Florent Ginhoux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3763819/publications.pdf

Version: 2024-02-01

270 papers 58,401 citations

108 h-index

225 g-index

303 all docs

303 docs citations

times ranked

303

61665 citing authors

#	Article	IF	Citations
1	Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science, 2010, 330, 841-845.	6.0	3,920
2	Dimensionality reduction for visualizing single-cell data using UMAP. Nature Biotechnology, 2019, 37, 38-44.	9.4	3,254
3	Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015, 350, 1079-1084.	6.0	2,539
4	Tissue-Resident Macrophages Self-Maintain Locally throughout Adult Life with Minimal Contribution from Circulating Monocytes. Immunity, 2013, 38, 792-804.	6.6	1,767
5	The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 2013, 342, 971-976.	6.0	1,580
6	Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nature Reviews Immunology, 2014, 14, 571-578.	10.6	1,494
7	Monocytes and macrophages: developmental pathways and tissue homeostasis. Nature Reviews Immunology, 2014, 14, 392-404.	10.6	1,456
8	Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity, 2019, 50, 253-271.e6.	6.6	1,351
9	Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity, 2016, 44, 439-449.	6.6	1,296
10	Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell, 2015, 163, 1663-1677.	13.5	875
11	Expansion and Activation of CD103+ Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition. Immunity, 2016, 44, 924-938.	6.6	857
12	C-Myb+ Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to Adult Tissue-Resident Macrophages. Immunity, 2015, 42, 665-678.	6.6	847
13	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
14	Origin of the Lamina Propria Dendritic Cell Network. Immunity, 2009, 31, 513-525.	6.6	758
15	Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner. Cell, 2019, 178, 686-698.e14.	13.5	718
16	Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nature Reviews Immunology, 2008, 8, 935-947.	10.6	703
17	IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses. Immunity, 2013, 38, 970-983.	6.6	703
18	Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species. Immunity, 2016, 45, 669-684.	6.6	683

#	Article	IF	CITATIONS
19	Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science, 2019, 363, .	6.0	676
20	Origin and differentiation of microglia. Frontiers in Cellular Neuroscience, 2013, 7, 45.	1.8	667
21	Hepatic recruitment of the inflammatory Gr1 ⁺ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology, 2009, 50, 261-274.	3.6	664
22	Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19. Cell, 2020, 182, 1401-1418.e18.	13.5	663
23	Minimal Differentiation of Classical Monocytes as They Survey Steady-State Tissues and Transport Antigen to Lymph Nodes. Immunity, 2013, 39, 599-610.	6.6	656
24	Human Tissues Contain CD141hi Cross-Presenting Dendritic Cells with Functional Homology to Mouse CD103+ Nonlymphoid Dendritic Cells. Immunity, 2012, 37, 60-73.	6.6	643
25	The origin and development of nonlymphoid tissue CD103+ DCs. Journal of Experimental Medicine, 2009, 206, 3115-3130.	4.2	641
26	Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. Journal of Experimental Medicine, 2012, 209, 1167-1181.	4.2	639
27	New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nature Immunology, 2016, 17, 34-40.	7.0	630
28	Langerhans cells arise from monocytes in vivo. Nature Immunology, 2006, 7, 265-273.	7.0	627
29	<i>IRF8</i> Mutations and Human Dendritic-Cell Immunodeficiency. New England Journal of Medicine, 2011, 365, 127-138.	13.9	564
30	Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell, 2018, 172, 500-516.e16.	13.5	563
31	The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nature Immunology, 2008, 9, 676-683.	7.0	545
32	Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nature Immunology, 2019, 20, 29-39.	7.0	537
33	A single-cell and spatially resolved atlas of human breast cancers. Nature Genetics, 2021, 53, 1334-1347.	9.4	535
34	Microglia Modulate Wiring of the Embryonic Forebrain. Cell Reports, 2014, 8, 1271-1279.	2.9	526
35	Stroma-Derived Interleukin-34 Controls the Development and Maintenance of Langerhans Cells and the Maintenance of Microglia. Immunity, 2012, 37, 1050-1060.	6.6	482
36	Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nature Immunology, 2015, 16, 718-728.	7.0	475

3

#	Article	IF	CITATIONS
37	Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity, 2018, 48, 364-379.e8.	6.6	450
38	Mapping the human DC lineage through the integration of high-dimensional techniques. Science, 2017, 356, .	6.0	429
39	B Cell-Driven Lymphangiogenesis in Inflamed Lymph Nodes Enhances Dendritic Cell Mobilization. Immunity, 2006, 24, 203-215.	6.6	395
40	Human Innate Lymphoid Cell Subsets Possess Tissue-Type Based Heterogeneity in Phenotype and Frequency. Immunity, 2017, 46, 148-161.	6.6	380
41	Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. Journal of Experimental Medicine, 2007, 204, 3133-3146.	4.2	378
42	The immunological anatomy of the skin. Nature Reviews Immunology, 2019, 19, 19-30.	10.6	370
43	Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell, 2019, 178, 1509-1525.e19.	13.5	361
44	High-dimensional analysis of the murine myeloid cell system. Nature Immunology, 2014, 15, 1181-1189.	7.0	349
45	Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells. Immunity, 2019, 51, 573-589.e8.	6.6	336
46	Onco-fetal Reprogramming of Endothelial Cells Drives Immunosuppressive Macrophages in Hepatocellular Carcinoma. Cell, 2020, 183, 377-394.e21.	13.5	329
47	Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology, 2015, 62, 279-291.	3.6	304
48	Origin of Microglia: Current Concepts and Past Controversies. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020537.	2.3	298
49	Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nature Microbiology, 2016, 1, 16106.	5.9	298
50	Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program. Cell, 2019, 179, 1609-1622.e16.	13.5	292
51	Determinants of Resident Tissue Macrophage Identity and Function. Immunity, 2020, 52, 957-970.	6.6	280
52	Deciphering human macrophage development at single-cell resolution. Nature, 2020, 582, 571-576.	13.7	279
53	Microglia and early brain development: An intimate journey. Science, 2018, 362, 185-189.	6.0	269
54	Fetal monocytes and the origins of tissue-resident macrophages. Cellular Immunology, 2018, 330, 5-15.	1.4	268

#	Article	IF	Citations
55	Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nature Cell Biology, 2018, 20, 836-846.	4.6	267
56	Human Dermal CD14 + Cells Are a Transient Population of Monocyte-Derived Macrophages. Immunity, 2014, 41, 465-477.	6.6	256
57	Ontogeny of Tissue-Resident Macrophages. Frontiers in Immunology, 2015, 6, 486.	2.2	254
58	Co-option of Neutrophil Fates by Tissue Environments. Cell, 2020, 183, 1282-1297.e18.	13.5	246
59	Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function. Immunity, 2017, 47, 183-198.e6.	6.6	245
60	Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nature Microbiology, 2019, 4, 789-799.	5.9	245
61	Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. Journal of Experimental Medicine, 2006, 203, 583-597.	4.2	235
62	Hemogenic Endothelial Fate Mapping Reveals Dual Developmental Origin of Mast Cells. Immunity, 2018, 48, 1160-1171.e5.	6.6	235
63	Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen. Immunity, 2018, 49, 326-341.e7.	6.6	235
64	Microglial Function Is Distinct in Different Anatomical Locations during Retinal Homeostasis and Degeneration. Immunity, 2019, 50, 723-737.e7.	6.6	235
65	Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity, 2021, 54, 1883-1900.e5.	6.6	233
66	The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nature Immunology, 2008, 9, 42-53.	7.0	232
67	A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures. Immunity, 2016, 45, 442-456.	6.6	232
68	Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. Journal of Experimental Medicine, 2009, 206, 371-385.	4.2	222
69	Early Fate Defines Microglia and Non-parenchymal Brain Macrophage Development. Cell, 2020, 181, 557-573.e18.	13.5	218
70	Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nature Communications, 2022, 13, 1742.	5 . 8	213
71	Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3312-3317.	3.3	209
72	Blood Monocyte Subsets Differentially Give Rise to CD103+ and CD103â^' Pulmonary Dendritic Cell Populations. Journal of Immunology, 2008, 180, 3019-3027.	0.4	208

#	Article	IF	CITATIONS
73	Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung. Nature Communications, 2019, 10, 3964.	5.8	206
74	Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature, 2017, 546, 662-666.	13.7	199
75	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	1.6	198
76	Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent StemÂCells. Stem Cell Reports, 2017, 8, 619-633.	2.3	193
77	Origin and functional heterogeneity of nonâ€lymphoid tissue dendritic cells in mice. Immunological Reviews, 2010, 234, 55-75.	2.8	192
78	Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. Journal of Experimental Medicine, 2013, 210, 2321-2336.	4.2	190
79	Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. Journal of Clinical Investigation, 2010, 120, 2486-2496.	3.9	190
80	Dendritic cells and monocyte-derived cells: Two complementary and integrated functional systems. Seminars in Cell and Developmental Biology, 2015, 41, 9-22.	2.3	186
81	Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncolmmunology, 2016, 5, e1191731.	2.1	178
82	CSF-1–dependant donor-derived macrophages mediate chronic graft-versus-host disease. Journal of Clinical Investigation, 2014, 124, 4266-4280.	3.9	173
83	Exposure to Bacterial CpG DNA Protects from Airway Allergic Inflammation by Expanding Regulatory Lung Interstitial Macrophages. Immunity, 2017, 46, 457-473.	6.6	171
84	A Liver Capsular Network of Monocyte-Derived Macrophages Restricts Hepatic Dissemination of Intraperitoneal Bacteria by Neutrophil Recruitment. Immunity, 2017, 47, 374-388.e6.	6.6	171
85	A Single-Cell Sequencing Guide for Immunologists. Frontiers in Immunology, 2018, 9, 2425.	2.2	167
86	Tissue-resident FOLR2+ macrophages associate with CD8+ TÂcell infiltration in human breast cancer. Cell, 2022, 185, 1189-1207.e25.	13.5	166
87	Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage. Nature Immunology, 2019, 20, 852-864.	7.0	162
88	Genetic models of human and mouse dendritic cell development and function. Nature Reviews Immunology, 2021, 21, 101-115.	10.6	158
89	Ontogeny and Functional Specialization of Dendritic Cells in Human and Mouse. Advances in Immunology, 2013, 120, 1-49.	1.1	157
90	Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood, 2015, 125, 1314-1324.	0.6	157

#	Article	IF	Citations
91	Organization of the mouse and human DC network. Current Opinion in Immunology, 2014, 26, 90-99.	2.4	153
92	Homeostasis of Microglia in the Adult Brain: Review of Novel Microglia Depletion Systems. Trends in Immunology, 2015, 36, 625-636.	2.9	153
93	Combinatorial Single-Cell Analyses of Granulocyte-Monocyte Progenitor Heterogeneity Reveals an Early Uni-potent Neutrophil Progenitor. Immunity, 2020, 53, 303-318.e5.	6.6	153
94	Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nature Neuroscience, 2020, 23, 676-689.	7.1	148
95	Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation. Journal of Experimental Medicine, 2011, 208, 1069-1082.	4.2	145
96	Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Science Immunology, 2016, $1,\ldots$	5.6	145
97	DC-SIGN+ Macrophages Control the Induction of Transplantation Tolerance. Immunity, 2015, 42, 1143-1158.	6.6	144
98	The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin. Nature Immunology, 2015, 16, 505-516.	7.0	144
99	Microbial exposure during early human development primes fetal immune cells. Cell, 2021, 184, 3394-3409.e20.	13.5	141
100	CSF-1 controls cerebellar microglia and is required for motor function and social interaction. Journal of Experimental Medicine, 2019, 216, 2265-2281.	4.2	138
101	Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature, 2019, 574, 200-205.	13.7	135
102	Inflammatory Flt3I is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nature Medicine, 2013, 19, 730-738.	15.2	134
103	Zika Virus Infects Human Fetal Brain Microglia and Induces Inflammation. Clinical Infectious Diseases, 2017, 64, 914-920.	2.9	133
104	Cellular Differentiation of Human Monocytes Is Regulated by Time-Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2. Immunity, 2017, 47, 1051-1066.e12.	6.6	133
105	Brain microvessel crossâ€presentation is a hallmark of experimental cerebral malaria. EMBO Molecular Medicine, 2013, 5, 984-999.	3.3	131
106	Identification of a radio-resistant and cycling dermal dendritic cell population in mice and men. Journal of Experimental Medicine, 2006, 203, 2627-2638.	4.2	128
107	CD8+ T Cells and IFN-1³ Mediate the Time-Dependent Accumulation of Infected Red Blood Cells in Deep Organs during Experimental Cerebral Malaria. PLoS ONE, 2011, 6, e18720.	1.1	127
108	Conventional Dendritic Cells at the Crossroads Between Immunity and Cholesterol Homeostasis in Atherosclerosis. Circulation, 2009, 119, 2367-2375.	1.6	122

#	Article	IF	Citations
109	Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology, 2012, 55, 244-255.	3.6	119
110	Tissue-resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling. Nature Cell Biology, 2020, 22, 546-558.	4.6	118
111	Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Scientific Reports, 2016, 6, 23505.	1.6	113
112	A Three-Dimensional Atlas of Human Dermal Leukocytes, Lymphatics, and Blood Vessels. Journal of Investigative Dermatology, 2014, 134, 965-974.	0.3	111
113	Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nature Immunology, 2021, 22, 41-52.	7.0	110
114	CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. Journal of Experimental Medicine, 2016, 213, 2293-2314.	4.2	108
115	Targeting innate immunity for neurodegenerative disorders of the central nervous system. Journal of Neurochemistry, 2016, 138, 653-693.	2.1	106
116	Ontogeny and homeostasis of Langerhans cells. Immunology and Cell Biology, 2010, 88, 387-392.	1.0	104
117	Major alterations in the mononuclear phagocyte landscape associated with COVID-19 severity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	104
118	Immune responses during COVID-19 infection. Oncolmmunology, 2020, 9, 1807836.	2.1	103
119	A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity, 2021, 54, 2101-2116.e6.	6.6	99
120	Phenotypic and functional characterization of first-trimester human placental macrophages, Hofbauer cells. Journal of Experimental Medicine, 2021, 218, .	4.2	98
121	Human dendritic cells in cancer. Science Immunology, 2022, 7, eabm9409.	5.6	98
122	Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. Nature Immunology, 2021, 22, 1140-1151.	7.0	96
123	Studying tissue macrophages in vitro: are iPSC-derived cells the answer?. Nature Reviews Immunology, 2018, 18, 716-725.	10.6	92
124	Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology, 2021, 163, 250-261.	2.0	91
125	Repositioning TH cell polarization from single cytokines to complex help. Nature Immunology, 2021, 22, 1210-1217.	7.0	91
126	Understanding the Heterogeneity of Resident Liver Macrophages. Frontiers in Immunology, 2019, 10, 2694.	2.2	82

#	Article	IF	CITATIONS
127	Selective Susceptibility of Human Skin Antigen Presenting Cells to Productive Dengue Virus Infection. PLoS Pathogens, 2014, 10, e1004548.	2.1	80
128	Epidermal $\hat{I}^3\hat{I}$ T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. Journal of Experimental Medicine, 2018, 215, 2994-3005.	4.2	80
129	Mobilizing monocytes to cross-present circulating viral antigen in chronic infection. Journal of Clinical Investigation, 2013, 123, 3766-3776.	3.9	80
130	Intratumoural immune heterogeneity as a hallmark of tumour evolution and progression in hepatocellular carcinoma. Nature Communications, 2021, 12, 227.	5.8	76
131	Identification of a Kupffer cell subset capable of reverting the TÂcell dysfunction induced by hepatocellular priming. Immunity, 2021, 54, 2089-2100.e8.	6.6	73
132	Aligning bona fide dendritic cell populations across species. Cellular Immunology, 2014, 291, 3-10.	1.4	72
133	Hypoxiaâ€driven immunosuppression by Treg and typeâ€2 conventional dendritic cells in HCC. Hepatology, 2022, 76, 1329-1344.	3.6	71
134	Excessive Polyamine Generation in Keratinocytes Promotes Self-RNA Sensing by Dendritic Cells in Psoriasis. Immunity, 2020, 53, 204-216.e10.	6.6	69
135	Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. Journal of Experimental Medicine, 2021, 218, .	4.2	68
136	Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development. Nature Communications, 2016, 7, 11988.	5.8	67
137	Fetal mast cells mediate postnatal allergic responses dependent on maternal IgE. Science, 2020, 370, 941-950.	6.0	67
138	Microglia heterogeneity along a spatio–temporal axis: More questions than answers. Glia, 2018, 66, 2045-2057.	2.5	66
139	High fat diet exacerbates murine psoriatic dermatitis by increasing the number of IL-17-producing γδT cells. Scientific Reports, 2017, 7, 14076.	1.6	65
140	Non-terminally exhausted tumor-resident memory HBV-specific TÂcell responses correlate with relapse-free survival in hepatocellular carcinoma. Immunity, 2021, 54, 1825-1840.e7.	6.6	64
141	GM-CSF–Licensed CD11b+ Lung Dendritic Cells Orchestrate Th2 Immunity to <i>Blomia tropicalis</i> Journal of Immunology, 2014, 193, 496-509.	0.4	63
142	Tissue-specific differentiation of a circulating CCR9â^ pDC-like common dendritic cell precursor. Blood, 2012, 119, 6063-6071.	0.6	61
143	The mysterious origins of microglia. Nature Neuroscience, 2018, 21, 897-899.	7.1	60
144	Unbiased Profiling of Isogenic Huntington Disease hPSC-Derived CNS and Peripheral Cells Reveals Strong Cell-Type Specificity of CAG Length Effects. Cell Reports, 2019, 26, 2494-2508.e7.	2.9	60

#	Article	IF	CITATIONS
145	Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nature Reviews Nephrology, 2020, 16, 391-407.	4.1	60
146	Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance. American Journal of Transplantation, 2018, 18, 1247-1255.	2.6	58
147	The human fetal thymus generates invariant effector γδT cells. Journal of Experimental Medicine, 2020, 217, .	4.2	57
148	IFNÎ ³ and GM-CSF control complementary differentiation programs in the monocyte-to-phagocyte transition during neuroinflammation. Nature Immunology, 2022, 23, 217-228.	7.0	57
149	Intrahepatic CD206+ macrophages contribute to inflammation in advanced viral-related liver disease. Journal of Hepatology, 2017, 67, 490-500.	1.8	55
150	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	7.0	55
151	MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche. Nature, 2021, 592, 606-610.	13.7	53
152	Complement Mediated Signaling on Pulmonary CD103+ Dendritic Cells Is Critical for Their Migratory Function in Response to Influenza Infection. PLoS Pathogens, 2013, 9, e1003115.	2.1	52
153	Analysis of Myeloid Cells in Mouse Tissues with Flow Cytometry. STAR Protocols, 2020, 1, 100029.	0.5	51
154	Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1+ DCs in mouse and human and distinguishes them from Langerhans cells. Journal of Immunological Methods, 2016, 432, 35-49.	0.6	50
155	Bloodâ€brain barrier development: Systems modeling and predictive toxicology. Birth Defects Research, 2017, 109, 1680-1710.	0.8	50
156	A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGFα-Mediated Recruitment of Neutrophils. Immunity, 2019, 50, 1069-1083.e8.	6.6	50
157	Quantifying Recruitment of Cytosolic Peptides for HLA Class I Presentation: Impact of TAP Transport. Journal of Immunology, 2003, 170, 2977-2984.	0.4	49
158	Two populations of self-maintaining monocyte-independent macrophages exist in adult epididymis and testis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
159	Expanding dendritic cell nomenclature in the single-cell era. Nature Reviews Immunology, 2022, 22, 67-68.	10.6	49
160	TCR Sequencing Reveals the Distinct Development of Fetal and Adult Human $V\hat{l}^39V\hat{l}^2$ T Cells. Journal of Immunology, 2019, 203, 1468-1479.	0.4	48
161	Single-cell immunology: Past, present, and future. Immunity, 2022, 55, 393-404.	6.6	47
162	Langerhans cell histiocytosis is a neoplasm and consequently its recurrence is a relapse: In memory of Bob Arceci. Pediatric Blood and Cancer, 2016, 63, 1704-1712.	0.8	46

#	Article	IF	CITATIONS
163	RIGâ€l antiviral signaling drives interleukinâ€23 production and psoriasisâ€like skin disease. EMBO Molecular Medicine, 2017, 9, 589-604.	3.3	46
164	Dysregulated hematopoiesis in bone marrow marks severe COVID-19. Cell Discovery, 2021, 7, 60.	3.1	46
165	Twin study reveals non-heritable immune perturbations in multiple sclerosis. Nature, 2022, 603, 152-158.	13.7	45
166	From The Cover: Direct recognition by ÂÂ cytolytic T cells of Hfe, a MHC class Ib molecule without antigen-presenting function. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12855-12860.	3.3	44
167	The earliest intrathymic precursors of CD8î± ⁺ thymic dendritic cells correspond to myeloidâ€type doubleâ€negative 1c cells. European Journal of Immunology, 2011, 41, 2165-2175.	1.6	43
168	Liver fibrosis and CD206+ macrophage accumulation are suppressed by anti-GM-CSF therapy. JHEP Reports, 2020, 2, 100062.	2.6	42
169	Homeostatic control of dendritic cell numbers and differentiation. Immunology and Cell Biology, 2018, 96, 463-476.	1.0	41
170	New perspectives on the origins and heterogeneity of mast cells. Nature Reviews Immunology, 2023, 23, 55-68.	10.6	41
171	Recent advances in the understanding of microglial development and homeostasis. Cellular Immunology, 2018, 330, 68-78.	1.4	39
172	High-throughput single-cell quantification of hundreds of proteins using conventional flow cytometry and machine learning. Science Advances, 2021, 7, eabg0505.	4.7	39
173	Biphasic Impact of Prenatal Inflammation and Macrophage Depletion on the Wiring of Neocortical Inhibitory Circuits. Cell Reports, 2019, 28, 1119-1126.e4.	2.9	38
174	Manipulation of microbiota reveals altered callosal myelination and white matter plasticity in a model of Huntington disease. Neurobiology of Disease, 2019, 127, 65-75.	2.1	38
175	Constitutive Siglec-1 expression confers susceptibility to HIV-1 infection of human dendritic cell precursors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21685-21693.	3.3	37
176	Functional Specialization of Islet Dendritic Cell Subsets. Journal of Immunology, 2012, 188, 4921-4930.	0.4	36
177	TIM4 expression by dendritic cells mediates uptake of tumor-associated antigens and anti-tumor responses. Nature Communications, 2021, 12, 2237.	5.8	35
178	The coming of age of Langerhans cell histiocytosis. Nature Immunology, 2020, 21, 1-7.	7.0	34
179	Unlocking bat immunology: establishment of Pteropus alecto bone marrow-derived dendritic cells and macrophages. Scientific Reports, 2016, 6, 38597.	1.6	33
180	Modeling the Interaction between the Microenvironment and Tumor Cells in Brain Tumors. Neuron, 2020, 108, 1025-1044.	3.8	31

#	Article	IF	Citations
181	Prolonged SARS-CoV-2 RNA virus shedding and lymphopenia are hallmarks of COVID-19 in cancer patients with poor prognosis. Cell Death and Differentiation, 2021, 28, 3297-3315.	5.0	31
182	Role of adipose tissue macrophages in obesity-related disorders. Journal of Experimental Medicine, 2022, 219, .	4.2	31
183	Dendritic cells in humansfrom fetus to adult. International Immunology, 2015, 27, 65-72.	1.8	29
184	Single-cell transcriptomics and surface epitope detection in human brain epileptic lesions identifies pro-inflammatory signaling. Nature Neuroscience, 2022, 25, 956-966.	7.1	29
185	Microglia specific fluorescent probes for live cell imaging. Chemical Communications, 2014, 50, 1089-1091.	2.2	28
186	Fate PPAR-titioning: PPAR- \hat{l}^3 'instructs' alveolar macrophage development. Nature Immunology, 2014, 15, 1005-1007.	7.0	28
187	A TLR3 Ligand Reestablishes Chemotherapeutic Responses in the Context of FPR1 Deficiency. Cancer Discovery, 2021, 11, 408-423.	7.7	28
188	Single-Cell RNA-seq Reveals Angiotensin-Converting Enzyme 2 and Transmembrane Serine Protease 2 Expression in TROP2+ Liver Progenitor Cells: Implications in Coronavirus Disease 2019-Associated Liver Dysfunction. Frontiers in Medicine, 2021, 8, 603374.	1.2	28
189	Infection of lung megakaryocytes and platelets by SARS-CoV-2 anticipate fatal COVID-19. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	28
190	Constructing cell lineages from single-cell transcriptomes. Molecular Aspects of Medicine, 2018, 59, 95-113.	2.7	27
191	Calcineurin-mediated IL-2 production by CD11chighMHCII+ myeloid cells is crucial for intestinal immune homeostasis. Nature Communications, 2018, 9, 1102.	5.8	26
192	CD163 ⁺ cytokine-producing cDC2 stimulate intratumoral type 1 T cell responses in HPV16-induced oropharyngeal cancer., 2020, 8, e001053.		26
193	Atopic dermatitis microbiomes stratify into ecologic dermotypes enabling microbial virulence and disease severity. Journal of Allergy and Clinical Immunology, 2021, 147, 1329-1340.	1.5	26
194	ISM1 protects lung homeostasis via cell-surface GRP78-mediated alveolar macrophage apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	26
195	Editorial: Dendritic Cell and Macrophage Nomenclature and Classification. Frontiers in Immunology, 2016, 7, 168.	2.2	25
196	Dying for a Cause: Regulated Necrosis of Tissue-Resident Macrophages upon Infection. Trends in Immunology, 2017, 38, 693-695.	2.9	25
197	The Extended Polydimensional Immunome Characterization (EPIC) web-based reference and discovery tool for cytometry data. Nature Biotechnology, 2020, 38, 679-684.	9.4	25
198	Immunological history governs human stem cell memory CD4 heterogeneity via the Wnt signaling pathway. Nature Communications, 2020, 11, 821.	5.8	25

#	Article	IF	Citations
199	Circulating CD1c+ myeloid dendritic cells are potential precursors to LCH lesion CD1a+CD207+ cells. Blood Advances, 2020, 4, 87-99.	2.5	25
200	Genetic fate-mapping reveals surface accumulation but not deep organ invasion of pleural and peritoneal cavity macrophages following injury. Nature Communications, 2021, 12, 2863.	5.8	25
201	Roles of microglia in Alzheimer's disease and impact of new findings on microglial heterogeneity as a target for therapeutic intervention. Biochemical Pharmacology, 2021, 192, 114754.	2.0	24
202	Human dendritic cells. Seminars in Cell and Developmental Biology, 2019, 86, 1-2.	2.3	22
203	Identification of human tissue cross-presenting dendritic cells. Oncolmmunology, 2013, 2, e23140.	2.1	21
204	Engineered niches support the development of human dendritic cells in humanized mice. Nature Communications, 2020, 11, 2054.	5.8	21
205	Cell-autonomous FLT3L shedding via ADAM10 mediates conventional dendritic cell development in mouse spleen. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14714-14723.	3.3	20
206	Immunological observations and transcriptomic analysis of trimesterâ€specific fullâ€term placentas from three Zika virusâ€infected women. Clinical and Translational Immunology, 2019, 8, e01082.	1.7	20
207	Biology of resident tissue macrophages. Development (Cambridge), 2022, 149, .	1.2	20
208	Cbf \hat{l}^2 2 deficiency preserves Langerhans cell precursors by lack of selective TGF \hat{l}^2 receptor signaling. Journal of Experimental Medicine, 2017, 214, 2933-2946.	4.2	18
209	Polymersomes as Stable Nanocarriers for a Highly Immunogenic and Durable SARS-CoV-2 Spike Protein Subunit Vaccine. ACS Nano, 2021, 15, 15754-15770.	7.3	18
210	Dominant-negative NFKBIA mutation promotes IL- $1\hat{l}^2$ production causing hepatic disease with severe immunodeficiency. Journal of Clinical Investigation, 2020, 130, 5817-5832.	3.9	17
211	Dendritic cell genealogy: a new stem or just another branch?. Nature Immunology, 2007, 8, 1199-1201.	7.0	16
212	<scp>CD</scp> 41 is a reliable identification and activation marker for murine basophils in the steady state and during helminth and malarial infections. European Journal of Immunology, 2014, 44, 1823-1834.	1.6	16
213	Visualization of bone marrow monocyte mobilization using <i>Cx3cr1gfp/+Flt3Lâ^'/â^'</i> reporter mouse by multiphoton intravital microscopy. Journal of Leukocyte Biology, 2015, 97, 611-619.	1.5	15
214	Embryonic macrophages function during early life to determine invariant natural killer T cell levels at barrier surfaces. Nature Immunology, 2021, 22, 699-710.	7.0	15
215	A peptide encoded by priâ€miRNAâ€31 represses autoimmunity by promoting T _{reg} differentiation. EMBO Reports, 2022, 23, e53475.	2.0	15
216	Real-Time Imaging of Dendritic Cell Responses to Sterile Tissue Injury. Journal of Investigative Dermatology, 2015, 135, 1181-1184.	0.3	14

#	Article	IF	CITATIONS
217	Recent Advances in Models of Immune-Mediated Drug-Induced Liver Injury. Frontiers in Toxicology, 2021, 3, 605392.	1.6	13
218	Transcriptomic landscape of circulating mononuclear phagocytes in Langerhans cell histiocytosis at the single-cell level. Blood, 2021, 138, 1237-1248.	0.6	13
219	Unravelling the sex-specific diversity and functions of adrenal gland macrophages. Cell Reports, 2022, 39, 110949.	2.9	13
220	Ezh2 Controls Skin Tolerance through Distinct Mechanisms in Different Subsets of Skin Dendritic Cells. IScience, 2018, 10, 23-39.	1.9	12
221	Embryonic macrophages and microglia ablation alter the development of dorsal root ganglion sensory neurons in mouse embryos. Glia, 2018, 66, 2470-2486.	2.5	12
222	Towards the better understanding of myelopoiesis using single-cell technologies. Molecular Immunology, 2020, 122, 186-192.	1.0	12
223	Monocytes and macrophages in severe COVIDâ€19 – friend, foe or both?. Immunology and Cell Biology, 2021, 99, 561-564.	1.0	11
224	Dendritic cells and the malaria pre-erythrocytic stage. Immunologic Research, 2012, 53, 115-126.	1.3	10
225	Non-genetic Heterogeneity of Macrophages in Diseases—A Medical Perspective. Frontiers in Cell and Developmental Biology, 2020, 8, 613116.	1.8	10
226	High-fat diet induces a predisposition to follicular hyperkeratosis and neutrophilic folliculitis in mice. Journal of Allergy and Clinical Immunology, 2021, 148, 473-485.e10.	1.5	10
227	Isolation of mouse Kupffer cells for phenotypic andÂfunctional studies. STAR Protocols, 2021, 2, 100831.	0.5	10
228	Intravital multiphoton imaging of mouse tibialis anterior muscle. Intravital, 2016, 5, e1156272.	2.0	9
229	Editorial: Monocyte Heterogeneity and Function. Frontiers in Immunology, 2020, 11, 626725.	2.2	9
230	Transitional premonocytes emerge in the periphery for host defense against bacterial infections. Science Advances, 2022, 8, eabj4641.	4.7	9
231	The non-classical HLA class I molecule HFE does not influence the NK-like activity contained in fresh human PBMCs and does not interact with NK cells. International Immunology, 2005, 17, 117-122.	1.8	8
232	Poised for action: <scp>USP</scp> 18 restrains microglial activation in the white matter. EMBO Journal, 2015, 34, 1603-1605.	3.5	8
233	Perturbation of the immune cells and prenatal neurogenesis by the triplication of the <i>Erg</i> gene in mouse models of Down syndrome. Brain Pathology, 2020, 30, 75-91.	2.1	8
234	Essential functions of Runx/Cbf \hat{l}^2 in gut conventional dendritic cells for priming Ror \hat{l}^3 t ⁺ T cells. Life Science Alliance, 2020, 3, e201900441.	1.3	8

#	Article	IF	Citations
235	DNGRâ€ing the dendritic cell lineage. EMBO Reports, 2013, 14, 850-851.	2.0	7
236	Protocols for the Identification and Isolation of Antigen-Presenting Cells in Human and Mouse Tissues. Methods in Molecular Biology, 2016, 1423, 169-180.	0.4	7
237	Reprint of: Manipulation of microbiota reveals altered callosal myelination and white matter plasticity in a model of Huntington disease. Neurobiology of Disease, 2020, 135, 104744.	2.1	7
238	Dynamics of circulating calprotectin accurately predict the outcome of moderate COVID-19 patients. EBioMedicine, 2022, 80, 104077.	2.7	7
239	CD11b ⁺ DCs rediscovered: implications for vaccination. Expert Review of Vaccines, 2014, 13, 445-447.	2.0	6
240	Identification of CD39 as a Marker for the Circulating Malignant T-Cell Clone of Sézary Syndrome Patients. Journal of Investigative Dermatology, 2019, 139, 725-728.	0.3	6
241	Epithelial-Macrophage Crosstalk Initiates Sterile Inflammation in Embryonic Skin. Frontiers in Immunology, 2021, 12, 718005.	2.2	6
242	Novel Microglia Depletion Systems: A Genetic Approach Utilizing Conditional Diphtheria Toxin Receptor Expression and a Pharmacological Model Based on the Blocking of Macrophage Colony-Stimulating Factor 1 Receptor. Methods in Molecular Biology, 2019, 2034, 217-230.	0.4	5
243	A Virus-Specific Immune Rheostat in the Immunome of Patients Recovering From Mild COVID-19. Frontiers in Immunology, 2021, 12, 674279.	2.2	5
244	Complete human CD1a deficiency on Langerhans cells due to a rare point mutation in the coding sequence. Journal of Allergy and Clinical Immunology, 2016, 138, 1709-1712.e11.	1.5	4
245	Editorial for Cellular Immunology special issue on "Tissue Macrophages― Cellular Immunology, 2018, 330, 1-4.	1.4	4
246	Optimizing dissection, sample collection and cell isolation protocols for frugivorous bats. Methods in Ecology and Evolution, 2020, 11, 150-158.	2.2	4
247	Macrophage depletion in cancer therapy: A double-edged sword. Cellular Immunology, 2018, 331, 178-179.	1.4	3
248	"Cloaking―on Time: A Cover-Up Act by Resident Tissue Macrophages. Cell, 2019, 177, 514-516.	13.5	2
249	Maternal microchimerism and cellâ€mediated immuneâ€modulation enhance engraftment following semiâ€allogenic intrauterine transplantation. FASEB Journal, 2021, 35, e21413.	0.2	2
250	Differential Effects of Prostaglandin D 2 Signaling on Macrophages and Microglia in Murine Coronavirus Encephalomyelitis. MBio, 2021, 12, e0196921.	1.8	2
251	Kupffer Cell Characterization by Mass Cytometry. Methods in Molecular Biology, 2020, 2164, 87-99.	0.4	2
252	Pre-Transplant CSF-1 Therapy Expands the Recipient Macrophage Pool and Modulates Graft Versus Host Disease After Allogeneic Hematopoietic Cell Transplantation. Blood, 2010, 116, 242-242.	0.6	1

#	Article	IF	CITATIONS
253	SRSF2-P95Hdelays Myelofibrosis Development through Altered JAK/STAT Signaling in JAK2-V617F Megakaryocytes. Blood, 2021, 138, 2544-2544.	0.6	1
254	Reply to Over-celling fetal microbial exposure. Cell, 2021, 184, 5842-5844.	13.5	1
255	Reply to â€~Comment on: Repositioning TH cell polarization from single cytokines to complex help'. Nature Immunology, 2022, 23, 503-504.	7.0	1
256	Une sous-population de macrophages hépatiques impliquée dans la régulation duÂmétabolisme. Medecine/Sciences, 2022, 38, 532-536.	0.0	1
257	Fondation Rene Touraine Pour La Dermatologie. Experimental Dermatology, 2012, 21, 802-814.	1.4	0
258	New beginnings. Nature Reviews Immunology, 2017, 17, 732-732.	10.6	0
259	Fatâ€fated microglial dysfunction. EMBO Journal, 2019, 38, .	3.5	0
260	Water quality check: macrophages setting the standards. Cell Research, 2021, 31, 3-4.	5.7	0
261	Expanding cell-to-cell interactions. Science, 2021, 372, 342-343.	6.0	0
262	Homeostasis of Human Langerhans Cells after Allogeneic Hematopoietic Stem Cell Transplantation Blood, 2005, 106, 3092-3092.	0.6	0
263	Turnover of Dermal Dendritic Cells Blood, 2005, 106, 2283-2283.	0.6	0
264	Identification of the Circulating Langerhans Cell Precursor Blood, 2005, 106, 634-634.	0.6	0
265	Microglial Ontogeny and Functions in Shaping Brain Circuits. , 2014, , 183-215.		0
266	Cells in the Skin., 2017,, 63-113.		0
267	<i>Life Science Alliance</i> , from the Academic Editors. Life Science Alliance, 2018, 1, e201800044.	1.3	0
268	2004 – DECIPHERING HUMAN MACROPHAGE DEVELOPMENT AT SINGLE-CELL RESOLUTION. Experimental Hematology, 2020, 88, S28.	0.2	0
269	A Western Diet Alters Skin Ceramides and Compromises the Skin Barrier in Ears. Journal of Investigative Dermatology, 2022, 142, 2020-2023.e2.	0.3	0
270	Insights into the role of immune cells in development and regeneration. Development (Cambridge), 2022, 149, .	1.2	0