
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3764484/publications.pdf Version: 2024-02-01

DANLI

#	Article	IF	CITATIONS
1	Conjugative electrospinning towards Janus-type nanofibers array membrane concurrently displaying dual-functionality of improved red luminescence and tuneable superparamagnetism. Journal of Materials Science: Materials in Electronics, 2022, 33, 4438-4449.	2.2	10
2	Designed formation of Prussian Blue/CuS Janus nanostructure with enhanced NIR-I and NIR-II dual window response for tumor thermotherapy. Journal of Colloid and Interface Science, 2022, 613, 671-680.	9.4	13
3	Up-/Downconversion Fluorescence Dual-Channel Probe Based on NaYF ₄ : Yb/Er/Eu Nanoparticles for the Determination of Cu(II). ACS Applied Nano Materials, 2022, 5, 3333-3341.	5.0	7
4	New Structural Insights into Densely Assembled Reduced Graphene Oxide Membranes. Advanced Functional Materials, 2022, 32, .	14.9	27
5	Distinctive Sandwich-Type Composite Film and Deuterogenic Three-Dimensional Triwall Tubes Affording Concurrent Aeolotropic Conduction, Magnetism, and Up-/Down-Conversion Luminescence. ACS Omega, 2022, 7, 14332-14344.	3.5	3
6	Peculiar Sandwich-Typed Composite Membrane Endowed with Concurrent Tunable Electrically Conductive Anisotropism, Tailored Superparamagnetism, and Improved Green Luminescence. Russian Journal of Physical Chemistry A, 2022, 96, 884-893.	0.6	0
7	Flexible electrospun fluorescent anisotropic conductive Janus-typed nanoribbon membrane. European Polymer Journal, 2022, 173, 111265.	5.4	9
8	An innovative and facile strategy to construct GdF3:Eu3+@Void@SiO2 nanowire-in-nanotube structured nanofibers with photoluminescence-magnetism Bi-functionality. Journal of Luminescence, 2022, 249, 119040.	3.1	3
9	A strategy towards MF2:Yb3+, Er3+/SiO2 (M=Ba, Sr, Ca) yolk-shell nanofibers and yolk-shell nanobelts with up-conversion fluorescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129338.	4.7	8
10	Electrospun light stimulus response-enhanced anisotropic conductive Janus membrane with up/down-conversion luminescence. Materials Chemistry Frontiers, 2022, 6, 2219-2232.	5.9	10
11	Graphene Elastomer Electrodes for Medical Sensing Applications: Combining High Sensitivity, Low Noise and Excellent Skin Compatibility to Enable Continuous Medical Monitoring. IEEE Sensors Journal, 2021, 21, 13967-13975.	4.7	15
12	Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination. Journal of Membrane Science, 2021, 621, 118934.	8.2	45
13	Rapid Hardâ€Tissueâ€Embedding Method for Embedding Graphene Nanomaterials: A Multilayered Graphene Hydrogel Membrane. Macromolecular Materials and Engineering, 2021, 306, .	3.6	3
14	Sandwich-shape composite film displaying conductive aeolotropy, magnetism and fluorescence and derived 3D tri-wall tube. European Physical Journal Plus, 2021, 136, 1.	2.6	1
15	Modular multifunctional Janus-structure film offering multiple anisotropic conduction, polychromatic luminescence and tuned magnetism. European Physical Journal Plus, 2021, 136, 1.	2.6	2
16	Enhanced UV–Vis–NIR composite photocatalysis of NaBiF4:Yb3+, Tm3+ upconversion nanoparticles loaded on Bi2WO6 microspheres. Journal of Solid State Chemistry, 2021, 300, 122248.	2.9	12
17	A 3D Z-Scheme Heterojunction Photocatalyst: Flower-Like Ag/AgBr/Zn3V2O7(OH)2·2H2O and its Enhanced Visible-Light Photocatalytic Activities. Journal of Electronic Materials, 2021, 50, 6772-6783.	2.2	2
18	White light emission and energy transfer mechanism of LaOCl:Tb3+/Sm3+ with 3D umbrella-like structure. Journal of Luminescence, 2021, 238, 118277.	3.1	3

#	Article	IF	CITATIONS
19	Modification of indium oxide nanofibers by polyoxometalate electron acceptor doping for enhancement of gas sensing at room temperature. Sensors and Actuators B: Chemical, 2021, 344, 130227.	7.8	51
20	Novel photosensitive dual-anisotropic conductive Janus film endued with magnetic-luminescent properties and derivative 3D structures. Journal of Colloid and Interface Science, 2021, 601, 899-914.	9.4	8
21	Tricolor flag-shaped nanobelt array and derivant 3D structures display concurrent conductive anisotropy, up-conversion fluorescence and magnetism. Materials and Design, 2021, 211, 110121.	7.0	4
22	Polyoxometalate electron acceptor incorporated improved properties of Cu2ZnSnS4-based room temperature NO2 gas sensor. Sensors and Actuators B: Chemical, 2021, 348, 130683.	7.8	26
23	Simultaneous Visual Detection and Removal of Cu ²⁺ with Electrospun Self-Supporting Flexible Amidated Polyacrylonitrile/Branched Polyethyleneimine Nanofiber Membranes. ACS Applied Materials & Interfaces, 2021, 13, 49288-49300.	8.0	46
24	A fluorescent triboelectric nanogenerator manufactured with a flexible janus nanobelt array concurrently acting as a charge-generating layer and charge-trapping layer. Nanoscale, 2021, 13, 19144-19154.	5.6	12
25	Moisture-resistant Nb-based fluoride K ₂ NbF ₇ :Mn ⁴⁺ and oxyfluoride phosphor K ₃ (NbOF ₅)(HF ₂):Mn ⁴⁺ : synthesis, improved luminescence performance and application in warm white LEDs. Dalton Transactions, 2021, 50, 17290-17300.	3.3	17
26	Solvationâ€Involved Nanoionics: New Opportunities from 2D Nanomaterial Laminar Membranes. Advanced Materials, 2020, 32, e1904562.	21.0	61
27	Prussian Blue@Polyacrylic Acid/Au Aggregate Janus Nanoparticles for CT Imagingâ€guided Chemotherapy and Enhanced Photothermal Therapy. Advanced Therapeutics, 2020, 3, 2000091.	3.2	16
28	Free-standing graphene oxide mid-infrared polarizers. Nanoscale, 2020, 12, 11480-11488.	5.6	9
29	A new concept of a pseudo-Janus structure: employing a Yin-Yang fish structure film with up/down conversion fluorescence and bi-anisotropic conduction to represent the pseudo-Janus structure as a case study. Journal of Materials Chemistry C, 2020, 8, 8676-8688.	5.5	10
30	Electrospun polyfunctional conductive anisotropic Janus-shaped film, derivative 3D Janus tube and 3D plus 2D complete flag-shaped structures. Journal of Materials Chemistry C, 2020, 8, 6565-6576.	5.5	22
31	Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nature Nanotechnology, 2020, 15, 683-689.	31.5	66
32	Superhydrophilic MoS2–Ni3S2 nanoflake heterostructures grown on 3D Ni foam as an efficient electrocatalyst for overall water splitting. Journal of Materials Science: Materials in Electronics, 2020, 31, 6607-6617.	2.2	16
33	A facile one-step synthesis of super-hydrophilic (NH ₄) _{0.33} WO ₃ /WS ₂ composites: a highly efficient adsorbent for methylene blue. New Journal of Chemistry, 2020, 44, 10418-10427.	2.8	6
34	Modularization design philosophy for multifunctional materials: a case study of a Janus film affording concurrent electrically conductive anisotropic-magnetic-fluorescent multifunctionality. Journal of Materials Chemistry C, 2019, 7, 9075-9086.	5.5	27
35	A Novel Strategy to Fabricate CuS, Cu7.2S4, and Cu2–ÂxSe Nanofibers via Inheriting the Morphology of Electrospun CuO Nanofibers. Russian Journal of Physical Chemistry A, 2019, 93, 730-735.	0.6	2
36	Assembling 1D and Janus Nanobelts into 2D Aeolotropic Conductive Janus Membranes and 3D Doubleâ€Walled Janus Tubes. ChemNanoMat, 2019, 5, 820-830.	2.8	11

#	Article	IF	CITATIONS
37	3D nitrogen-doped hierarchical porous carbon framework for protecting sulfur cathode in lithium–sulfur batteries. New Journal of Chemistry, 2019, 43, 9641-9651.	2.8	22
38	Flexible sandwich-shaped composite film with simultaneous double electrically conductive anisotropy, magnetism and dual-color fluorescence. New Journal of Chemistry, 2019, 43, 7984-7996.	2.8	8
39	Preparation of Janus microfibers with magnetic and fluorescence functionality via conjugate electro-spinning. Materials and Design, 2019, 170, 107701.	7.0	39
40	Electrochemically-derived graphene oxide membranes with high stability and superior ionic sieving. Chemical Communications, 2019, 55, 4075-4078.	4.1	21
41	A neoteric sandwich-configurational composite film offering synchronous conductive aeolotropy, superparamagnetism and dual-color fluorescence. Nanoscale Advances, 2019, 1, 1497-1509.	4.6	7
42	Anisotropic Conductive Membrane with Superparamagnetism and Color-Tunable Luminescence. Russian Journal of Physical Chemistry A, 2019, 93, 2444-2451.	0.6	4
43	Novel sandwich-structured composite pellicle displays high and tuned electrically conductive anisotropy, magnetism and photoluminescence. Chemical Engineering Journal, 2019, 361, 713-724.	12.7	34
44	Employing novel Janus nanobelts to achieve anisotropic conductive array pellicle functionalized by superparamagnetism and green fluorescence. Journal of Materials Science: Materials in Electronics, 2019, 30, 4219-4230.	2.2	1
45	Conjugate Electrospinning Construction of Microyarns with Synchronous Color-Tuned Photoluminescence and Tunable Electrical Conductivity. Journal of Electronic Materials, 2019, 48, 1511-1521.	2.2	3
46	Dandelion Derived Nitrogen-Doped Hollow Carbon Host for Encapsulating Sulfur in Lithium Sulfur Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 3042-3051.	6.7	71
47	Up/down conversion luminescence and energy transfer of Er3+/Tb3+ activated NaGd(WO4)2 green emitting phosphors. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 88-97.	3.9	6
48	Electrospinning assembly of 1D peculiar Janus nanofiber into 2D anisotropic electrically conductive array membrane synchronously endued with tuned superparamagnetism and color-tunable luminescence. Journal of Materials Science: Materials in Electronics, 2018, 29, 10284-10300.	2.2	11
49	Peculiarly Structured Janus Nanofibers Display Synchronous and Tuned Trifunctionality of Enhanced Luminescence, Electrical Conduction, and Superparamagnetism. ChemPlusChem, 2018, 83, 108-116.	2.8	10
50	Flexible special-structured Janus nanofiber synchronously endued with tunable trifunctionality of enhanced photoluminescence, electrical conductivity and superparamagnetism. Journal of Materials Science: Materials in Electronics, 2018, 29, 7119-7129.	2.2	13
51	Realizing white light emitting in single phased LaOCl based on energy transfer from Tm3+ to Eu3+. Ceramics International, 2018, 44, 6754-6761.	4.8	9
52	Engineering graphene for high-performance supercapacitors: Enabling role of colloidal chemistry. Journal of Energy Chemistry, 2018, 27, 1-5.	12.9	21
53	An equivalent 1D nanochannel model to describe ion transport in multilayered graphene membranes. Progress in Natural Science: Materials International, 2018, 28, 246-250.	4.4	9
54	Room-temperature synthesis, controllable morphology and optical characteristics of narrow-band red phosphor K ₂ LiGaF ₆ :Mn ⁴⁺ . CrystEngComm, 2018, 20, 2183-2192.	2.6	18

#	Article	IF	CITATIONS
55	Integrating photoluminescence, magnetism and thermal conversion for potential photothermal therapy and dual-modal bioimaging. Journal of Colloid and Interface Science, 2018, 510, 292-301.	9.4	25
56	Conjugate electrospinning-fabricated nanofiber yarns simultaneously endowed with bifunctionality of magnetism and enhanced fluorescence. Journal of Materials Science, 2018, 53, 2290-2302.	3.7	27
57	Multifunctional Cellular Materials Based on 2D Nanomaterials: Prospects and Challenges. Advanced Materials, 2018, 30, 1704850.	21.0	47
58	Assembling exceptionally-structured Janus nanoribbons into a highly anisotropic electrically conductive array film that exhibits red fluorescence and superparamagnetism. New Journal of Chemistry, 2018, 42, 18708-18716.	2.8	12
59	Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nature Nanotechnology, 2018, 13, 685-690.	31.5	196
60	lonâ€Transport Experiments to Probe the Nanostructure of Graphene/Polymer Membranes. Small Methods, 2018, 2, 1800187.	8.6	4
61	Multifunctional PVP-Ba2CdF7:Yb3+, Ho3+ coated on Ag nanospheres for bioimaging and tumor photothermal therapy. Applied Surface Science, 2018, 458, 931-939.	6.1	22
62	A novel strategy to achieve NaGdF ₄ :Eu ³⁺ nanofibers with colorâ€ŧailorable luminescence and paramagnetic performance. Journal of the American Ceramic Society, 2017, 100, 2034-2044.	3.8	16
63	Assembly of 1D nanofibers into a 2D bi-layered composite nanofibrous film with different functionalities at the two layers via layer-by-layer electrospinning. Physical Chemistry Chemical Physics, 2017, 19, 118-126.	2.8	9
64	Emerging La2O2CN2 matrix with controllable 3D morphology for photoluminescence applications. CrystEngComm, 2017, 19, 6498-6505.	2.6	5
65	Hydrothermal synthesis of narrow-band red emitting K ₂ NaAlF ₆ :Mn ⁴⁺ phosphor for warm-white LED applications. RSC Advances, 2017, 7, 45834-45842.	3.6	33
66	Dual-mode blue emission, paramagnetic properties of Yb3+–Tm3+ co-doped GdOCl difunctional nanostructures. Journal of Materials Science: Materials in Electronics, 2017, 28, 19038-19050.	2.2	3
67	Novel nanofiber yarns synchronously endued with tri-functional performance of superparamagnetism, electrical conductivity and enhanced fluorescence prepared by conjugate electrospinning. RSC Advances, 2017, 7, 48702-48711.	3.6	16
68	La2O2CN2:Yb3+/Tm3+ nanofibers and nanobelts: novel fabrication technique, structure and upconversion luminescence. Journal of Materials Science: Materials in Electronics, 2017, 28, 16282-16291.	2.2	2
69	Super-carbon spring: a biomimetic design. Science China Materials, 2017, 60, 186-187.	6.3	2
70	Facile electrochemical approach for the production of graphite oxide with tunable chemistry. Carbon, 2017, 112, 185-191.	10.3	59
71	Flexible laser scribed biomimetic supercapacitors. , 2016, , .		1
72	Robust Vacuumâ€∤Airâ€Dried Graphene Aerogels and Fast Recoverable Shapeâ€Memory Hybrid Foams. Advanced Materials, 2016, 28, 1510-1516.	21.0	177

#	Article	IF	CITATIONS
73	Highâ€Rate and Highâ€Volumetric Capacitance of Compact Graphene–Polyaniline Hydrogel Electrodes. Advanced Energy Materials, 2016, 6, 1600185.	19.5	91
74	Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination. Journal of Materials Science: Materials in Electronics, 2016, 27, 11666-11673.	2.2	8
75	Multilayered Graphene Hydrogel Membranes for Guided Bone Regeneration. Advanced Materials, 2016, 28, 4025-4031.	21.0	130
76	Tunable multicolor luminescence and white light emission realized in Eu ³⁺ mono-activated GdF ₃ nanofibers with paramagnetic performance. RSC Advances, 2016, 6, 113045-113052.	3.6	16
77	Giant third-order nonlinearity from low-loss electrochemical graphene oxide film with a high power stability. Applied Physics Letters, 2016, 109, .	3.3	41
78	NaGdF ₄ :Dy ³⁺ nanofibers and nanobelts: facile construction technique, structure and bifunctionality of luminescence and enhanced paramagnetic performances. Physical Chemistry Chemical Physics, 2016, 18, 27536-27544.	2.8	35
79	Novel electrospun bilayered composite fibrous membrane endowed with tunable and simultaneous quadrifunctionality of electricity–magnetism at one layer and upconversion luminescence–photocatalysis at the other layer. RSC Advances, 2016, 6, 96084-96092.	3.6	6
80	Novel Electrospun Dual-Layered Composite Nanofibrous Membrane Endowed with Electricity–Magnetism Bifunctionality at One Layer and Photoluminescence at the Other Layer. ACS Applied Materials & Interfaces, 2016, 8, 26226-26234.	8.0	36
81	Mechanically-Assisted Electrochemical Production of Graphene Oxide. Chemistry of Materials, 2016, 28, 8429-8438.	6.7	91
82	A new scheme to acquire BaY2F8:Er3+ nanofibers with upconversion luminescence. Journal of Materials Science: Materials in Electronics, 2016, 27, 9152-9158.	2.2	10
83	A new route to fabricate PbS nanofibers and PbSe nanofibers via electrospinning combined with double-crucible technique. Journal of Materials Science: Materials in Electronics, 2016, 27, 9772-9779.	2.2	3
84	Molecular dynamics simulations of the electric double layer capacitance of graphene electrodes in mono-valent aqueous electrolytes. Nano Research, 2016, 9, 174-186.	10.4	77
85	Ultrafast Dynamic Piezoresistive Response of Grapheneâ€Based Cellular Elastomers. Advanced Materials, 2016, 28, 194-200.	21.0	171
86	Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Science Advances, 2016, 2, e1501272.	10.3	203
87	Er3+ doped BaYF5 nanofibers: facile construction technique, structure and upconversion luminescence. Journal of Materials Science: Materials in Electronics, 2016, 27, 5277-5283.	2.2	11
88	Graphene/titanium carbide composites prepared by sol–gel infiltration and spark plasma sintering. Ceramics International, 2016, 42, 122-131.	4.8	42
89	Graphene Functionalized Scaffolds Reduce the Inflammatory Response and Supports Endogenous Neuroblast Migration when Implanted in the Adult Brain. PLoS ONE, 2016, 11, e0151589.	2.5	80
90	A Novel Scheme to Obtain Y ₂ O ₂ S:Er ³⁺ Upconversion Luminescent Hollow Nanofibers via Precursor Templating. Journal of the American Ceramic Society, 2015, 98, 2817-2822.	3.8	10

#	Article	IF	CITATIONS
91	Tuning Rheological Performance of Silica Concentrated Shear Thickening Fluid by Using Graphene Oxide. Advances in Condensed Matter Physics, 2015, 2015, 1-5.	1.1	38
92	A new tactic to achieve Y ₂ O ₂ S:Yb ³⁺ /Er ³⁺ up-conversion luminescent hollow nanofibers. CrystEngComm, 2015, 17, 2529-2535.	2.6	26
93	Mechanical properties and microstructure of a graphene oxide–cement composite. Cement and Concrete Composites, 2015, 58, 140-147.	10.7	623
94	Dynamic configuration of reduced graphene oxide in aqueous dispersion and its effect on thin film properties. Chemical Communications, 2015, 51, 17760-17763.	4.1	2
95	Tuning the oxygen functional groups in reduced graphene oxide papers to enhance the electromechanical actuation. RSC Advances, 2015, 5, 68052-68060.	3.6	9
96	On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film. Applied Physics Letters, 2015, 107, 031105.	3.3	49
97	Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles. Applied Physics Letters, 2015, 107, .	3.3	39
98	Grapheneâ€Directed Supramolecular Assembly of Multifunctional Polymer Hydrogel Membranes. Advanced Functional Materials, 2015, 25, 126-133.	14.9	69
99	Fabrication of Y2O2S:Eu3+ hollow nanofibers by sulfurization of Y2O3:Eu3+ hollow nanofibers. Journal of Materials Science: Materials in Electronics, 2015, 26, 677-684.	2.2	30
100	Reinforcing Effects of Graphene Oxide on Portland Cement Paste. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	323
101	Scalable production of graphene via wet chemistry: progress and challenges. Materials Today, 2015, 18, 73-78.	14.2	265
102	Optical Characterisation of Non-Covalent Interactions between Non-Conjugated Polymers and Chemically Converted Graphene. Australian Journal of Chemistry, 2014, 67, 168.	0.9	3
103	Mechanically Robust, Electrically Conductive and Stimuliâ€Responsive Binary Network Hydrogels Enabled by Superelastic Graphene Aerogels. Advanced Materials, 2014, 26, 3333-3337.	21.0	178
104	Direct patterning of C-shape arrays on graphene oxide thin films using direct laser printing. , 2014, , .		2
105	Synthesis and upconversion luminescence properties of YF3:Yb3+/Er3+ hollow nanofibers derived from Y2O3:Yb3+/Er3+ hollow nanofibers. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	23
106	Dynamic electrosorption analysis: a viable liquid-phase characterization method for porous carbon?. Journal of Materials Chemistry A, 2013, 1, 9332.	10.3	8
107	Fabrication and luminescence properties of YF3:Eu3+ hollow nanofibers via coaxial electrospinning combined with fluorination technique. Journal of Materials Science, 2013, 48, 5930-5937.	3.7	31
108	Fabrication and luminescence of YF3:Tb3+ hollow nanofibers. Journal of Materials Science: Materials in Electronics. 2013. 24. 3041-3048.	2.2	22

#	Article	IF	CITATIONS
109	Bioâ€Inspired Twoâ€Dimensional Nanofluidic Generators Based on a Layered Graphene Hydrogel Membrane. Advanced Materials, 2013, 25, 6064-6068.	21.0	232
110	Significantly enhanced water flux in forward osmosis desalination with polymer-graphene composite hydrogels as a draw agent. RSC Advances, 2013, 3, 887-894.	3.6	92
111	Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies. Chemistry - A European Journal, 2013, 19, 3082-3089.	3.3	17
112	Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage. Science, 2013, 341, 534-537.	12.6	1,666
113	UV-assisted production of ferromagnetic graphitic quantum dots from graphite. Carbon, 2013, 57, 346-356.	10.3	25
114	Controlling the assembly of graphene oxide by an electrolyte-assisted approach. Nanoscale, 2013, 5, 6458.	5.6	10
115	Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. Journal of Colloid and Interface Science, 2013, 392, 237-246.	9.4	62
116	Formation of polyelectrolyte–gold nanoparticle necklaces on paper. Journal of Colloid and Interface Science, 2013, 405, 71-77.	9.4	7
117	Effect of cationic polyacrylamide dissolution on the adsorption state of gold nanoparticles on paper and their Surface Enhanced Raman Scattering properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 420, 46-52.	4.7	15
118	Selfâ€Supporting Graphene Hydrogel Film as an Experimental Platform to Evaluate the Potential of Graphene for Bone Regeneration. Advanced Functional Materials, 2013, 23, 3494-3502.	14.9	108
119	In situ synthesis and properties of reduced graphene oxide/Bi nanocomposites: As an electroactive material for analysis of heavy metals. Biosensors and Bioelectronics, 2013, 43, 293-296.	10.1	182
120	Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: the importance of nano-architecturing. Energy and Environmental Science, 2013, 6, 477-481.	30.8	186
121	Facile Fabrication of Nanoparticles Confined in Graphene Films and Their Electrochemical Properties. Chemistry - A European Journal, 2013, 19, 7631-7636.	3.3	21
122	Formation of Regular Stripes of Chemically Converted Graphene on Hydrophilic Substrates. ACS Applied Materials & Interfaces, 2013, 5, 6176-6181.	8.0	3
123	Solvated Graphenes: An Emerging Class of Functional Soft Materials. Advanced Materials, 2013, 25, 13-30.	21.0	212
124	Biomimetic superelastic graphene-based cellular monoliths. Nature Communications, 2012, 3, 1241.	12.8	1,091
125	Multilayered graphene membrane as an experimental platform to probe nano-confined electrosorption. Progress in Natural Science: Materials International, 2012, 22, 668-672.	4.4	11
126	Growth of zeolite crystals with graphene oxide nanosheets. Chemical Communications, 2012, 48, 2249.	4.1	38

#	Article	IF	CITATIONS
127	Gold Nanoparticle–Paper as a Three-Dimensional Surface Enhanced Raman Scattering Substrate. Langmuir, 2012, 28, 8782-8790.	3.5	211
128	Stitching Chemically Converted Graphene on Solid Surfaces by Solvent Evaporation. ACS Applied Materials & amp; Interfaces, 2012, 4, 6443-6449.	8.0	10
129	Method to Impart Electro- and Biofunctionality to Neural Scaffolds Using Graphene–Polyelectrolyte Multilayers. ACS Applied Materials & Interfaces, 2012, 4, 4524-4531.	8.0	80
130	Assembling of graphene oxide in an isolated dissolving droplet. Soft Matter, 2012, 8, 11249.	2.7	15
131	Novel composite graphene/platinum electro-catalytic electrodes prepared by electrophoretic deposition from colloidal solutions. Electrochimica Acta, 2012, 60, 213-223.	5.2	49
132	Evaporation-induced flattening and self-assembly of chemically converted graphene on a solid surface. Soft Matter, 2011, 7, 8745.	2.7	24
133	Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chemical Communications, 2011, 47, 5810.	4.1	296
134	Direct electro-deposition of graphene from aqueous suspensions. Physical Chemistry Chemical Physics, 2011, 13, 9187.	2.8	197
135	Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next Generation of Highâ€Performance Supercapacitors. Advanced Materials, 2011, 23, 2833-2838.	21.0	954
136	Ordered Gelation of Chemically Converted Graphene for Nextâ€Generation Electroconductive Hydrogel Films. Angewandte Chemie - International Edition, 2011, 50, 7325-7328.	13.8	281
137	Interfacing Colloidal Graphene Oxide Sheets with Gold Nanoparticles. Chemistry - A European Journal, 2011, 17, 5958-5964.	3.3	66
138	Paper surfaces functionalized by nanoparticles. Advances in Colloid and Interface Science, 2011, 163, 23-38.	14.7	154
139	Capillary zone electrophoresis of graphene oxide and chemically converted graphene. Journal of Chromatography A, 2010, 1217, 7593-7597.	3.7	46
140	Dispersing Carbon Nanotubes with Graphene Oxide in Water and Synergistic Effects between Graphene Derivatives. Chemistry - A European Journal, 2010, 16, 10653-10658.	3.3	373
141	Thermosensitive graphene nanocomposites formed using pyreneâ€ŧerminal polymers made by RAFT polymerization. Journal of Polymer Science Part A, 2010, 48, 425-433.	2.3	215
142	Synthesis, Characterization, and Multilayer Assembly of pH Sensitive Grapheneâ^'Polymer Nanocomposites. Langmuir, 2010, 26, 10068-10075.	3.5	204
143	Nonlinear Optical Transmission of Nanographene and Its Composites. Journal of Physical Chemistry C, 2010, 114, 12517-12523.	3.1	85
144	Graphene/Polyaniline Nanocomposite for Hydrogen Sensing. Journal of Physical Chemistry C, 2010, 114, 16168-16173.	3.1	425

#	Article	IF	CITATIONS
145	Oneâ€Ðimensional Conducting Polymer Nanostructures: Bulk Synthesis and Applications. Advanced Materials, 2009, 21, 1487-1499.	21.0	465
146	Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochemistry Communications, 2009, 11, 1892-1895.	4.7	147
147	A facile method for preparation of graphene film electrodes with tailor-made dimensions with Vaseline as the insulating binder. Electrochemistry Communications, 2009, 11, 1912-1915.	4.7	54
148	Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Accounts of Chemical Research, 2009, 42, 135-145.	15.6	913
149	Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries. Chemistry of Materials, 2009, 21, 2604-2606.	6.7	546
150	Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper. Advanced Materials, 2008, 20, 3557-3561.	21.0	1,843
151	Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008, 3, 101-105.	31.5	8,393
152	Graphene-Based Materials. Science, 2008, 320, 1170-1171.	12.6	1,359
153	How nucleation affects the aggregation of nanoparticles. Journal of Materials Chemistry, 2007, 17, 2279.	6.7	78
154	Patternable transparent carbon nanotube films for electrochromic devices. Journal of Applied Physics, 2007, 101, 016102.	2.5	60
155	Capturing electrified nanodroplets under Rayleigh instability by coupling electrospray with a sol–gel reaction. Chemical Physics Letters, 2007, 445, 271-275.	2.6	29
156	Shape and Aggregation Control of Nanoparticles: Not Shaken, Not Stirred. Journal of the American Chemical Society, 2006, 128, 968-975.	13.7	490
157	Uniaxial Alignment of Electrospun Nanofibers. ACS Symposium Series, 2006, , 319-329.	0.5	4
158	Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes. Journal of the American Ceramic Society, 2006, 89, 1861-1869.	3.8	443
159	Electrospinning of polycrystalline barium titanate nanofibers with controllable morphology and alignment. Chemical Physics Letters, 2006, 424, 162-166.	2.6	81
160	V2O5Nanorods on TiO2Nanofibers: A New Class of Hierarchical Nanostructures Enabled by Electrospinning and Calcination. Nano Letters, 2006, 6, 1297-1302.	9.1	269
161	Direct fabrication of enzyme-carrying polymer nanofibers by electrospinning. Journal of Materials Chemistry, 2005, 15, 3241.	6.7	111
162	Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chemical Communications, 2005, , 3286.	4.1	151

#	Article	IF	CITATIONS
163	Electrospinning of nanofibers with core-sheath, hollow, or porous structures. Journal of Materials Chemistry, 2005, 15, 735.	6.7	401
164	Electrospun Nanofibers of Blends of Conjugated Polymers:Â Morphology, Optical Properties, and Field-Effect Transistors. Macromolecules, 2005, 38, 4705-4711.	4.8	224
165	Collecting Electrospun Nanofibers with Patterned Electrodes. Nano Letters, 2005, 5, 913-916.	9.1	380
166	Welding and patterning in a flash. Nature Materials, 2004, 3, 753-754.	27.5	49
167	Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces. Small, 2004, 1, 83-86.	10.0	264
168	Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania. Chemical Physics Letters, 2004, 394, 387-391.	2.6	131
169	Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning. Nano Letters, 2004, 4, 933-938.	9.1	1,158
170	Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Materials Letters, 2004, 58, 3324-3327.	2.6	243
171	Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Letters, 2003, 3, 1167-1171.	9.1	1,381
172	Title is missing!. Journal of Materials Science, 2003, 38, 2907-2911.	3.7	39
173	Title is missing!. Journal of Materials Science Letters, 2003, 22, 931-933.	0.5	3
174	Title is missing!. Journal of Materials Science Letters, 2003, 22, 253-255.	0.5	22
175	Preparation and performance of high-impact polystyrene (HIPS)/nano-TiO2 nanocomposites. Journal of Applied Polymer Science, 2003, 87, 381-385.	2.6	88
176	Magnetic nanofibers of nickel ferrite prepared by electrospinning. Applied Physics Letters, 2003, 83, 4586-4588.	3.3	225
177	Fabrication of Titania Nanofibers by Electrospinning. Nano Letters, 2003, 3, 555-560.	9.1	1,183
178	Rapid fabrication of titania nanofibers by electrospinning. , 2003, , .		4
179	Synthesis and intercalation properties of nanoscale layered tetratitanate. Journal of Materials Chemistry, 2002, 12, 1796-1799.	6.7	22
180	Rapid Synthesis of Nanocrystalline TiO2/SnO2 Binary Oxides and Their Photoinduced Decomposition of Methyl Orange. Journal of Solid State Chemistry, 2002, 165, 193-198.	2.9	123

#	Article	IF	CITATIONS
181	Synthesis and microstructural control of nanocrystalline titania powders via a stearic acid method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 328, 108-112.	5.6	19
182	Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology. Sensors and Actuators B: Chemical, 2002, 81, 158-164.	7.8	215
183	In situ electron microscope study on the formation and morphological evolution of carbon aggregates. Carbon, 2002, 40, 2117-2124.	10.3	5
184	Effect of particle size of starting material TiO2 on morphology and properties of layered titanates. Materials Letters, 2001, 50, 230-234.	2.6	7
185	Modifying substrate surfaces with self-assembled polyelectrolyte layers to promote the formation of uniform polypyrrole films. Applied Surface Science, 2001, 183, 259-263.	6.1	4
186	Title is missing!. Journal of Materials Science Letters, 2001, 20, 1925-1928.	0.5	5
187	Title is missing!. Journal of Materials Science Letters, 2001, 20, 233-235.	0.5	0
188	Rapid preparation of porous Fe2O3/SiO2 nanocomposites via an organic precursor. Materials Research Bulletin, 2001, 36, 2437-2442.	5.2	14
189	Fabrication of self-assembled polyaniline films by doping-induced deposition. Thin Solid Films, 2000, 360, 24-27.	1.8	37
190	Self-assembly of polyaniline ultrathin films based on doping-induced deposition effect and applications for chemical sensors. Sensors and Actuators B: Chemical, 2000, 66, 125-127.	7.8	61
191	Morphology and gas-sensitive properties of polymer based composite films. Sensors and Actuators B: Chemical, 2000, 66, 37-39.	7.8	24
192	Fabrication of a prototype humidity-sensitive capacitor via layer-by-layer self-assembling technique. Materials Science and Engineering C, 2000, 11, 117-119.	7.3	17
193	A novel technique to prepare ultrafine Fe2O3 via hydrated iron(III) nitrate. Journal of Materials Science Letters, 1997, 16, 493-495.	0.5	8
194	The preparation of barium ferrite nanocrystalline powders by a stearic acid gel method. Materials Letters, 1996, 28, 203-206.	2.6	9
195	Synthesis of substituted M- and W-type barium ferrite nanostructured powders by stearic acid gel method. Journal of Alloys and Compounds, 1996, 237, 45-48.	5.5	31