Edurne San José-Enériz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/376282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetic Silencing of the Tumor Suppressor MicroRNA <i>Hsa-miR-124a</i> Regulates CDK6 Expression and Confers a Poor Prognosis in Acute Lymphoblastic Leukemia. Cancer Research, 2009, 69, 4443-4453.	0.9	299
2	Down-Regulation of <i>hsa-miR-10a</i> in Chronic Myeloid Leukemia CD34+ Cells Increases USF2-Mediated Cell Growth. Molecular Cancer Research, 2008, 6, 1830-1840.	3.4	208
3	Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood, 2007, 109, 3462-3469.	1.4	153
4	Epigenetic Regulation of MicroRNAs in Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2009, 27, 1316-1322.	1.6	131
5	Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nature Medicine, 2019, 25, 1073-1081.	30.7	125
6	Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. European Journal of Heart Failure, 2008, 10, 1065-1072.	7.1	119
7	Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Research, 2015, 25, 478-487.	5.5	118
8	HDAC Inhibitors in Acute Myeloid Leukemia. Cancers, 2019, 11, 1794.	3.7	118
9	Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies. Nature Communications, 2017, 8, 15424.	12.8	109
10	MicroRNA expression profiling in Imatinib-resistant Chronic Myeloid Leukemia patients without clinically significant ABL1-mutations. Molecular Cancer, 2009, 8, 69.	19.2	101
11	Dual Targeting of Histone Methyltransferase G9a and DNAâ€Methyltransferase 1 for the Treatment of Experimental Hepatocellular Carcinoma. Hepatology, 2019, 69, 587-603.	7.3	81
12	Epigenetic down-regulation of BIM expression is associated with reduced optimal responses to imatinib treatment in chronic myeloid leukaemia. European Journal of Cancer, 2009, 45, 1877-1889.	2.8	76
13	Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood, 2020, 136, 199-209.	1.4	76
14	Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia. Leukemia Research, 2008, 32, 487-490.	0.8	71
15	WNT5A, a putative tumour suppressor of lymphoid malignancies, is inactivated by aberrant methylation in acute lymphoblastic leukaemia. European Journal of Cancer, 2007, 43, 2736-2746.	2.8	66
16	CpG Island Methylator Phenotype Redefines the Prognostic Effect of t(12;21) in Childhood Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2006, 12, 4845-4850.	7.0	62
17	Epigenetic regulation of PRAME gene in chronic myeloid leukemia. Leukemia Research, 2007, 31, 1521-1528.	0.8	60
18	Epigenetic regulation of human cancer/testis antigen gene, HAGE, in chronic myeloid leukemia. Haematologica, 2007, 92, 153-162.	3.5	54

#	Article	IF	CITATIONS
19	Deregulation of <i>FGFR1</i> and <i>CDK6</i> oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the <i>MIR9</i> family. British Journal of Haematology, 2011, 155, 73-83.	2.5	53
20	Frequent and Simultaneous Epigenetic Inactivation of TP53 Pathway Genes in Acute Lymphoblastic Leukemia. PLoS ONE, 2011, 6, e17012.	2.5	52
21	Promoter hypermethylation and global hypomethylation are independent epigenetic events in lymphoid leukemogenesis with opposing effects on clinical outcome. Leukemia, 2006, 20, 1445-1447.	7.2	46
22	Epigenetic regulation of the non anonical Wnt pathway in acute myeloid leukemia. Cancer Science, 2010, 101, 425-432.	3.9	43
23	Deregulation of <i>linc-PINT</i> in acute lymphoblastic leukemia is implicated in abnormal proliferation of leukemic cells. Oncotarget, 2018, 9, 12842-12852.	1.8	43
24	Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia. Leukemia, 2012, 26, 1517-1526.	7.2	41
25	Resistance to Imatinib Mesylate-induced apoptosis in acute lymphoblastic leukemia is associated with PTEN down-regulation due to promoter hypermethylation. Leukemia Research, 2008, 32, 709-716.	0.8	39
26	Discovery of Reversible DNA Methyltransferase and Lysine Methyltransferase C9a Inhibitors with Antitumoral in Vivo Efficacy. Journal of Medicinal Chemistry, 2018, 61, 6518-6545.	6.4	36
27	An in-silico approach to predict and exploit synthetic lethality in cancer metabolism. Nature Communications, 2017, 8, 459.	12.8	35
28	Chromatin activation as a unifying principle underlying pathogenic mechanisms in multiple myeloma. Genome Research, 2020, 30, 1217-1227.	5.5	35
29	<i>BCRâ€ABL1</i> â€induced expression of <i>HSPA8</i> promotes cell survival in chronic myeloid leukaemia. British Journal of Haematology, 2008, 142, 571-582.	2.5	33
30	Downregulation of DBC1 expression in acute lymphoblastic leukaemia is mediated by aberrant methylation of its promoter. British Journal of Haematology, 2006, 134, 137-144.	2.5	30
31	Methylation status of Wnt signaling pathway genes affects the clinical outcome of Philadelphiaâ€positive acute lymphoblastic leukemia. Cancer Science, 2008, 99, 1865-1868.	3.9	29
32	Targeting aberrant DNA methylation in mesenchymal stromal cells as a treatment for myeloma bone disease. Nature Communications, 2021, 12, 421.	12.8	29
33	Down-regulated expression of hsa-miR-181c in Fanconi anemia patients: implications in TNFα regulation and proliferation of hematopoietic progenitor cells. Blood, 2012, 119, 3042-3049.	1.4	23
34	Detailed Exploration around 4-Aminoquinolines Chemical Space to Navigate the Lysine Methyltransferase G9a and DNA Methyltransferase Biological Spaces. Journal of Medicinal Chemistry, 2018, 61, 6546-6573.	6.4	19
35	Epigenetic regulation of cell signaling pathways in acute lymphoblastic leukemia. Epigenomics, 2013, 5, 525-538.	2.1	13
36	Design and Synthesis of Novel Epigenetic Inhibitors Targeting Histone Deacetylases, DNA Methyltransferase 1, and Lysine Methyltransferase G9a with <i>In Vivo</i> Efficacy in Multiple Myeloma, Journal of Medicinal Chemistry, 2021, 64, 3392-3426.	6.4	11

#	Article	IF	CITATIONS
37	In-silico gene essentiality analysis of polyamine biosynthesis reveals APRT as a potential target in cancer. Scientific Reports, 2017, 7, 14358.	3.3	10
38	Reversible dual inhibitor against G9a and DNMT1 improves human iPSC derivation enhancing MET and facilitating transcription factor engagement to the genome. PLoS ONE, 2017, 12, e0190275.	2.5	10
39	A network-based approach to integrate nutrient microenvironment in the prediction of synthetic lethality in cancer metabolism. PLoS Computational Biology, 2022, 18, e1009395.	3.2	5
40	Román-Gómez J, Cordeu L, Agirre X, Jiménez-Velasco A, San José-Eneriz E, Garate L, Calasanz MJ, Heiniger A, Torres A, Prosper F. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood. 2007;109(8):3462–3469 Blood, 2012, 120, 3625-3625.	1.4	4
41	COBRA methods and metabolic drug targets in cancer. Molecular and Cellular Oncology, 2018, 5, e1389672.	0.7	3
42	Dual epigenetic modifiers for cancer therapy. Molecular and Cellular Oncology, 2017, 4, e1342748.	0.7	2
43	Inhibition of the Methyltransferase G9a with Small Molecules As a New Therapeutic Strategy for Treatment of Hematological Malignancies. Blood, 2014, 124, 3532-3532.	1.4	2
44	Inhibiting Histone and DNA Methylation Improves Cancer Vaccination in an Experimental Model of Melanoma. Frontiers in Immunology, 2022, 13, .	4.8	2