Haibo Mei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3763547/publications.pdf

Version: 2024-02-01

101543 133252 3,977 99 36 59 h-index citations g-index papers 101 101 101 2718 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Facile synthesis of (\hat{l}^2 -chlorodifluoroethyl)phosphonates via chlorination reaction of difluoroalkyl diazo derivatives with HCl. Chinese Chemical Letters, 2022, 33, 2429-2432.	9.0	13
2	Assembly of tetracyclic tetrahydrocarbazoles <i>via</i> a visible-light promoted cascade process. Organic Chemistry Frontiers, 2022, 9, 2516-2521.	4.5	13
3	Intramolecular Appel Reaction of Trifluoromethylated \hat{l}^2 -Keto Diazos Enabling Assembly of Trifluoromethylpyrazoles. Organic Letters, 2022, 24, 2258-2263.	4.6	11
4	Visible-Light-Irradiated Cascade Reaction of Indole-Tethered Alkenes to Access Tetracyclic Tetrahydro-Î ³ -carbolines. Organic Letters, 2022, 24, 2630-2635.	4.6	17
5	Visible-light-irradiated tandem sulfonylation/cyclization of indole tethered alkenes for the synthesis of tetrahydrocarbazoles. Chinese Chemical Letters, 2022, 33, 4886-4890.	9.0	12
6	Oneâ∈Pot Reaction of (βâ∈Aminoâ∈α,αâ∈difluoroethyl)phosphonates with Trifluoromethylated Ketones via Azaâ∈Wittig Reagents. Advanced Synthesis and Catalysis, 2022, 364, 1969-1974.	4.3	8
7	Design of (β-diazo-α,α-difluoroethyl)phosphonates and their application as masked carbenes in visible light-promoted coupling reactions with sulfonic acids. Organic Chemistry Frontiers, 2021, 8, 767-772.	4.5	20
8	Esterification of Carboxylic Acids with (\hat{l}^2 -Diazo- \hat{l}_{\pm} , \hat{l}_{\pm} -difluoroethyl)phosphonates under Photochemical Conditions. Acta Chimica Sinica, 2021, 79, 747.	1.4	17
9	Recent Advances in Synthesis of Difluoromethylene Phosphonates for Biological Applications. Advanced Synthesis and Catalysis, 2021, 363, 2912-2968.	4.3	42
10	Chemical Aspects of Human and Environmental Overload with Fluorine. Chemical Reviews, 2021, 121, 4678-4742.	47.7	202
11	Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. Chinese Chemical Letters, 2021, 32, 3342-3354.	9.0	79
12	Asymmetric Synthesis of αâ€Difluorinated βâ€Amino Sulfones through Detrifluoroacetylative Mannich Reactions. European Journal of Organic Chemistry, 2021, 2021, 3035-3038.	2.4	6
13	Synthesis of Isothiazoles through <i>N</i> Propargylsulfinylamide: TFA-Promoted Sulfinyl Group-Involved Intramolecular Cyclization. Organic Letters, 2021, 23, 6941-6945.	4. 6	6
14	[3+2] Cycloaddition reactions of \hat{i}^2 -diazo- \hat{i}_+,\hat{i}_+ -difluoromethylphosphonates with \hat{i}_+,\hat{i}^2 -unsaturated esters. Journal of Fluorine Chemistry, 2021, 251, 109899.	1.7	8
15	Electrosynthesis of functionalized tetrahydrocarbazoles <i>via</i> sulfonylation triggered cyclization reaction of indole derivatives. Green Chemistry, 2021, 23, 3256-3260.	9.0	19
16	In Situ Generation of Unstable Difluoromethylphosphonate-Containing Diazoalkanes and Their Use in [3 + 2] Cycloaddition Reactions with Vinyl Sulfones. Organic Letters, 2021, 23, 1130-1134.	4.6	22
17	Aldol Addition-Cyclization Reaction Cascade on a Platform of Chiral Ni(II) Complex of Glycine Schiff Base. Ukrainica Bioorganica Acta, 2021, 16, 3-9.	0.2	1
18	Applications of fluorine-containing amino acids for drug design. European Journal of Medicinal Chemistry, 2020, 186, 111826.	5 . 5	150

#	Article	IF	CITATIONS
19	Asymmetric Mannich reactions of (S)-N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimines with yne nucleophiles. Beilstein Journal of Organic Chemistry, 2020, 16, 2671-2678.	2.2	5
20	Frontispiece: Tailorâ€Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry - A European Journal, 2020, 26, .	3.3	2
21	Sulfurationâ€Triggered Radical Cyclization of <i>o</i> àê€Cyanoarylacrylamides to 3â€Thiomethylated Quinolineâ€2,4â€dione. ChemistrySelect, 2020, 5, 14534-14537.	1.5	3
22	Tailorâ€Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry - A European Journal, 2020, 26, 11349-11390.	3.3	81
23	Chemistry of electrochemical oxidative reactions of sulfinate salts. Green Chemistry, 2020, 22, 3028-3059.	9.0	63
24	A Selectfluor-promoted oxidative reaction of disulfides and amines: access to sulfinamides. Organic and Biomolecular Chemistry, 2020, 18, 3761-3766.	2.8	8
25	Fluorine-containing drugs approved by the FDA in 2019. Chinese Chemical Letters, 2020, 31, 2401-2413.	9.0	153
26	Michael addition reactions of chiral glycine Schiff base Ni (II)â€complex with 1â€(1â€phenylsulfonyl)benzene. Chirality, 2020, 32, 885-893.	2.6	7
27	Practical Method for Preparation of (<i>S</i>)-2-Amino-5,5,5-trifluoropentanoic Acid via Dynamic Kinetic Resolution. ACS Omega, 2019, 4, 11844-11851.	3.5	22
28	Frontispiece: Fluorineâ€Containing Drugs Approved by the FDA in 2018. Chemistry - A European Journal, 2019, 25, .	3.3	2
29	Electrochemical Alkoxysulfonylation Difunctionalization of Styrene Derivatives Using Sodium Sulfinates as Sulfonyl Sources. ACS Omega, 2019, 4, 14353-14359.	3.5	26
30	Perfluoro-3-ethyl-2,4-dimethyl-3-pentyl persistent radical: A new reagent for direct, metal-free radical trifluoromethylation and polymer initiation. Journal of Fluorine Chemistry, 2019, 227, 109370.	1.7	13
31	Chemistry of detrifluoroacetylatively <i>in situ</i> generated fluoro-enolates. Organic and Biomolecular Chemistry, 2019, 17, 762-775.	2.8	25
32	Asymmetric Vinylogous Mukaiyamaâ€Mannich Reactions of Heterocyclic Siloxy Dienes with Ellman's Fluorinated Aldimines. Advanced Synthesis and Catalysis, 2019, 361, 3860-3867.	4.3	6
33	Convenient Asymmetric Synthesis of Fmoc-(S)-6,6,6-Trifluoro-Norleucine. Symmetry, 2019, 11, 578.	2.2	24
34	Fluorineâ€Containing Drugs Approved by the FDA in 2018. Chemistry - A European Journal, 2019, 25, 11797-11819.	3.3	341
35	Effect of substituents on the configurational stability of the stereogenic nitrogen in metal(II) complexes of αâ€amino acid Schiff bases. Chirality, 2019, 31, 401-409.	2.6	5
36	Recent Advances on the Electrochemical Difunctionalization of Alkenes/Alkynes. Chinese Journal of Chemistry, 2019, 37, 292-301.	4.9	122

#	Article	IF	CITATIONS
37	Detrifluoroacetylative in Situ Generated Cyclic Fluorinated Enolates for the Preparation of Compounds Featuring a C–F Stereogenic Center. ACS Omega, 2019, 4, 19505-19512.	3.5	14
38	Electrochemical Dehydrogenative Phosphorylation of Alcohols for the Synthesis of Organophosphinates. Journal of Organic Chemistry, 2019, 84, 949-956.	3.2	47
39	Expedient Asymmetric Synthesis of (<i>S</i>)-2-Amino-4,4,4-trifluorobutanoic Acid via Alkylation of Chiral Nucleophilic Glycine Equivalent. Organic Process Research and Development, 2019, 23, 629-634.	2.7	28
40	Palladiumâ€Catalyzed Asymmetric Allylic Alkylations of Colby Proâ€Enolates with MBH Carbonates: Enantioselective Access to Quaternary Câ^F Oxindoles. Chemistry - A European Journal, 2018, 24, 8994-8998.	3.3	42
41	An electrochemical oxidative homo-coupling reaction of imidazopyridine heterocycles to biheteroaryls. Green Chemistry, 2018, 20, 583-587.	9.0	56
42	Synthesis of Chiral Sulfonyl Lactones via Copperâ€Catalyzed Asymmetric Radical Reaction of DABCOâ(SO ₂). Advanced Synthesis and Catalysis, 2018, 360, 1060-1065.	4.3	104
43	Recent progress in the application of fluorinated chiral sulfinimine reagents. Journal of Fluorine Chemistry, 2018, 216, 57-70.	1.7	22
44	Electrochemical Alkynyl/Alkenyl Migration for the Radical Difunctionalization of Alkenes. Chemistry - A European Journal, 2018, 24, 17205-17209.	3.3	48
45	Merging Photoredox and Copper Catalysis: Enantioselective Radical Cyanoalkylation of Styrenes. ACS Catalysis, 2018, 8, 7489-7494.	11.2	116
46	Electrochemical oxidative radical oxysulfuration of styrene derivatives with thiols and nucleophilic oxygen sources. Green Chemistry, 2018, 20, 3444-3449.	9.0	88
47	Detrifluoroacetylative cascade reactions of bicyclic fluoro-enolates with ortho-phthalaldehyde: Aspects of reactivity, diastereo- and enantioselectivity. Journal of Fluorine Chemistry, 2017, 196, 14-23.	1.7	12
48	Catalytic Enantioselective Cyanoâ€Trifluoromethylation of Styrenes. ChemistrySelect, 2017, 2, 1129-1132.	1.5	17
49	Metal-free nitroxyl radical-mediated β-C(sp3)–H amination of saturated ketones with heteroaryl halides: multiple roles of TEMPO. Chemical Communications, 2017, 53, 2958-2961.	4.1	11
50	βâ€Aminoâ€Î³,γâ€difluoroâ€Ï‰â€phosphonoglutamic Acid Derivatives: An Unexplored, Multifaceted Structural Tailorâ€Made αâ€Amino Acids. European Journal of Organic Chemistry, 2017, 2017, 3451-3456.	Г <u>у</u> ре of 2.4	10
51	Ni-Catalyzed Reductive Cross-Coupling of Amides with Aryl Iodide Electrophiles via C–N Bond Activation. Organic Letters, 2017, 19, 2536-2539.	4.6	101
52	Catalytic asymmetric aldol addition reactions of 3-fluoro-indolinone derived enolates. Organic and Biomolecular Chemistry, 2017, 15, 311-315.	2.8	24
53	Catalytic Enantioselective Michael Addition Reactions of Tertiary Enolates Generated by Detrifluoroacetylation. Chemistry - A European Journal, 2017, 23, 11221-11225.	3.3	19
54	Copper(II) Acetateâ€Catalyzed Hydroxysulfenylationâ€Initiated Lactonization of Unsaturated Carboxylic Acids with Oxygen as Oxidant and Oxygenation Reagent. Advanced Synthesis and Catalysis, 2017, 359, 1684-1690.	4.3	34

#	Article	IF	CITATIONS
55	Transition-metal-free oxidative reaction of hydrazines and potassium metabisulfite for preparation of sulfonohydrazides. Organic Chemistry Frontiers, 2017, 4, 1313-1317.	4.5	62
56	Detrifluoroacetylative generation and chemistry of fluorine containing tertiary enolates. Journal of Fluorine Chemistry, 2017, 198, 2-9.	1.7	22
57	Photoredox-Catalyzed Cascade Difluoroalkylation and Intramolecular Cyclization for Construction of Fluorinated Î ³ -Butyrolactones. Journal of Organic Chemistry, 2017, 82, 9824-9831.	3.2	61
58	Visible-Light Photoredox Catalyzed Oxidative/Reductive Cyclization Reaction of <i>N</i> -Cyanamide Alkenes for the Synthesis of Sulfonated Quinazolinones. Organic Letters, 2017, 19, 4798-4801.	4.6	75
59	Chemoselective S _N 2′ Allylations of Detrifluoroacetylatively In Situ Generated 3-Fluoroindolin-2-one-Derived Tertiary Enolates with Morita–Baylis–Hillman Carbonates. Journal of Organic Chemistry, 2017, 82, 13663-13670.	3.2	19
60	Unusual reactivity of fluoro-enolates with dialkyl azodicarboxylates: Synthesis of isatin-hydrazones. Journal of Fluorine Chemistry, 2017, 203, 99-103.	1.7	8
61	Copperâ€Catalyzed Selective Aerobic Oxidative Cascade Reaction of Hydrazines, DABSO, and Amines for the Direct Synthesis of Sulfonamides. Asian Journal of Organic Chemistry, 2017, 6, 153-156.	2.7	40
62	Cascade alkylarylation of substituted $\langle i \rangle N \langle i \rangle$ -allylbenzamides for the construction of dihydroisoquinolin-1(2 $\langle i \rangle H \langle i \rangle$)-ones and isoquinoline-1,3(2 $\langle i \rangle H \langle i \rangle$,4 $\langle i \rangle H \langle i \rangle$)-diones. Beilstein Journal of Organic Chemistry, 2016, 12, 301-308.	2.2	31
63	Catalytic cascade aldol–cyclization of tertiary ketone enolates for enantioselective synthesis of keto-esters with a C–F quaternary stereogenic center. Organic and Biomolecular Chemistry, 2016, 14, 7295-7303.	2.8	27
64	New Chiral Reagent for Installation of Pharmacophoric (<i>S</i>)―or (<i>R</i>)â€2â€(Alkoxyphosphono)â€1â€aminoâ€2,2â€difluoroethyl Groups. Chemistry - A European Journal, 20 7036-7040.)1 6,2 2,	24
65	Development and Evaluation of Different Methods for Preparation of Fluorine ontaining (<i>R</i>)― and (<i>S</i>)â€ <i>N</i>)â€ <i>tert</i>)â€Butanesulfinylâ€"aldimines. ChemistrySelect, 2016, 1, 4435-4439.	1.5	23
66	Cu-Catalyzed Deoxygenative C2-Sulfonylation Reaction of Quinoline <i>N</i> Oxides with Sodium Sulfinate. Organic Letters, 2016, 18, 4144-4147.	4.6	135
67	<i>N</i> -lodosuccinimide-Initiated Spirocyclopropanation of Styrenes with 1,3-Dicarbonyl Compound for the Synthesis of Spirocyclopropanes. Journal of Organic Chemistry, 2016, 81, 6546-6553.	3.2	33
68	<i>N</i> â€ <i>tert</i> â€Butylsulfinylâ€3,3,3â€trifluoroacetaldimine: Versatile Reagent for Asymmetric Synthesis of Trifluoromethylâ€Containing Amines and Amino Acids of Pharmaceutical Importance. European Journal of Organic Chemistry, 2016, 2016, 5917-5932.	2.4	52
69	Synthesis of Trisubstituted Vinyl Sulfides via Oxidative Thiolation Initiated Cascade Reaction of Alkynoates with Thiols. Journal of Organic Chemistry, 2016, 81, 9470-9475.	3.2	27
70	Sunlight-promoted cyclization versus decarboxylation in the reaction of alkynoates with N-iodosuccinimide: easy access to 3-iodocoumarins. Green Chemistry, 2016, 18, 3935-3939.	9.0	74
71	Catalytic asymmetric detrifluoroacetylative aldol reactions of aliphatic aldehydes for construction of C-F quaternary stereogenic centers. Journal of Fluorine Chemistry, 2016, 184, 28-35.	1.7	28
72	<i>N</i> -lodosuccinimide-Promoted Cascade Trifunctionalization of Alkynoates: Access to 1,1-Diiodoalkenes. Organic Letters, 2016, 18, 712-715.	4.6	59

#	Article	IF	CITATIONS
73	Generalized Approach to Asymmetric Synthesis of βâ€Substituted βâ€Amino Acids Bearing CHF ₂ , CBrF ₂ , and CClF ₂ Groups. Asian Journal of Organic Chemistry, 2015, 4, 1020-1024.	2.7	10
74	Recent Progress in the in situ DetrifluoroÂacetylative Generation of Fluoro Enolates and Their Reactions with Electrophiles. European Journal of Organic Chemistry, 2015, 2015, 6401-6412.	2.4	66
75	Hydroxyalkylation-Initiated Radical Cyclization of N-Allylbenzamide for Direct Construction of Isoquinolinone. Organic Letters, 2015, 17, 2724-2727.	4.6	63
76	Synthesis of $\hat{l}_{\pm},\hat{l}_{\pm}$ -difluoro- \hat{l}^2 -amino carbonyl-containing sulfonamides and related compounds. Journal of Fluorine Chemistry, 2015, 172, 13-21.	1.7	30
77	Metal-Free Oxidative Functionalization of a C(sp ³)â€"H Bond Adjacent to Nitrogen and Intramolecular Aromatic Cyclization for the Preparation of 6-Amidophenanthridines. Journal of Organic Chemistry, 2015, 80, 3151-3158.	3.2	41
78	Synthesis of Trifluoromethyl-Containing Vicinal Diamines by Asymmetric Decarboxylative Mannich Addition Reactions. Journal of Organic Chemistry, 2015, 80, 3187-3194.	3.2	39
79	DBU-promoted cyclization of vinyl isocyanides with ethers via the functionalization of a C(sp3)–H bond for the synthesis of isoquinolines. RSC Advances, 2015, 5, 64961-64965.	3.6	15
80	Asymmetric synthesis of quaternary \hat{l}_{\pm} -fluoro- \hat{l}^2 -keto-amines via detrifluoroacetylative Mannich reactions. Chemical Communications, 2015, 51, 9149-9152.	4.1	53
81	Ni-catalyzed asymmetric decarboxylative Mannich reaction for the synthesis of \hat{l}^2 -trifluoromethyl- \hat{l}^2 -amino ketones. RSC Advances, 2015, 5, 26811-26814.	3.6	20
82	Oxidative Difunctionalization of Alkynoates through Alkylation and Migration Decarboxylative Arylation. Organic Letters, 2015, 17, 5524-5527.	4.6	52
83	Asymmetric synthesis of amino-benzothiazol derivatives by additions of 2-lithiated benzothiazoles to (S)-N-t-butylsulfinyl-ketimines. RSC Advances, 2015, 5, 3491-3497.	3.6	6
84	Asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by sequential SN2–SN2â€2 dialkylation of (R)-N-(benzyl)proline-derived glycine Schiff base Ni(ii) complex. RSC Advances, 2015, 5, 1051-1058.	3.6	27
85	One-pot stereoselective synthesis of $\hat{l}\pm,\hat{l}^2$ -differentiated diamino esters via the sequence of aminochlorination, aziridination and intermolecular S _N 2 reaction. Beilstein Journal of Organic Chemistry, 2014, 10, 1802-1807.	2.2	3
86	Mannichâ€Type Addition Reactions between Lithium Derivatives of Benzo[<i>d</i>]thiazoles and <i>N</i> â€xi>tertâ€Butylsulfinylâ€3,3,3â€trifluoroacetaldimine: Convenient Generalized Synthesis of Bis(benzothiazole)s. European Journal of Organic Chemistry, 2014, 2014, 2429-2433.	2.4	22
87	Concise Asymmetric Synthesis of βâ€Trifluoromethylated α,βâ€Diamino Esters through Addition Reactions of Glycine Esters to CF ₃ â€Sulfinylimine. European Journal of Organic Chemistry, 2014, 2014, 1445-1451.	2.4	35
88	LDA-promoted asymmetric synthesis of \hat{l}^2 -trifluoromethyl- \hat{l}^2 -amino indanone derivatives with virtually complete stereochemical outcome. RSC Advances, 2014, 4, 4763-4768.	3.6	48
89	Operationally convenient method for preparation of sulfonamides containing $\hat{l}_{\pm},\hat{l}_{\pm}$ -difluoro- \hat{l}^2 -amino carbonyl moiety. Tetrahedron Letters, 2014, 55, 5908-5910.	1.4	44
90	Generalized access to fluorinated \hat{l}^2 -keto amino compounds through asymmetric additions of $\hat{l}_{\pm},\hat{l}_{\pm}$ -difluoroenolates to CF3-sulfinylimine. Organic and Biomolecular Chemistry, 2014, 12, 7836-7843.	2.8	58

#	Article	IF	CITATIONS
91	Concise and scalable asymmetric synthesis of 5-(1-amino-2,2,2-trifluoroethyl)thiazolo[3,2-b][1,2,4]triazoles. Organic and Biomolecular Chemistry, 2014, 12, 2108-2113.	2.8	39
92	Synthesis of chiral $\langle i \rangle N \langle i \rangle$ -phosphinyl α-imino esters and their application in asymmetric synthesis of α-amino esters by reduction. Beilstein Journal of Organic Chemistry, 2014, 10, 653-659.	2.2	9
93	Asymmetric Mannich reactions of imidazo[2,1-b]thiazole-derived nucleophiles with (SS)-N-tert-butanesulfinyl (3,3,3)-trifluoroacetaldimine. Organic and Biomolecular Chemistry, 2013, 11, 8018.	2.8	49
94	Na ₃ PO ₄ -catalyzed aminochlorination reaction of \hat{l}^2 -nitrostyrenes in water. RSC Advances, 2012, 2, 151-155.	3.6	11
95	Hydrogen-bonding self-assembly of two dimensional (2D) layer structures generating metal–organic nanotubes. CrystEngComm, 2011, 13, 734-737.	2.6	13
96	A facile process for the asymmetric synthesis of \hat{l}^2 -trifluoromethylated \hat{l}^2 -amino ketones via addition of ketone enolates to sulfinylimine. Organic and Biomolecular Chemistry, 2011, 9, 1402.	2.8	51
97	Tetrabenzylhafnium as a New Organometallic Reagent for Imine Addition Resulting in αâ€Branched Amines. European Journal of Organic Chemistry, 2011, 2011, 5783-5786.	2.4	7
98	The combination of benzamides/NCS as nitrogen/halogen sources for aminohalogenation of \hat{l}^2 -nitrostyrenes resulting in dichlorinated haloamides. Science China Chemistry, 2010, 53, 1946-1952.	8.2	12
99	Zinc-prolinamide complex catalyzed direct asymmetric aldol reactions in the presence of water. Science China Chemistry, 2010, 53, 2291-2296.	8.2	7