
Hsiao-Tuan Chao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3762297/publications.pdf Version: 2024-02-01

Ηςιλο-ΤιιλΝ CHAO

#	Article	IF	CITATIONS
1	Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 2010, 468, 263-269.	27.8	1,042
2	MeCP2 Controls Excitatory Synaptic Strength by Regulating Glutamatergic Synapse Number. Neuron, 2007, 56, 58-65.	8.1	439
3	Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21966-21971.	7.1	240
4	Deletion of Mecp2 in Sim1-Expressing Neurons Reveals a Critical Role for MeCP2 in Feeding Behavior, Aggression, and the Response to Stress. Neuron, 2008, 59, 947-958.	8.1	230
5	Distinct domains of complexin I differentially regulate neurotransmitter release. Nature Structural and Molecular Biology, 2007, 14, 949-958.	8.2	198
6	MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome. American Journal of Human Genetics, 2017, 100, 843-853.	6.2	181
7	A partial loss of function allele of Methyl-CpC-binding protein 2 predicts a human neurodevelopmental syndrome. Human Molecular Genetics, 2008, 17, 1718-1727.	2.9	173
8	Model Organisms Facilitate Rare Disease Diagnosis and Therapeutic Research. Genetics, 2017, 207, 9-27.	2.9	165
9	Math1 Is Essential for the Development of Hindbrain Neurons Critical for Perinatal Breathing. Neuron, 2009, 64, 341-354.	8.1	146
10	Dendritic Arborization and Spine Dynamics Are Abnormal in the Mouse Model of <i>MECP2</i> Duplication Syndrome. Journal of Neuroscience, 2013, 33, 19518-19533.	3.6	123
11	Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nature Structural and Molecular Biology, 2010, 17, 568-575.	8.2	113
12	A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3. American Journal of Human Genetics, 2017, 100, 128-137.	6.2	96
13	Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. Journal of Clinical Investigation, 2021, 131, .	8.2	87
14	MeCP2: only 100% will do. Nature Neuroscience, 2012, 15, 176-177.	14.8	59
15	Lysosomal Storage and Albinism Due to Effects of a De Novo CLCN7 Variant on Lysosomal Acidification. American Journal of Human Genetics, 2019, 104, 1127-1138.	6.2	59
16	Identification of novel candidate disease genes from de novo exonic copy number variants. Genome Medicine, 2017, 9, 83.	8.2	50
17	De Novo Variants in WDR37 Are Associated with Epilepsy, Colobomas, Dysmorphism, Developmental Delay, Intellectual Disability, and Cerebellar Hypoplasia. American Journal of Human Genetics, 2019, 105, 413-424.	6.2	43
18	Partial Loss of USP9X Function Leads to a Male Neurodevelopmental and Behavioral Disorder Converging on Transforming Growth Factor β Signaling. Biological Psychiatry, 2020, 87, 100-112.	1.3	42

Ηςιαο-Τυαν Chao

#	Article	IF	CITATIONS
19	Stxbp1/Munc18-1 haploinsufficiency impairs inhibition and mediates key neurological features of STXBP1 encephalopathy. ELife, 2020, 9, .	6.0	42
20	De novo EIF2AK1 and EIF2AK2 Variants Are Associated with Developmental Delay, Leukoencephalopathy, and Neurologic Decompensation. American Journal of Human Genetics, 2020, 106, 570-583.	6.2	37
21	Clinical and molecular characterization of de novo loss of function variants in <i>HNRNPU</i> . American Journal of Medical Genetics, Part A, 2017, 173, 2680-2689.	1.2	34
22	In Vivo Functional Study of Disease-associated Rare Human Variants Using Drosophila . Journal of Visualized Experiments, 2019, , .	0.3	34
23	The yin and yang of MeCP2 phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4577-4578.	7.1	31
24	De Novo Pathogenic Variants in N-cadherin Cause a Syndromic Neurodevelopmental Disorder with Corpus Callosum, Axon, Cardiac, Ocular, and Genital Defects. American Journal of Human Genetics, 2019, 105, 854-868.	6.2	29
25	Drosophila functional screening of de novo variants in autism uncovers damaging variants and facilitates discovery of rare neurodevelopmental diseases. Cell Reports, 2022, 38, 110517.	6.4	24
26	De Novo Variants in CDK19 Are Associated with a Syndrome Involving Intellectual Disability and Epileptic Encephalopathy. American Journal of Human Genetics, 2020, 106, 717-725.	6.2	23
27	Investigation of Synapse Formation and Function in a Clutamatergic-GABAergic Two-Neuron Microcircuit. Journal of Neuroscience, 2014, 34, 855-868.	3.6	22
28	DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract. Genetics in Medicine, 2019, 21, 2755-2764.	2.4	19
29	Building dialogues between clinical and biomedical research through cross-species collaborations. Seminars in Cell and Developmental Biology, 2017, 70, 49-57.	5.0	16
30	Heterozygous loss-of-function variants significantly expand the phenotypes associated with loss of GDF11. Genetics in Medicine, 2021, 23, 1889-1900.	2.4	13
31	Recurrent mosaic MTOR c.5930C > T (p.Thr1977lle) variant causing megalencephaly, asymmetric polymicrogyria, and cutaneous pigmentary mosaicism: Case report and review of the literature. American Journal of Medical Genetics, Part A, 2019, 179, 475-479.	1.2	11
32	<i>EIF2AK2</i> -related Neurodevelopmental Disorder With Leukoencephalopathy, Developmental Delay, and Episodic Neurologic Regression Mimics Pelizaeus-Merzbacher Disease. Neurology: Genetics, 2021, 7, e539.	1.9	9
33	Magnetic Resonance Imaging characteristics in case of TOR1AIP1 muscular dystrophy. Clinical Imaging, 2019, 58, 108-113.	1.5	6
34	An Integrated Phenotypic and Genotypic Approach Reveals a Highâ€Risk Subtype Association for <scp><i>EBF3</i></scp> Missense Variants Affecting the Zinc Finger Domain. Annals of Neurology, 2022, 92, 138-153.	5.3	5
35	<i>PRUNE1</i> c. <scp>933G</scp> >A synonymous variant induces exon 7 skipping, disrupts the <scp>DHHA2</scp> domain, and leads to an atypical <scp>NMIHBA</scp> syndrome presentation: Case report and review of the literature. American Journal of Medical Genetics, Part A, 2022, 188, 1868-1874.	1.2	2