## Mota Mm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3763969/publications.pdf Version: 2024-02-01

54911 38742 8,067 129 50 84 citations h-index g-index papers 132 132 132 7814 docs citations times ranked citing authors all docs

MOTA MM

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria.<br>Nature Medicine, 2007, 13, 703-710.                                                                                                          | 30.7 | 488       |
| 2  | The silent path to thousands of merozoites: the Plasmodium liver stage. Nature Reviews Microbiology, 2006, 4, 849-856.                                                                                                                           | 28.6 | 394       |
| 3  | From The Cover: Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11468-11473. | 7.1  | 283       |
| 4  | Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nature<br>Medicine, 2014, 20, 47-53.                                                                                                                    | 30.7 | 256       |
| 5  | Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12194-12199.           | 7.1  | 245       |
| 6  | Malaria Blood Stage Suppression of Liver Stage Immunity by Dendritic Cells. Journal of Experimental<br>Medicine, 2003, 197, 143-151.                                                                                                             | 8.5  | 226       |
| 7  | Host-mediated regulation of superinfection in malaria. Nature Medicine, 2011, 17, 732-737.                                                                                                                                                       | 30.7 | 212       |
| 8  | Visualisation and Quantitative Analysis of the Rodent Malaria Liver Stage by Real Time Imaging. PLoS<br>ONE, 2009, 4, e7881.                                                                                                                     | 2.5  | 205       |
| 9  | A Microscale Human Liver Platform that Supports the Hepatic Stages of Plasmodium falciparum and vivax. Cell Host and Microbe, 2013, 14, 104-115.                                                                                                 | 11.0 | 195       |
| 10 | Migration through host cells activates Plasmodium sporozoites for infection. Nature Medicine, 2002,<br>8, 1318-1322.                                                                                                                             | 30.7 | 172       |
| 11 | Host Scavenger Receptor SR-BI Plays a Dual Role in the Establishment of Malaria Parasite Liver<br>Infection. Cell Host and Microbe, 2008, 4, 271-282.                                                                                            | 11.0 | 162       |
| 12 | Nutrient sensing modulates malaria parasite virulence. Nature, 2017, 547, 213-216.                                                                                                                                                               | 27.8 | 146       |
| 13 | Accumulation of <i>Plasmodium berghei</i> -Infected Red Blood Cells in the Brain Is Crucial for the Development of Cerebral Malaria in Mice. Infection and Immunity, 2010, 78, 4033-4039.                                                        | 2.2  | 145       |
| 14 | Hepatocyte growth factor and its receptor are required for malaria infection. Nature Medicine, 2003, 9, 1363-1369.                                                                                                                               | 30.7 | 133       |
| 15 | Liver-stage malaria parasites vulnerable to diverse chemical scaffolds. Proceedings of the National<br>Academy of Sciences of the United States of America, 2012, 109, 8511-8516.                                                                | 7.1  | 132       |
| 16 | Heme Oxygenase-1 Is an Anti-Inflammatory Host Factor that Promotes Murine Plasmodium Liver<br>Infection. Cell Host and Microbe, 2008, 3, 331-338.                                                                                                | 11.0 | 127       |
| 17 | Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nature Protocols, 2015, 10, 2027-2053.                                                                                       | 12.0 | 119       |
| 18 | The relevance of non-human primate and rodent malaria models for humans. Malaria Journal, 2011, 10,<br>23.                                                                                                                                       | 2.3  | 109       |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Human iPSC-Derived Hepatocyte-like Cells Support Plasmodium Liver-Stage Infection InÂVitro. Stem Cell<br>Reports, 2015, 4, 348-359.                                                                       | 4.8  | 109       |
| 20 | A toolbox to study liver stage malaria. Trends in Parasitology, 2011, 27, 565-574.                                                                                                                        | 3.3  | 106       |
| 21 | Host Cell Phosphatidylcholine Is a Key Mediator of Malaria Parasite Survival during Liver Stage<br>Infection. Cell Host and Microbe, 2014, 16, 778-786.                                                   | 11.0 | 104       |
| 22 | Host cell transcriptional profiling during malaria liver stage infection reveals a coordinated and sequential set of biological events. BMC Genomics, 2009, 10, 270.                                      | 2.8  | 101       |
| 23 | HGF/MET signalling protects Plasmodium-infected host cells from apoptosis. Cellular Microbiology, 2005, 7, 603-609.                                                                                       | 2.1  | 100       |
| 24 | FluorescentPlasmodium bergheisporozoites and pre-erythrocytic stages: a new tool to study<br>mosquito and mammalian host interactions with malaria parasites. Cellular Microbiology, 2001, 3,<br>371-379. | 2.1  | 98        |
| 25 | Drug Screen Targeted at Plasmodium Liver Stages Identifies a Potent Multistage Antimalarial Drug.<br>Journal of Infectious Diseases, 2012, 205, 1278-1286.                                                | 4.0  | 97        |
| 26 | Adenylyl Cyclase α and cAMP Signaling Mediate Plasmodium Sporozoite Apical Regulated Exocytosis and<br>Hepatocyte Infection. PLoS Pathogens, 2008, 4, e1000008.                                           | 4.7  | 95        |
| 27 | A Novel Carbon Monoxide-Releasing Molecule Fully Protects Mice from Severe Malaria. Antimicrobial<br>Agents and Chemotherapy, 2012, 56, 1281-1290.                                                        | 3.2  | 92        |
| 28 | Kinome-Wide RNAi Screen Implicates at Least 5 Host Hepatocyte Kinases in Plasmodium Sporozoite<br>Infection. PLoS Pathogens, 2008, 4, e1000201.                                                           | 4.7  | 90        |
| 29 | VEGF Promotes Malaria-Associated Acute Lung Injury in Mice. PLoS Pathogens, 2010, 6, e1000916.                                                                                                            | 4.7  | 89        |
| 30 | Adipose Tissue: A Safe Haven for Parasites?. Trends in Parasitology, 2017, 33, 276-284.                                                                                                                   | 3.3  | 84        |
| 31 | Transition of Plasmodium Sporozoites into Liver Stage-Like Forms Is Regulated by the RNA Binding<br>Protein Pumilio. PLoS Pathogens, 2011, 7, e1002046.                                                   | 4.7  | 82        |
| 32 | The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Science Translational Medicine, 2015, 7, 288ra77.                                   | 12.4 | 82        |
| 33 | Plasmodium UIS3 sequesters host LC3 to avoid elimination by autophagy in hepatocytes. Nature<br>Microbiology, 2018, 3, 17-25.                                                                             | 13.3 | 81        |
| 34 | <i>Plasmodium chabaudi</i> -Infected Erythrocytes Adhere to CD36 and Bind to Microvascular<br>Endothelial Cells in an Organ-Specific Way. Infection and Immunity, 2000, 68, 4135-4144.                    | 2.2  | 78        |
| 35 | ApoptoticPlasmodiumâ€Infected Hepatocytes Provide Antigens to Liver Dendritic Cells. Journal of<br>Infectious Diseases, 2005, 191, 1576-1581.                                                             | 4.0  | 74        |
| 36 | Targeting the Liver Stage of Malaria Parasites: A Yet Unmet Goal. Journal of Medicinal Chemistry, 2012,<br>55, 995-1012.                                                                                  | 6.4  | 73        |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Torins are potent antimalarials that block replenishment of <i>Plasmodium</i> liver stage<br>parasitophorous vacuole membrane proteins. Proceedings of the National Academy of Sciences of the<br>United States of America, 2013, 110, E2838-47. | 7.1  | 73        |
| 38 | Dissecting in vitro host cell infection by Plasmodium sporozoites using flow cytometry. Cellular Microbiology, 2007, 10, 070816152918001-???.                                                                                                    | 2.1  | 69        |
| 39 | Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection. Analytical and<br>Bioanalytical Chemistry, 2012, 402, 1019-1027.                                                                                                 | 3.7  | 69        |
| 40 | Genetically attenuated P36p-deficient Plasmodium berghei sporozoites confer long-lasting and partial cross-species protection. International Journal for Parasitology, 2007, 37, 1511-1519.                                                      | 3.1  | 68        |
| 41 | The IFN-Î <sup>3</sup> -Inducible CTPase, Irga6, Protects Mice against Toxoplasma gondii but Not against Plasmodium<br>berghei and Some Other Intracellular Pathogens. PLoS ONE, 2011, 6, e20568.                                                | 2.5  | 68        |
| 42 | Parasite Sensing of Host Nutrients and Environmental Cues. Cell Host and Microbe, 2018, 23, 749-758.                                                                                                                                             | 11.0 | 68        |
| 43 | Design and Evaluation of Primaquine-Artemisinin Hybrids as a Multistage Antimalarial Strategy.<br>Antimicrobial Agents and Chemotherapy, 2011, 55, 4698-4706.                                                                                    | 3.2  | 65        |
| 44 | Improved transfection and new selectable markers for the rodent malaria parasite Plasmodium yoelii.<br>Molecular and Biochemical Parasitology, 2006, 146, 242-250.                                                                               | 1.1  | 62        |
| 45 | Host cell autophagy contributes to <i>Plasmodium</i> liver development. Cellular Microbiology, 2016, 18, 437-450.                                                                                                                                | 2.1  | 60        |
| 46 | Incorporation of Basic Side Chains into Cryptolepine Scaffold: Structureâ~'Antimalarial Activity<br>Relationships and Mechanistic Studies. Journal of Medicinal Chemistry, 2011, 54, 734-750.                                                    | 6.4  | 57        |
| 47 | Interactions of the malaria parasite and its mammalian host. Current Opinion in Microbiology, 2008, 11, 352-359.                                                                                                                                 | 5.1  | 56        |
| 48 | Cerebral malaria and the hemolysis/methemoglobin/heme hypothesis: Shedding new light on an old<br>disease. International Journal of Biochemistry and Cell Biology, 2009, 41, 711-716.                                                            | 2.8  | 56        |
| 49 | Gene targeting in the rodent malaria parasite Plasmodium yoelii. Molecular and Biochemical<br>Parasitology, 2001, 113, 271-278.                                                                                                                  | 1.1  | 55        |
| 50 | Innate Immunity Induced by Plasmodium Liver Infection Inhibits Malaria Reinfections. Infection and Immunity, 2015, 83, 1172-1180.                                                                                                                | 2.2  | 55        |
| 51 | The Next Opportunity in Anti-Malaria Drug Discovery: The Liver Stage. PLoS Pathogens, 2011, 7, e1002178.                                                                                                                                         | 4.7  | 54        |
| 52 | Superinfection in malaria: <i>Plasmodium</i> shows its iron will. EMBO Reports, 2011, 12, 1233-1242.                                                                                                                                             | 4.5  | 53        |
| 53 | PSLAP, a protein with multiple adhesive motifs, is expressed in Plasmodium falciparum gametocytes.<br>Molecular and Biochemical Parasitology, 2002, 121, 11-20.                                                                                  | 1.1  | 51        |
| 54 | Hypoxia promotes liver stage malaria infection in primary human hepatocytes in vitro. DMM Disease<br>Models and Mechanisms, 2014, 7, 215-24.                                                                                                     | 2.4  | 47        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Invasion of mammalian host cells byPlasmodium sporozoites. BioEssays, 2002, 24, 149-156.                                                                                                                                        | 2.5  | 46        |
| 56 | Parasiteâ€induced <scp>ER</scp> stress response in hepatocytes facilitates <i>Plasmodium</i> liver stage infection. EMBO Reports, 2015, 16, 955-964.                                                                            | 4.5  | 46        |
| 57 | Dietary alterations modulate susceptibility to Plasmodium infection. Nature Microbiology, 2017, 2, 1600-1607.                                                                                                                   | 13.3 | 46        |
| 58 | A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium. Nature Communications, 2016, 7, 10403.                                                                                                                | 12.8 | 45        |
| 59 | <i>Plasmodium berghei</i> EXP-1 interacts with host Apolipoprotein H during <i>Plasmodium</i> liver-stage development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1138-E1147. | 7.1  | 43        |
| 60 | Antimalarial drugs – host targets (re)visited. Biotechnology Journal, 2006, 1, 321-332.                                                                                                                                         | 3.5  | 41        |
| 61 | Novel Endoperoxide-Based Transmission-Blocking Antimalarials with Liver- and Blood-Schizontocidal Activities. ACS Medicinal Chemistry Letters, 2014, 5, 108-112.                                                                | 2.8  | 40        |
| 62 | Crystal Structure of Arginase from <i>Plasmodium falciparum</i> and Implications for<br><scp>l</scp> -Arginine Depletion in Malarial Infection,. Biochemistry, 2010, 49, 5600-5608.                                             | 2.5  | 39        |
| 63 | Use of a Selective Inhibitor To Define the Chemotherapeutic Potential of the Plasmodial Hexose<br>Transporter in Different Stages of the Parasite's Life Cycle. Antimicrobial Agents and Chemotherapy,<br>2011, 55, 2824-2830.  | 3.2  | 39        |
| 64 | Migration through host cells: the first steps of Plasmodium sporozoites in the mammalian host.<br>Cellular Microbiology, 2004, 6, 1113-1118.                                                                                    | 2.1  | 38        |
| 65 | A Novel Flow Cytometric Hemozoin Detection Assay for Real-Time Sensitivity Testing of Plasmodium falciparum. PLoS ONE, 2013, 8, e61606.                                                                                         | 2.5  | 37        |
| 66 | Host AMPK Is a Modulator of Plasmodium Liver Infection. Cell Reports, 2016, 16, 2539-2545.                                                                                                                                      | 6.4  | 37        |
| 67 | Infection by Plasmodium changes shape and stiffness of hepatic cells. Nanomedicine: Nanotechnology,<br>Biology, and Medicine, 2012, 8, 17-19.                                                                                   | 3.3  | 36        |
| 68 | lmidazoquines as Antimalarial and Antipneumocystis Agents. Journal of Medicinal Chemistry, 2009, 52,<br>7800-7807.                                                                                                              | 6.4  | 35        |
| 69 | Plasmodium Cysteine Repeat Modular Proteins 3 and 4 are essential for malaria parasite transmission<br>from the mosquito to the host. Malaria Journal, 2011, 10, 71.                                                            | 2.3  | 35        |
| 70 | <i>In Vivo</i> Hemozoin Kinetics after Clearance of <i>Plasmodium berghei</i> Infection in Mice.<br>Malaria Research and Treatment, 2012, 2012, 1-9.                                                                            | 2.0  | 35        |
| 71 | Quantification of Sporozoite Invasion, Migration, and Development by Microscopy and Flow<br>Cytometry. Methods in Molecular Biology, 2012, 923, 385-400.                                                                        | 0.9  | 35        |
| 72 | Innate recognition of malarial parasites by mammalian hosts. International Journal for Parasitology,<br>2012, 42, 557-566.                                                                                                      | 3.1  | 34        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | γδ-T cells promote IFN-γ–dependent <i>Plasmodium</i> pathogenesis upon liver-stage infection.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9979-9988. | 7.1 | 34        |
| 74 | Identification of the class XIV myosins Pb-MyoA and Py-MyoA and expression in Plasmodium sporozoites. Molecular and Biochemical Parasitology, 2001, 112, 157-161.                                       | 1.1 | 32        |
| 75 | A Plasmodium berghei sporozoite-based vaccination platform against human malaria. Npj Vaccines,<br>2018, 3, 33.                                                                                         | 6.0 | 32        |
| 76 | Migration through host cells by apicomplexan parasites. Microbes and Infection, 2001, 3, 1123-1128.                                                                                                     | 1.9 | 31        |
| 77 | Survival of protozoan intracellular parasites in host cells. EMBO Reports, 2004, 5, 1142-1147.                                                                                                          | 4.5 | 29        |
| 78 | Chemical Interrogation of the Malaria Kinome. ChemBioChem, 2014, 15, 1920-1930.                                                                                                                         | 2.6 | 29        |
| 79 | Malaria infections: What and how can mice teach us. Journal of Immunological Methods, 2014, 410, 113-122.                                                                                               | 1.4 | 29        |
| 80 | A Small Molecule Inhibitor of Signal Peptide Peptidase Inhibits Plasmodium Development in the Liver<br>and Decreases Malaria Severity. PLoS ONE, 2009, 4, e5078.                                        | 2.5 | 27        |
| 81 | Targeting Host Factors to Circumvent Anti-Malarial Drug Resistance. Current Pharmaceutical Design, 2013, 19, 290-299.                                                                                   | 1.9 | 27        |
| 82 | Simple flow cytometric detection of haemozoin containing leukocytes and erythrocytes for research on diagnosis, immunology and drug sensitivity testing. Malaria Journal, 2011, 10, 74.                 | 2.3 | 26        |
| 83 | Plasmodium berghei parasite transformed with green fluorescent protein for screening blood schizontocidal agents. International Journal for Parasitology, 2004, 34, 485-490.                            | 3.1 | 23        |
| 84 | Cross-Species Immunity in Malaria Vaccine Development: Two, Three, or Even Four for the Price of<br>One?. Infection and Immunity, 2008, 76, 873-878.                                                    | 2.2 | 23        |
| 85 | Towards a Humanized Mouse Model of Liver Stage Malaria Using Ectopic Artificial Livers. Scientific<br>Reports, 2017, 7, 45424.                                                                          | 3.3 | 23        |
| 86 | Targeting liver stage malaria with metformin. JCI Insight, 2019, 4, .                                                                                                                                   | 5.0 | 23        |
| 87 | Plasmodium yoelii: Efficient in Vitro Invasion and Complete Development of Sporozoites in Mouse<br>Hepatic Cell Lines. Experimental Parasitology, 2000, 96, 257-259.                                    | 1.2 | 22        |
| 88 | Highly Dynamic Host Actin Reorganization around Developing Plasmodium Inside Hepatocytes. PLoS<br>ONE, 2012, 7, e29408.                                                                                 | 2.5 | 22        |
| 89 | Bone marrow chimeric mice reveal a dual role for CD36 in Plasmodium berghei ANKA infection.<br>Malaria Journal, 2007, 6, 32.                                                                            | 2.3 | 21        |
| 90 | Quinolin-4(1 <i>H</i> )-imines are Potent Antiplasmodial Drugs Targeting the Liver Stage of Malaria.<br>Journal of Medicinal Chemistry, 2013, 56, 4811-4815.                                            | 6.4 | 21        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Unveiling the pathogen behind the vacuole. Nature Reviews Microbiology, 2015, 13, 589-598.                                                                                                                                        | 28.6 | 21        |
| 92  | Early skin immunological disturbance after Plasmodium-infected mosquito bites. Cellular<br>Immunology, 2012, 277, 22-32.                                                                                                          | 3.0  | 20        |
| 93  | Microbiota, a Third Player in the Host–Plasmodium Affair. Trends in Parasitology, 2020, 36, 11-18.                                                                                                                                | 3.3  | 20        |
| 94  | Genistein-Supplemented Diet Decreases Malaria Liver Infection in Mice and Constitutes a Potential<br>Prophylactic Strategy. PLoS ONE, 2008, 3, e2732.                                                                             | 2.5  | 20        |
| 95  | Assessment of Dual Life Stage Antiplasmodial Activity of British Seaweeds. Marine Drugs, 2013, 11, 4019-4034.                                                                                                                     | 4.6  | 19        |
| 96  | IL-1α promotes liver inflammation and necrosis during blood-stage Plasmodium chabaudi malaria.<br>Scientific Reports, 2019, 9, 7575.                                                                                              | 3.3  | 19        |
| 97  | Antibody Recognition of Rodent Malaria Parasite Antigens Exposed at the Infected Erythrocyte<br>Surface: Specificity of Immunity Generated in Hyperimmune Mice. Infection and Immunity, 2001, 69,<br>2535-2541.                   | 2.2  | 18        |
| 98  | Malaria Liver Stage Susceptibility Locus Identified on Mouse Chromosome 17 by Congenic Mapping.<br>PLoS ONE, 2008, 3, e1874.                                                                                                      | 2.5  | 18        |
| 99  | Simple, sensitive and quantitative bioluminescence assay for determination of malaria pre-patent period. Malaria Journal, 2014, 13, 15.                                                                                           | 2.3  | 17        |
| 100 | One nanoprobe, two pathogens: gold nanoprobes multiplexing for point-of-care. Journal of Nanobiotechnology, 2015, 13, 48.                                                                                                         | 9.1  | 17        |
| 101 | Transcriptome profile of dendritic cells during malaria: cAMP regulation of IL-6. Cellular<br>Microbiology, 2007, 9, 1738-1752.                                                                                                   | 2.1  | 16        |
| 102 | Immunization with genetically attenuated P52-deficient Plasmodium berghei sporozoites induces a<br>long-lasting effector memory CD8+ T cell response in the liver. Journal of Immune Based Therapies and<br>Vaccines, 2011, 9, 6. | 2.4  | 14        |
| 103 | Structural Optimization of Quinolon-4(1 <i>H</i> )-imines as Dual-Stage Antimalarials: Toward<br>Increased Potency and Metabolic Stability. Journal of Medicinal Chemistry, 2013, 56, 7679-7690.                                  | 6.4  | 14        |
| 104 | Flavones as isosteres of 4(1H)-quinolones: Discovery of ligand efficient and dual stage antimalarial<br>lead compounds. European Journal of Medicinal Chemistry, 2013, 69, 872-880.                                               | 5.5  | 13        |
| 105 | Disrupting Plasmodium UIS3–host LC3 interaction with a small molecule causes parasite elimination from host cells. Communications Biology, 2020, 3, 688.                                                                          | 4.4  | 13        |
| 106 | <i>Plasmodium berghei</i> -infection induces volume-regulated anion channel-like activity in human<br>hepatoma cells. Cellular Microbiology, 2009, 11, 1492-1501.                                                                 | 2.1  | 12        |
| 107 | Phosphothioate oligodeoxynucleotides inhibit <i>Plasmodium</i> sporozoite gliding motility. Cellular<br>Microbiology, 2010, 12, 506-515.                                                                                          | 2.1  | 12        |
| 108 | Plasmodium translocon component EXP2 facilitates hepatocyte invasion. Nature Communications, 2020, 11, 5654.                                                                                                                      | 12.8 | 12        |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Infection by and protective immune responses against Plasmodium berghei ANKA are not affected in macrophage scavenger receptors A deficient mice. BMC Microbiology, 2006, 6, 73.                                                | 3.3  | 11        |
| 110 | <i>In Vitro</i> Alterations Do Not Reflect a Requirement for Host Cell Cycle Progression during Plasmodium Liver Stage Infection. Eukaryotic Cell, 2015, 14, 96-103.                                                            | 3.4  | 10        |
| 111 | Severe malaria increases the list of heme oxygenase-1-protected diseases. Future Microbiology, 2007, 2, 361-363.                                                                                                                | 2.0  | 8         |
| 112 | <i>Plasmodium falciparum</i> subtilisinâ€like ookinete protein SOPT plays an important and conserved<br>role during ookinete infection of the <i>Anopheles stephensi</i> midgut. Molecular Microbiology,<br>2018, 109, 458-473. | 2.5  | 8         |
| 113 | 2-Octadecynoic acid as a dual life stage inhibitor of Plasmodium infections and plasmodial FAS-II enzymes. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4151-4157.                                                     | 2.2  | 7         |
| 114 | To Migrate or to Invade: Those Are the Options. Cell Host and Microbe, 2007, 2, 286-288.                                                                                                                                        | 11.0 | 6         |
| 115 | The reciprocal influence of the liver and blood stages of the malaria parasite's life cycle.<br>International Journal for Parasitology, 2022, 52, 711-715.                                                                      | 3.1  | 6         |
| 116 | Plasmodium parasitophorous vacuole membrane-resident protein UIS4 manipulates host cell actin to avoid parasite elimination. IScience, 2022, 25, 104281.                                                                        | 4.1  | 6         |
| 117 | Host lung microbiota promotes malaria-associated acute respiratory distress syndrome. Nature Communications, 2022, 13, .                                                                                                        | 12.8 | 6         |
| 118 | Innate Immunity to Malaria. , 2017, , 3-25.                                                                                                                                                                                     |      | 5         |
| 119 | Parasitism: Anopheles Mosquitoes and Plasmodium Parasites Share Resources. Current Biology, 2019, 29, R632-R634.                                                                                                                | 3.9  | 5         |
| 120 | Malaria sporozoite: migrating for a living – a response. Trends in Molecular Medicine, 2004, 10, 100-101.                                                                                                                       | 6.7  | 4         |
| 121 | Targeting Plasmodium host cells: survival within hepatocytes. Trends in Molecular Medicine, 2004, 10, 487-492.                                                                                                                  | 6.7  | 4         |
| 122 | A Novel Chemically Differentiated Mouse Embryonic Stem Cell-Based Model to Study Liver Stages of<br>Plasmodium berghei. Stem Cell Reports, 2020, 14, 1123-1134.                                                                 | 4.8  | 4         |
| 123 | Active APPL1 sequestration by Plasmodium favors liver-stage development. Cell Reports, 2022, 39, 110886.                                                                                                                        | 6.4  | 4         |
| 124 | Reply to: Hepcidin in malaria superinfection: can findings be translated to humans?. Nature Medicine, 2011, 17, 1341-1342.                                                                                                      | 30.7 | 3         |
| 125 | A mediator for malaria stickiness in A versus O blood. Nature Medicine, 2015, 21, 307-308.                                                                                                                                      | 30.7 | 3         |
| 126 | New Pieces for the Malaria Liver Stage Puzzle: Where Will They Fit?. Cell Host and Microbe, 2008, 3,<br>63-65.                                                                                                                  | 11.0 | 2         |

| #   | Article                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Be in motion Molecular Microbiology, 2006, 60, 1327-1328.                                                                                                           | 2.5  | 0         |
| 128 | The crucial role of hepatocyte growth factor receptor during liver-stage infection is not conserved among Plasmodium species. Nature Medicine, 2011, 17, 1181-1181. | 30.7 | 0         |
| 129 | Fighting for Resources: Who Started the Battle? Who Is Winning It?. Cell Metabolism, 2018, 27, 708-709.                                                             | 16.2 | 0         |