₂ O ₅ Thin Films Across 10,000 Lithiation/Delithiation Cycles. ACS Applied Energy Materials, 2021, 4, 6542-6552.	2.5	11
501	Synthesis of MCF-supported AuCo nanoparticle catalysts and the catalytic performance for the CO oxidation reaction. RSC Advances, 2015, 5, 100212-100222.	1.7	10
502	Accelerating Membraneâ€based CO ₂ Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling. Angewandte Chemie, 2018, 130, 2866-2871.	1.6	10
503	Controlling the magic size of white light-emitting CdSe quantum dots. Nanoscale, 2018, 10, 10256-10261.	2.8	10
504	Tuning microenvironment for multicellular spheroid formation in thermoâ€responsive anionic microgel scaffolds. Journal of Biomedical Materials Research - Part A, 2018, 106, 2899-2909.	2.1	10

#	Article	IF	CITATIONS
505	Synergistic Enhancement in Antibacterial Activity of Core/Shell/Shell SiO ₂ /ZnO/Ag ₃ PO ₄ Nanoparticles. ChemNanoMat, 2018, 4, 972-981.	1.5	10
506	Mechanochemical Synthesis of Ruthenium Cluster@Ordered Mesoporous Carbon Catalysts by Synergetic Dual Templates. Chemistry - A European Journal, 2019, 25, 8494-8498.	1.7	10
507	Complexation of lanthanides and other metal ions by the polypyridyl ligand quaterpyridine: Relation between metal ion size, chelate ring size, and complex stability. Inorganica Chimica Acta, 2019, 488, 19-27.	1.2	10
508	Optimizing the structural configuration of FePt-FeOx nanoparticles at the atomic scale by tuning the post-synthetic conditions. Nano Energy, 2019, 55, 441-446.	8.2	10
509	Understanding the effect of molecular solvents on the microscopic network of DBU imidazole ionic liquid. Journal of Molecular Liquids, 2019, 276, 325-333.	2.3	10
510	Electrochemically induced crystallization of amorphous materials in molten MgCl ₂ : boron nitride and hard carbon. Chemical Communications, 2020, 56, 2783-2786.	2.2	10
511	Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s. Chemical Communications, 2021, 57, 3676-3679.	2.2	10
512	Bifunctional Pt–SnO _x nanorods for enhanced oxygen reduction and hydrogen evolution reactions. Sustainable Energy and Fuels, 2021, 5, 2960-2971.	2.5	10
513	Flow and Arching of Biomass Particles in Wedge-Shaped Hoppers. ACS Sustainable Chemistry and Engineering, 2021, 9, 15303-15314.	3.2	10
514	Enhancing Cycling Stability and Capacity Retention of NMC811 Cathodes by Reengineering Interfaces via Electrochemical Fluorination. Advanced Materials Interfaces, 2022, 9 , .	1.9	10
515	Synthesis and properties of polystyreneâ€ <i>g</i> a€mSiO ₂ filled polypropylene nanocomposites. Polymer Composites, 2010, 31, 807-815.	2.3	9
516	Coincorporation of nanoâ€silica and nanoâ€calcium carbonate in polypropylene. Journal of Applied Polymer Science, 2011, 121, 3007-3013.	1.3	9
517	The enhancement of neural stem cell survival and growth by coculturing with expanded sertoli cells in vitro. Biotechnology Progress, 2012, 28, 196-205.	1.3	9
518	Optimal Size of a Cylindrical Pore for Post-Combustion CO ₂ Capture. Journal of Physical Chemistry C, 2017, 121, 22025-22030.	1.5	9
519	Facile Synthesis of Copper Containing Ordered Mesoporous Polymers via Aqueous Coordination Self-Assembly for Aerobic Oxidation of Alcohols. Industrial & Engineering Chemistry Research, 2019, 58, 6438-6445.	1.8	9
520	A succinct strategy for construction of nanoporous ionic organic networks from a pyrylium intermediate. Chemical Communications, 2019, 55, 13450-13453.	2.2	9
521	Polyoxometalates as bifunctional templates: engineering metal oxides with mesopores and reactive surfaces for catalysis. Journal of Materials Chemistry A, 2019, 7, 27297-27303.	5.2	9
522	Hierarchically Porous Polyacrylonitrile (PAN) 3D Architectures with Anchored Lattice-Expanded λ-MnO ₂ Nanodots as Freestanding Adsorbents for Superior Lithium Separation. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 13239-13245.	1.8	9

#	Article	IF	Citations
523	Tuning regioselective oxidation toward phenol via atomically dispersed iron sites on carbon. Green Chemistry, 2020, 22, 6025-6032.	4.6	9
524	Effect of the Ionic Liquid Structure on the Melt Processability of Polyacrylonitrile Fibers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8663-8673.	4.0	9
525	Robust perfluorinated porous organic networks: Succinct synthetic strategy and application in chlorofluorocarbons adsorption. Nano Research, 2021, 14, 3282-3287.	5.8	9
526	CO ₂ Chemisorption Behavior of Coordinationâ€Derived Phenolate Sorbents. ChemSusChem, 2021, 14, 2854-2859.	3.6	9
527	Towards the object-oriented design of active hydrogen evolution catalysts on single-atom alloys. Chemical Science, 2021, 12, 10634-10642.	3.7	9
528	Strategies toward the Synthesis of Advanced Functional Sorbent Performance for Uranium Uptake from Seawater. Industrial & Engineering Chemistry Research, 2021, 60, 15037-15044.	1.8	9
529	Mechanochemistryâ€Driven Construction of Azaâ€fused Ï€â€Conjugated Networks Toward Enhanced Energy Storage. Advanced Functional Materials, 2022, 32, .	7.8	9
530	Rheological Properties of a Telechelic Associative Polymer in the Presence of \hat{l}_{\pm} - and Methylated \hat{l}^2 -Cyclodextrins. Journal of Physical Chemistry B, 2007, 111, 371-378.	1.2	8
531	Influence of anionic surfactant on the rheological properties of hydrophobically modified polyethylene-oxide/cyclodextrin inclusion complexes. Journal of Rheology, 2009, 53, 293-308.	1.3	8
532	Spherical N-carboxyethylchitosan/hydroxyapatite nanoparticles prepared by ionic diffusion process in a controlled manner. Journal of Materials Science: Materials in Medicine, 2010, 21, 3095-3101.	1.7	8
533	Lowâ€Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition. Angewandte Chemie, 2015, 127, 13461-13465.	1.6	8
534	Hybridising nitrogen doped titania with kaolinite: A feasible catalyst for a semi-continuous photo-degradation reactor system. Chemical Engineering Journal, 2015, 279, 939-947.	6.6	8
535	Hierarchically Superstructured Metal Sulfides: Facile Perturbationâ€Assisted Nanofusion Synthesis and Visible Light Photocatalytic Characterizations. ChemNanoMat, 2016, 2, 1104-1110.	1.5	8
536	Controlling the Intermediate Structure of an Ionic Liquid for f-Block Element Separations. Journal of Physical Chemistry Letters, 2017, 8, 2049-2054.	2.1	8
537	Neutron vibrational spectroscopic studies of novel tire-derived carbon materials. Physical Chemistry Chemical Physics, 2017, 19, 22256-22262.	1.3	8
538	Fibers with Hyper rosslinked Functional Porous Frameworks. Macromolecular Rapid Communications, 2018, 39, 1700767.	2.0	8
539	Tailoring the Selectivity of Bioâ€Ethanol Transformation by Tuning the Size of Gold Supported on ZnZr ₁₀ O _x Catalysts. ChemCatChem, 2018, 10, 3969-3973.	1.8	8
540	Double-tilt in situ TEM holder with ultra-high stability. Ultramicroscopy, 2018, 192, 1-6.	0.8	8

#	Article	lF	CITATIONS
541	Ionic Gating of Ultrathin and Leaky Ferroelectrics. Advanced Materials Interfaces, 2019, 6, 1801723.	1.9	8
542	Tuning the Cation–Anion Interactions by Methylation of the Pyridinium Cation: An X-ray Photoelectron Spectroscopy Study of Picolinium Ionic Liquids. Journal of Physical Chemistry B, 2020, 124, 6657-6663.	1.2	8
543	Facile synthesis of a linear porous organic polymer <i>via</i> Schiff-base chemistry for propyne/propylene separation. Polymer Chemistry, 2020, 11, 4382-4386.	1.9	8
544	Thermal and magnetic dual-responsive l-proline nanohybrids for aqueous asymmetric aldol reaction. Reactive and Functional Polymers, 2020, 149, 104508.	2.0	8
545	PtAuSn Nanorod Catalysts with a Beneficial Core/Shell Structure for Oxygen Reduction Electrocatalysis. ACS Applied Energy Materials, 2021, 4, 3067-3073.	2.5	8
546	Molten Salt Assisted Low-Temperature Electro-Catalytic Graphitization of Coal Chars. Journal of the Electrochemical Society, 2021, 168, 046504.	1.3	8
547	Dynamics of Emim ⁺ in [Emim][TFSI]/LiTFSI Solutions as Bulk and under Confinement in a Quasi-liquid Solid Electrolyte. Journal of Physical Chemistry B, 2021, 125, 5443-5450.	1.2	8
548	Role of Organic Fluoride Salts in Stabilizing Niobium Oxo-Clusters Catalyzing Epoxidation. Langmuir, 2021, 37, 8190-8203.	1.6	8
549	Facile benzene reduction promoted by a synergistically coupled Cu–Co–Ce ternary mixed oxide. Chemical Science, 2020, 11, 5766-5771.	3.7	8
550	Newâ€Generation Carbonâ€Capture Ionic Liquids Regulated by Metalâ€Ion Coordination. ChemSusChem, 2022, 15, .	3.6	8
551	Mechanochemically Assisted Synthesis of High-Entropy Layer-Structured Dittmarite Analogues. ACS Applied Energy Materials, 2022, 5, 3290-3297.	2.5	8
552	Dynamic light scattering of semidilute hydrophobically modified alkali-soluble emulsion solutions with different lengths of poly(ethylene oxide) spacer chain. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3288-3298.	2.4	7
553	Atomic Structure of Au Nanoparticles on a Silica Support by an X-ray PDF Study. Journal of Physical Chemistry C, 2010, 114, 6983-6988.	1.5	7
554	Easy synthesis of poly(ionic liquid) for use as a porous carbon precursor. New Carbon Materials, 2014, 29, 78-80.	2.9	7
555	Design of Calix-Based Cages for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2017, 56, 4502-4507.	1.8	7
556	Interfacial Engineering of Supported Liquid Membranes by Vapor Crossâ€Linking for Enhanced Separation of Carbon Dioxide. ChemSusChem, 2018, 11, 185-192.	3.6	7
557	Construction of a Nanoporous Highly Crystalline Hexagonal Boron Nitride from an Amorphous Precursor for Catalytic Dehydrogenation. Angewandte Chemie, 2019, 131, 10736-10740.	1.6	7
558	O2/N2-responsive microgels as functional draw agents for gas-triggering forward osmosis desalination. Journal of Membrane Science, 2020, 595, 117584.	4.1	7

#	Article	IF	Citations
559	Addition of Chloroform in a Solvent-in-Salt Electrolyte: Outcomes in the Microscopic Dynamics in Bulk and Confinement. Journal of Physical Chemistry C, 2020, 124, 22366-22375.	1.5	7
560	X-ray photoelectron spectroscopy of piperidinium ionic liquids: a comparison to the charge delocalised pyridinium analogues. Physical Chemistry Chemical Physics, 2020, 22, 11976-11983.	1.3	7
561	Prediction by Convolutional Neural Networks of CO ₂ /N ₂ Selectivity in Porous Carbons from N ₂ Adsorption Isotherm at 77 K. Angewandte Chemie, 2020, 132, 19813-19816.	1.6	7
562	Interfacial Biocatalytic Performance of Nanofiber-Supported \hat{I}^2 -Galactosidase for Production of Galacto-Oligosaccharides. Catalysts, 2020, 10, 81.	1.6	7
563	Strong Enhancement of Nanoconfined Water Mobility by a Structure Breaking Salt. Journal of Physical Chemistry Letters, 2021, 12, 4038-4044.	2.1	7
564	Interactions of an Imine Polymer with Nanoporous Silica and Carbon in Hybrid Adsorbents for Carbon Capture. Langmuir, 2021, 37, 4622-4631.	1.6	7
565	Molecular Dynamics Simulations of Complexation of Am(III) with a Preorganized Dicationic Ligand in an Ionic Liquid. Journal of Physical Chemistry B, 2021, 125, 8532-8538.	1.2	7
566	A Cationic Ru(II) Complex Intercalated into Zirconium Phosphate Layers Catalyzes Selective Hydrogenation via Heterolytic Hydrogen Activation. ChemCatChem, 2021, 13, 3801-3814.	1.8	7
567	Synthesis of Poly(ionic Liquid)s- <i>block</i> -poly(methyl Methacrylate) Copolymer-Grafted Silica Particle Brushes with Enhanced CO ₂ Permeability and Mechanical Performance. Langmuir, 2021, 37, 10875-10881.	1.6	7
568	Microstructure of Un-neutralized Hydrophobically Modified Alkali-Soluble Emulsion Latex in Different Surfactant Solutions. Langmuir, 2005, 21, 7136-7142.	1.6	6
569	Generation of Fluorescent and Stable Conjugated Polymer Nanoparticles with Hydrophobically Modified Poly(acrylate)s. Macromolecules, 2016, 49, 8530-8539.	2.2	6
570	A general synthesis of abundant metal nanoparticles functionalized mesoporous graphitized carbon. RSC Advances, 2017, 7, 50966-50972.	1.7	6
571	Cellâ€penetrating peptide–labelled smart polymers for enhanced gene delivery. Engineering in Life Sciences, 2017, 17, 193-203.	2.0	6
572	Structure and Dynamics of Polymeric Canopies in Nanoscale Ionic Materials: An Electrical Double Layer Perspective. Scientific Reports, 2018, 8, 5191.	1.6	6
573	Extraction of Rare Earths in Ionic Liquids <i>Via</i> Competitive Ligand Complexation between TODGA and DTPA. Solvent Extraction and Ion Exchange, 2018, 36, 574-582.	0.8	6
574	Synthesis and Characterization of Macrocyclic Ionic Liquids for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2021, 60, 8218-8226.	1.8	6
575	Benchmark CO2 separation achieved by highly fluorinated nanoporous molecular sieve membranes from nonporous precursor via in situ cross-linking. Journal of Membrane Science, 2021, 638, 119698.	4.1	6
576	Beyond Simple Dilution: Superior Conductivities from Cosolvation of Acetonitrile/LiTFSI Concentrated Solution with Acetone. Journal of Physical Chemistry C, 2022, 126, 2788-2796.	1.5	6

#	Article	IF	Citations
577	Regulating the Spatial Distribution of Ru Nanoparticles on CeO ₂ Support for Enhanced Propane Oxidation. ACS Applied Nano Materials, 2022, 5, 3937-3945.	2.4	6
578	Single Atoms Anchored in Hexagonal Boron Nitride for Propane Dehydrogenation from First Principles. ChemCatChem, 2022, 14, .	1.8	6
579	Ultrasound-mediated synthesis of nanoporous fluorite-structured high-entropy oxides toward noble metal stabilization. IScience, 2022, 25, 104214.	1.9	6
580	Two Ligands of Interest in Recovering Uranium from the Oceans: The Correct Formation Constants of the Uranyl(VI) Cation with 2,2′-Bipyridyl-6,6′-dicarboxylic Acid and 1,10-Phenanthroline-2,9-dicarboxylic Acid. Inorganic Chemistry, 2022, 61, 9960-9967.	1.9	6
581	Singleâ€cell analysis for bioprocessing. Engineering in Life Sciences, 2015, 15, 582-592.	2.0	5
582	Methyl quantum tunneling in ionic liquid [DMIm][TFSI] facilitated by Bis(trifluoromethane)sulfonimide lithium salt. Scientific Reports, 2018, 8, 10354.	1.6	5
583	Coordination-supported organic polymers: mesoporous inorganic–organic materials with preferred stability. Inorganic Chemistry Frontiers, 2018, 5, 2018-2022.	3.0	5
584	A pore-scale numerical investigation of the effect of pore characteristics on flow properties in soils. Journal of Zhejiang University: Science A, 2019, 20, 961-978.	1.3	5
585	Mainly on the Plane: Deep Subsurface Bacterial Proteins Bind and Alter Clathrate Structure. Crystal Growth and Design, 2020, 20, 6290-6295.	1.4	5
586	Highly Ethyleneâ€Selective Electrocatalytic CO ₂ Reduction Enabled by Isolated Cuâ^'S Motifs in Metalâ€"Organic Framework Based Precatalysts. Angewandte Chemie, 2022, 134, .	1.6	5
587	Electrochemical conversion of CO ₂ to syngas with a stable H ₂ /CO ratio in a wide potential range over ligand-engineered metal–organic frameworks. Journal of Materials Chemistry A, 2022, 10, 9954-9959.	5.2	5
588	A non-micellar synthesis of mesoporous carbon via spinodal decomposition. RSC Advances, 2014, 4, 23703-23706.	1.7	4
589	Clinicopathological and phenotypic features of chronic <scp>NK</scp> cell lymphocytosis identified among patients with asymptomatic lymphocytosis. International Journal of Laboratory Hematology, 2015, 37, 783-790.	0.7	4
590	A Robust Strategy for "Living―Growth of Lead Sulfide Quantum Dots. ChemNanoMat, 2016, 2, 49-53.	1.5	4
591	Guestâ€Induced Breathing Effect in a Flexible Molecular Crystal. Angewandte Chemie, 2016, 128, 3439-3442.	1.6	4
592	Preparation of a mesocellular siliceous foam supported lanthanide-sensitive polymer for the selective adsorption of lanthanides. Dalton Transactions, 2018, 47, 4840-4846.	1.6	4
593	Nahinfrarotaktive Bleichalkogenidâ€Quantenpunkte: Herstellung, postsynthetischer Ligandenaustausch und Anwendungen in Solarzellen. Angewandte Chemie, 2019, 131, 5256-5279.	1.6	4
594	Incorporating Lanthanum into Mesoporous Silica Foam Enhances Enzyme Immobilization and the Activity of Penicillin G Acylase Due to Lewis Acidâ€Base Interactions. ChemBioChem, 2020, 21, 2143-2148.	1.3	4

#	Article	IF	CITATIONS
595	Kinetic Isotope Effect as a Tool To Investigate the Oxygen Reduction Reaction on Ptâ€based Electrocatalysts – Part II: Effect of Platinum Dispersion. ChemPhysChem, 2020, 21, 1331-1339.	1.0	4
596	Cell-friendly photo-functionalized TiO2 nano-micro-honeycombs for selectively preventing bacteria and platelet adhesion. Materials Science and Engineering C, 2021, 123, 111996.	3.8	4
597	Installation of high-valence tungsten in MIL-125(Ti) for boosted photocatalytic hydrogen evolution. Science China Materials, 2022, 65, 1237-1244.	3 . 5	4
598	Co-MOF Nanosheets Etched by FeCl ₂ Solution for Enhanced Electrocatalytic Oxygen Evolution. Energy & Evolution.	2.5	4
599	Real-Space Local Dynamics of Molten Inorganic Salts Using Van Hove Correlation Function. Journal of Physical Chemistry Letters, 2022, 13, 5956-5962.	2.1	4
600	Advanced Transmission Electron Microscopy for Identification of <scp>Atomicâ€Scale</scp> Configurations of <scp>Zeoliteâ€Supported</scp> Metal Catalysts. Chinese Journal of Chemistry, 2022, 40, 2371-2373.	2.6	4
601	Realizing Selective and Aerobic Oxidation by Porous Transition-Metal-Salt@Ceria Catalyst. ChemistrySelect, 2016, 1, 1179-1183.	0.7	3
602	Comparative microscopic dynamics in a room-temperature ionic liquid confined in carbon pores characterized by reversible and irreversible ion immobilization. AIP Conference Proceedings, 2018, , .	0.3	3
603	Tuning the Core–Shell Structure of Au144@Fe2O3 for Optimal Catalytic Activity for CO Oxidation. Catalysis Letters, 2018, 148, 2315-2324.	1.4	3
604	Topotactic Synthesis of Phosphabenzeneâ€Functionalized Porous Organic Polymers: Efficient Ligands in CO 2 Conversion. Angewandte Chemie, 2019, 131, 13901-13905.	1.6	3
605	Entropic selectivity in air separation <i>via</i> a bilayer nanoporous graphene membrane. Physical Chemistry Chemical Physics, 2019, 21, 16310-16315.	1.3	3
606	Mechanochemical Synthesis of High-Purity Anhydrous Binary Alkali and Alkaline Earth Chloride Mixtures. Industrial & Engineering Chemistry Research, 2020, 59, 19884-19889.	1.8	3
607	MEMS-based dual temperature control measurement method for thermoelectric properties of individual nanowires. MRS Communications, 2020, 10, 620-627.	0.8	3
608	H ₂ O-prompted CO ₂ capture on metal silicates <i>in situ</i> generated from SBA-15. RSC Advances, 2020, 10, 28731-28740.	1.7	3
609	Ambient Temperature Graphitization Based on Mechanochemical Synthesis. Angewandte Chemie, 2020, 132, 22119-22123.	1.6	3
610	Roles of niobium in the dehydrogenation of propane to propylene over a Pt/Nb-modified Al ₂ O ₃ catalyst. New Journal of Chemistry, 2020, 44, 20115-20121.	1.4	3
611	Perovskite Oxide–Halide Solid Solutions: A Platform for Electrocatalysts. Angewandte Chemie, 2021, 133, 10041-10046.	1.6	3
612	Porous Liquids: Engineering Permanent Porosity into Liquids (Adv. Mater. 18/2021). Advanced Materials, 2021, 33, 2170136.	11.1	3

#	Article	IF	Citations
613	Europium Oxychloride Absorption Spectroscopy as an Optical Probe of Temperature. Spectroscopy Letters, 1993, 26, 1073-1083.	0.5	2
614	Synthesis and Acid Solution Properties of Two-head Group Viscoelastic Surfactant. Petroleum Science and Technology, 2014, 32, 729-737.	0.7	2
615	Frontispiece: Mesoporous Carbon Materials with Functional Compositions. Chemistry - A European Journal, 2017, 23, .	1.7	2
616	In situ Atmospheric Transmission Electron Microscopy of Catalytic Nanomaterials. MRS Advances, 2018, 3, 2297-2303.	0.5	2
617	Sodium Oxide Cathodes: Insights into the Enhanced Cycle and Rate Performances of the Fâ€Substituted P2â€Type Oxide Cathodes for Sodiumâ€Ion Batteries (Adv. Energy Mater. 19/2020). Advanced Energy Materials, 2020, 10, 2070087.	10.2	2
618	A template-free synthesis of mesoporous SrTiO ₃ single crystals. CrystEngComm, 2021, 23, 5595-5600.	1.3	2
619	CO 2 Chemisorption Behavior of Coordinationâ€Derived Phenolate Sorbents. ChemSusChem, 2021, 14, 2784-2784.	3.6	2
620	Engineering the Interlayer Spacing by Preâ€Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid (Adv. Funct. Mater. 33/2021). Advanced Functional Materials, 2021, 31, 2170246.	7.8	2
621	Highly Perfluorinated Covalent Triazine Frameworks Derived fromÂa Lowâ€Temperature IonothermalÂApproach Towards EnhancedÂCO2 Electroreduction. Angewandte Chemie, 2021, 133, 25892.	1.6	2
622	Controlling the elasticity of polyacrylonitrile fibers <i>via</i> ionic liquids containing cyano-based anions. RSC Advances, 2022, 12, 8656-8660.	1.7	2
623	Enhanced Hemocompatibility of Silver Nanoparticles Using the Photocatalytic Properties of Titanium Dioxide. Frontiers in Bioengineering and Biotechnology, 2022, 10, 855471.	2.0	2
624	Direct Correlation of the Salt-Reduced Diffusivities of Organic Solvents with the Solvent's Mole Fraction. Journal of Physical Chemistry Letters, 2022, 13, 2845-2850.	2.1	2
625	Adding MgCl ₂ to Molten NaClâ^'UCl _{<i>n</i>} (<i>n</i> =3, 4): Insights from Firstâ€Principles Molecular Dynamics. ChemPhysChem, 2022, 23, .	1.0	2
626	19F NMR study of 1-halo-F-adamantanes. Magnetic Resonance in Chemistry, 1993, 31, 969-971.	1.1	1
627	Amphiphilic and biocompatible properties of poly (EAâ€MAA). Journal of Applied Polymer Science, 2013, 127, 3731-3736.	1.3	1
628	Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell. AIP Conference Proceedings, 2016, , .	0.3	1
629	In situ Scanning Transmission Electron Microscopy with Atomic Resolution under Atmospheric Pressures. Microscopy and Microanalysis, 2018, 24, 234-235.	0.2	1
630	In Situ TEM Probing of Ferroelectric Switching under Electrical Bias. Microscopy and Microanalysis, 2018, 24, 1812-1813.	0.2	1

#	Article	lF	Citations
631	<i>In situ</i> Cathodoluminescence and Monitoring Electronic Structure Change Using Optical TEM Holder. Microscopy and Microanalysis, 2019, 25, 2302-2303.	0.2	1
632	In situ Scanning Transmission Electron Microscopy with Atomic Resolution under Atmospheric Pressure. Microscopy Today, 2019, 27, 16-21.	0.2	1
633	Directly Probing Local Coordination, Charge State and Stability of Single Atom Catalysts. Microscopy and Microanalysis, 2020, 26, 2468-2469.	0.2	1
634	A high temperature cell for investigating interfacial structure on the molecular scale in molten salt/alloy systems. Review of Scientific Instruments, 2021, 92, 123903.	0.6	1
635	Molecularly Dispersed Cobalt Phthalocyanine Mediates Selective and Durable CO ₂ Reduction in a Membrane Flow Cell (Adv. Funct. Mater. 11/2022). Advanced Functional Materials, 2022, 32, .	7.8	1
636	Molecular Dynamics Simulations of U(III) and U(IV) in Molten Chlorides. ACS Symposium Series, 0, , 365-386.	0.5	1
637	Enhancing Cycling Stability and Capacity Retention of NMC811 Cathodes by Reengineering Interfaces via Electrochemical Fluorination (Adv. Mater. Interfaces 18/2022). Advanced Materials Interfaces, 2022, 9, .	1.9	1
638	Sensitive electric field control of first-order phase transition in epitaxial multiferroic heterostructures. Acta Materialia, 2022, 237, 118145.	3.8	1
639	Nano-fractals from inorganic salts induced by fullerene polymer systems. International Journal of Nanotechnology, 2007, 4, 377.	0.1	0
640	Carbon Membranes: New Tricks for Old Molecules: Development and Application of Porous Nâ€doped, Carbonaceous Membranes for CO ₂ Separation (Adv. Mater. 30/2013). Advanced Materials, 2013, 25, 4200-4200.	11.1	0
641	Rýcktitelbild: Hypercrosslinked Phenolic Polymers with Well-Developed Mesoporous Frameworks (Angew. Chem. 15/2015). Angewandte Chemie, 2015, 127, 4762-4762.	1.6	0
642	Frontispiece: Charged Porous Polymers using a Solid CO Cross-Coupling Reaction. Chemistry - A European Journal, 2015, 21, n/a-n/a.	1.7	0
643	Innenrücktitelbild: Porous Liquids: A Promising Class of Media for Gas Separation (Angew. Chem.) Tj ETQq1 1 ().784314 1.6	rgBT /Overlo
644	Transmission Electron Microscopy at Atmospheric Pressure. Microscopy and Microanalysis, 2016, 22, 726-727.	0.2	0
645	New Insights into CO2 Absorption Mechanisms with Amino-Acid Ionic Liquids. ChemSusChem, 2016, 9, 765-765.	3.6	0
646	Rücktitelbild: Highly Efficient Carbon Monoxide Capture by Carbanionâ€Functionalized Ionic Liquids through Câ€Site Interactions (Angew. Chem. 24/2017). Angewandte Chemie, 2017, 129, 7108-7108.	1.6	0
647	Pdâ€Metalated Conjugated Nanoporous Polycarbazoles for Additiveâ€Free Cyanation of Aryl Halides: Boosting Catalytic Efficiency through Spatial Modulation. ChemSusChem, 2017, 10, 2320-2320.	3.6	0
648	In situ Study of Dynamics of CuAu Alloy Nanoparticles on Oxide Supports. Microscopy and Microanalysis, 2017, 23, 954-955.	0.2	0

#	Article	IF	CITATIONS
649	In-situ observation of Rh-CaTiO3 catalysts during reduction and oxidation treatments by transmission electron microscopy. Microscopy and Microanalysis, 2017, 23, 948-949.	0.2	O
650	Double-tilt in situ TEM Holder with Ultra-high Stability. Microscopy and Microanalysis, 2018, 24, 1890-1891.	0.2	0
651	Investigating Thermal Behavior of Surface Phonon in SiC by in-situ Vibrational Spectroscopy. Microscopy and Microanalysis, 2018, 24, 416-417.	0.2	O
652	Reply to the Correspondence on "Preorganization and Cooperation for Highly Efficient and Reversible Capture of Lowâ€Concentration CO 2 by Ionic Liquids― Angewandte Chemie, 2018, 131, 392.	1.6	0
653	Transmission Electron Microscopy of Catalytic Nanomaterials at Atomic Resolution. Microscopy and Microanalysis, 2019, 25, 2054-2055.	0.2	O
654	Developing Multifunctional and High Resolution In-situ TEM Holders. Microscopy and Microanalysis, 2019, 25, 1854-1855.	0.2	0
655	Fluorination of MXene by Elemental F ₂ as Electrode Material for Lithiumâ€lon Batteries. ChemSusChem, 0, , .	3.6	O
656	Fluorination of MXene by Elemental F 2 as Electrode Material for Lithiumâ€lon Batteries. ChemSusChem, 2019, 12, 1271-1271.	3.6	0
657	Methane Hydrate Crystallization on Sessile Water Droplets. Journal of Visualized Experiments, 2021, , .	0.2	O
658	Solid Electrolyte Interphases: Insight into the Solid Electrolyte Interphase Formation in Bis(fluorosulfonyl)Imide Based Ionic Liquid Electrolytes (Adv. Funct. Mater. 23/2021). Advanced Functional Materials, 2021, 31, 2170163.	7.8	0
659	Frontispiece: Electrochemical Graphitization: An Efficient Conversion of Amorphous Carbons to Nanostructured Graphites. Chemistry - A European Journal, 2017, 23, .	1.7	0
660	(Physical and Analytical Electrochemistry Division Max Bredig Award Address In Molten Salt and Ionic) Tj ETQq0 C Transactions, 2020, 98, 3-8.	0 0 rgBT /C 0.3	Overlock 10 Tf 0
661	Operando Metalloid $Zn\hat{l}'+$ Active Sites for Highly Efficient Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie, 0, , .	1.6	0