Ellen Kandeler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3762038/publications.pdf

Version: 2024-02-01

225 papers 14,227 citations

63 h-index 27406 106 g-index

237 all docs

237 docs citations

times ranked

237

14062 citing authors

#	Article	IF	CITATIONS
1	Biogeochemical limitations of carbon stabilization in forest subsoils (sup) # (sup). Journal of Plant Nutrition and Soil Science, 2022, 185, 35-43.	1.9	7
2	Differences in organic matter properties and microbial activity between bulk and rhizosphere soil from the top- and subsoils of three forest stands. Geoderma, 2022, 409, 115589.	5.1	11
3	The Evolution of Ecological Diversity in Acidobacteria. Frontiers in Microbiology, 2022, 13, 715637.	3.5	15
4	The role of microbes in the increase of organic phosphorus availability in the rhizosheath of cover crops. Plant and Soil, 2022, 476, 353-373.	3.7	10
5	Hydrolyzable microplastics in soil—low biodegradation but formation of a specific microbial habitat?. Biology and Fertility of Soils, 2022, 58, 471-486.	4.3	22
6	Oat, corncockle, and lupine growth affects resinâ€extractable soil phosphorus and soil microbial properties differently [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 329-340.	1.9	0
7	Heavy rainfall following a summer drought stimulates soil redox dynamics and facilitates rapid and deep translocation of glyphosate in floodplain soils. Environmental Sciences: Processes and Impacts, 2022, , .	3.5	2
8	A New Framework to Assess Sustainability of Soil Improving Cropping Systems in Europe. Land, 2022, 11, 729.	2.9	5
9	Abandoned pastures and restored savannas have distinct patterns of plant–soil feedback and nutrient cycling compared with native Brazilian savannas. Journal of Applied Ecology, 2022, 59, 1863-1873.	4.0	2
10	13C assimilation as well as functional gene abundance and expression elucidate the biodegradation of glyphosate in a field experiment. Environmental Pollution, 2022, 306, 119382.	7.5	6
11	Enzyme kinetics inform about mechanistic changes in tea litter decomposition across gradients in land-use intensity in Central German grasslands. Science of the Total Environment, 2022, 836, 155748.	8.0	4
12	Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe. Land, 2022, 11, 780.	2.9	16
13	Direct and plant community mediated effects of management intensity on annual nutrient leaching risk in temperate grasslands. Nutrient Cycling in Agroecosystems, 2022, 123, 83-104.	2.2	6
14	Agricultural management affects active carbon and nitrogen mineralisation potential in soils. Journal of Plant Nutrition and Soil Science, 2022, 185, 513-528.	1.9	3
15	Modeling temperature sensitivity of soil organic matter decomposition: Splitting the pools. Soil Biology and Biochemistry, 2021, 153, 108108.	8.8	10
16	Carbohydrate depletion in roots impedes phosphorus nutrition in young forest trees. New Phytologist, 2021, 229, 2611-2624.	7.3	19
17	Interactions between cover crops and soil microorganisms increase phosphorus availability in conservation agriculture. Plant and Soil, 2021, 463, 307-328.	3.7	26
18	The mineralosphereâ€"interactive zone of microbial colonization and carbon use in grassland soils. Biology and Fertility of Soils, 2021, 57, 587-601.	4.3	11

#	Article	IF	Citations
19	Microbial Utilisation of Aboveground Litter-Derived Organic Carbon Within a Sandy Dystric Cambisol Profile. Frontiers in Soil Science, 2021, 1 , .	2.2	11
20	Landâ€use intensity and biodiversity effects on infiltration capacity and hydraulic conductivity of grassland soils in southern Germany. Ecohydrology, 2021, 14, e2301.	2.4	5
21	Middle Bronze Age land use practices in the northwestern Alpine foreland – a multi-proxy study of colluvial deposits, archaeological features and peat bogs. Soil, 2021, 7, 269-304.	4.9	12
22	Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nature Communications, 2021, 12, 4431.	12.8	40
23	Mineral-Ecological Cropping Systems—A New Approach to Improve Ecosystem Services by Farming without Chemical Synthetic Plant Protection. Agronomy, 2021, 11, 1710.	3.0	25
24	Cadmium retention and microbial response in volcanic soils along gradients of soil age and climate on the $\text{Gal}\tilde{A}_i$ pagos Islands. Journal of Environmental Quality, 2021, 50, 1233-1245.	2.0	2
25	Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biology and Biochemistry, 2021, 159, 108302.	8.8	56
26	Soil microbial communities are driven by the declining availability of cations and phosphorus during ecosystem retrogression. Soil Biology and Biochemistry, 2021, 163, 108430.	8.8	10
27	Collection of human and environmental data on pesticide use in Europe and Argentina: Field study protocol for the SPRINT project. PLoS ONE, 2021, 16, e0259748.	2.5	9
28	Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environmental Microbiology, 2020, 22, 873-888.	3.8	27
29	Bacterial colonization of minerals in grassland soils is selective and highly dynamic. Environmental Microbiology, 2020, 22, 917-933.	3.8	23
30	Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity. New Phytologist, 2020, 226, 583-594.	7.3	84
31	Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28140-28149.	7.1	164
32	Stochastic Dispersal Rather Than Deterministic Selection Explains the Spatio-Temporal Distribution of Soil Bacteria in a Temperate Grassland. Frontiers in Microbiology, 2020, 11, 1391.	3.5	36
33	Biogeochemical cycling of phosphorus in subsoils of temperate forest ecosystems. Biogeochemistry, 2020, 150, 313-328.	3.5	17
34	Biodegradation of Pesticides at the Limit: Kinetics and Microbial Substrate Use at Low Concentrations. Frontiers in Microbiology, 2020, 11, 2107.	3.5	21
35	Do Soil Warming and Changes in Precipitation Patterns Affect Seed Yield and Seed Quality of Field-Grown Winter Oilseed Rape?. Agronomy, 2020, 10, 520.	3.0	11
36	Saprotrophic and Ectomycorrhizal Fungi Contribute Differentially to Organic P Mobilization in Beech-Dominated Forest Ecosystems. Frontiers in Forests and Global Change, 2020, 3, .	2.3	11

#	Article	IF	CITATIONS
37	Plant litter enhances degradation of the herbicide MCPA and increases formation of biogenic non-extractable residues in soil. Environment International, 2020, 142, 105867.	10.0	10
38	Spatial Control of Carbon Dynamics in Soil by Microbial Decomposer Communities. Frontiers in Environmental Science, 2020, 8, .	3.3	15
39	Soil Properties Control Microbial Carbon Assimilation and Its Mean Residence Time. Frontiers in Environmental Science, 2020, 8, .	3.3	10
40	Microplastics Effects on Reproduction and Body Length of the Soil-Dwelling Nematode Caenorhabditis elegans. Frontiers in Environmental Science, 2020, 8, .	3.3	80
41	Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts. FEMS Microbiology Ecology, 2019, 95, .	2.7	23
42	The mineralosphere â€" Succession and physiology of bacteria and fungi colonising pristine minerals in grassland soils under different land-use intensities. Soil Biology and Biochemistry, 2019, 136, 107534.	8.8	36
43	Fungi and bacteria respond differently to changing environmental conditions within a soil profile. Soil Biology and Biochemistry, 2019, 137, 107543.	8.8	31
44	Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria:) Tj ETQq0 0 0 rgBT /C	Overlock 1	0 Tf 50 462 T
45	Maize Inoculation with Microbial Consortia: Contrasting Effects on Rhizosphere Activities, Nutrient Acquisition and Early Growth in Different Soils. Microorganisms, 2019, 7, 329.	3.6	22
46	Recovery of ecosystem functions after experimental disturbance in 73 grasslands differing in landâ€use intensity, plant species richness and community composition. Journal of Ecology, 2019, 107, 2635-2649.	4.0	20
47	Disentangling carbon flow across microbial kingdoms in the rhizosphere of maize. Soil Biology and Biochemistry, 2019, 134, 122-130.	8.8	38
48	Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. Journal of Ecology, 2019, 107, 2197-2210.	4.0	57
49	Response of phosphorus dynamics to sewage sludge application in an agroecosystem in northern France. Applied Soil Ecology, 2019, 137, 178-186.	4.3	34
50	Assessment of biochar and zero-valent iron for in-situ remediation of chromated copper arsenate contaminated soil. Science of the Total Environment, 2019, 655, 414-422.	8.0	58
51	Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems. Plant and Soil, 2019, 434, 7-45.	3.7	180
52	Controls on microbially regulated soil organic carbon decomposition at the regional scale. Soil Biology and Biochemistry, 2018, 118, 59-68.	8.8	35
53	Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity. Plant and Soil, 2018, 427, 17-37.	3.7	57
54	Cross-laboratory comparison of fluorimetric microplate and colorimetric bench-scale soil enzyme assays. Soil Biology and Biochemistry, 2018, 121, 240-248.	8.8	22

#	Article	IF	Citations
55	Factors controlling the variability of organic matter in the top- and subsoil of a sandy Dystric Cambisol under beech forest. Geoderma, 2018, 311, 37-44.	5.1	55
56	The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils. Journal of Plant Nutrition and Soil Science, 2018, 181, 185-197.	1.9	13
57	Temporal variations of phosphorus uptake by soil microbial biomass and young beech trees in two forest soils with contrasting phosphorus stocks. Soil Biology and Biochemistry, 2018, 117, 191-202.	8.8	54
58	P and N deficiency change the relative abundance and function of rhizosphere microorganisms during cluster root development of white lupin (<i>Lupinus albus</i> Lupinus albusLo). Soil Science and Plant Nutrition, 2018, 64, 686-696.	1.9	22
59	Interactions of Mycorrhiza and Protists in the Rhizosphere Systemically Alter Microbial Community Composition, Plant Shoot-to-Root Ratio and Within-Root System Nitrogen Allocation. Frontiers in Environmental Science, 2018, 6, .	3.3	41
60	Water flow drives small scale biogeography of pesticides and bacterial pesticide degraders - A microcosm study using 2,4-D as a model compound. Soil Biology and Biochemistry, 2018, 127, 137-147.	8.8	10
61	Dynamics of soil respiration and microbial communities: Interactive controls of temperature and substrate quality. Soil Biology and Biochemistry, 2018, 127, 60-70.	8.8	47
62	Bodenorganismen und ihr Lebensraum. , 2018, , 103-149.		0
63	Carbon budgets of top- and subsoil food webs in an arable system. Pedobiologia, 2018, 69, 29-33.	1.2	13
64	Forest Soil Phosphorus Resources and Fertilization Affect Ectomycorrhizal Community Composition, Beech P Uptake Efficiency, and Photosynthesis. Frontiers in Plant Science, 2018, 9, 463.	3.6	56
65	Root exudation patterns in a beech forest: Dependence on soil depth, root morphology, and environment. Soil Biology and Biochemistry, 2017, 107, 188-197.	8.8	83
66	Resource driven community dynamics of NH 4 + assimilating and N 2 O reducing archaea in a temperate paddy soil. Pedobiologia, 2017, 62, 16-27.	1.2	11
67	Microbial community response to changes in substrate availability and habitat conditions in a reciprocal subsoil transfer experiment. Soil Biology and Biochemistry, 2017, 105, 138-152.	8.8	39
68	Changes in bacterial community composition and soil respiration indicate rapid successions of protist grazers during mineralization of maize crop residues. Pedobiologia, 2017, 62, 1-8.	1.2	37
69	Comparison and standardization of soil enzyme assay for meaningful data interpretation. Journal of Microbiological Methods, 2017, 133, 32-34.	1.6	19
70	Carbon flow from litter through soil microorganisms: From incorporation rates to mean residence times in bacteria and fungi. Soil Biology and Biochemistry, 2017, 115, 187-196.	8.8	53
71	Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil. Soil Biology and Biochemistry, 2017, 109, 214-226.	8.8	80
72	Tillage system affects fertilizer-induced nitrous oxide emissions. Biology and Fertility of Soils, 2017, 53, 49-59.	4.3	37

#	Article	IF	CITATIONS
73	Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments. Biology and Fertility of Soils, 2017, 53, 9-22.	4.3	67
74	Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by plant removal. PLoS ONE, 2017, 12, e0180264.	2.5	16
75	Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters. PLoS ONE, 2017, 12, e0173765.	2.5	15
76	Resource Partitioning between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural Soil. Frontiers in Microbiology, 2016, 7, 1524.	3.5	143
77	Rhizosphere Organic Anions Play a Minor Role in Improving Crop Species' Ability to Take Up Residual Phosphorus (P) in Agricultural Soils Low in P Availability. Frontiers in Plant Science, 2016, 7, 1664.	3.6	48
78	The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research. Science of the Total Environment, 2016, 568, 1076-1085.	8.0	37
79	Partitioning of ecosystem respiration in winter wheat and silage maizeâ€"modeling seasonal temperature effects. Agriculture, Ecosystems and Environment, 2016, 224, 131-144.	5.3	18
80	Phosphorus availabilities in beech (Fagus sylvatica L.) forests impose habitat filtering on ectomycorrhizal communities and impact tree nutrition. Soil Biology and Biochemistry, 2016, 98, 127-137.	8.8	62
81	Spatial and temporal variation of resource allocation in an arable soil drives community structure and biomass of nematodes and their role in the micro-food web. Pedobiologia, 2016, 59, 111-120.	1.2	25
82	Modeling coupled pesticide degradation and organic matter turnover: From gene abundance to process rates. Soil Biology and Biochemistry, 2016, 103, 349-364.	8.8	22
83	Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agriculture, Ecosystems and Environment, 2016, 233, 308-317.	5. 3	60
84	An inter-laboratory comparison of gaseous and liquid fumigation based methods for measuring microbial phosphorus (P mic) in forest soils with differing P stocks. Journal of Microbiological Methods, 2016, 128, 66-68.	1.6	15
85	Temporal and small-scale spatial variation in grassland productivity, biomass quality, and nutrient limitation. Plant Ecology, 2016, 217, 843-856.	1.6	25
86	Incorporation of root C and fertilizer N into the food web of an arable field: Variations with functional group and energy channel. Food Webs, 2016, 9, 39-45.	1.2	15
87	Estimates of Soil Bacterial Ribosome Content and Diversity Are Significantly Affected by the Nucleic Acid Extraction Method Employed. Applied and Environmental Microbiology, 2016, 82, 2595-2607.	3.1	28
88	Nicosulfuron application in agricultural soils drives the selection towards NS-tolerant microorganisms harboring various levels of sensitivity to nicosulfuron. Environmental Science and Pollution Research, 2016, 23, 4320-4333.	5. 3	22
89	Succession of soil microbial communities and enzyme activities in artificial soils. Pedobiologia, 2016, 59, 93-104.	1.2	21
90	Soil microbial functional activity is governed by a combination of tree species composition and soil properties in temperate forests. Applied Soil Ecology, 2016, 100, 57-64.	4.3	51

#	Article	IF	Citations
91	Carbon transfer from maize roots and litter into bacteria and fungi depends on soil depth and time. Soil Biology and Biochemistry, 2016, 93, 79-89.	8.8	67
92	Scheffer/SchachtschabelSoil Science., 2016,,.		137
93	Soil Organic Matter. , 2016, , 55-86.		12
94	Soil Organisms and Their Habitat. , 2016, , 87-122.		2
95	Mycorrhizal fungal biomass and scavenging declines in phosphorus-impoverished soils during ecosystem retrogression. Soil Biology and Biochemistry, 2016, 92, 119-132.	8.8	55
96	Small but active – pool size does not matter for carbon incorporation in belowâ€ground food webs. Functional Ecology, 2016, 30, 479-489.	3.6	91
97	Evidence for the importance of litter as a co-substrate for MCPA dissipation in an agricultural soil. Environmental Science and Pollution Research, 2016, 23, 4164-4175.	5.3	9
98	Tracing of Two Pseudomonas Strains in the Root and Rhizoplane of Maize, as Related to Their Plant Growth-Promoting Effect in Contrasting Soils. Frontiers in Microbiology, 2016, 7, 2150.	3.5	46
99	Modelling in situ activities of enzymes as a tool to explain seasonal variation of soil respiration from agro-ecosystems. Soil Biology and Biochemistry, 2015, 81, 291-303.	8.8	48
100	Resource Type and Availability Regulate Fungal Communities Along Arable Soil Profiles. Microbial Ecology, 2015, 70, 390-399.	2.8	32
101	Do general spatial relationships for microbial biomass and soil enzyme activities exist in temperate grassland soils?. Soil Biology and Biochemistry, 2015, 88, 430-440.	8.8	47
102	Effects of warming and drought on potential N ₂ O emissions and denitrifying bacteria abundance in grasslands with different land-use. FEMS Microbiology Ecology, 2015, 91, fiv066.	2.7	41
103	Physiological and Biochemical Methods for Studying Soil Biota and Their Functions. , 2015, , 187-222.		17
104	Spatial Interaction of Archaeal Ammonia-Oxidizers and Nitrite-Oxidizing Bacteria in an Unfertilized Grassland Soil. Frontiers in Microbiology, 2015, 6, 1567.	3.5	40
105	Effects of isopod population density on woodland decomposer microbial community function. Soil Biology and Biochemistry, 2014, 77, 112-120.	8.8	15
106	Reply to Byrnes et al.: Aggregation can obscure understanding of ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5491.	7.1	15
107	Vertical gradients of potential enzyme activities in soil profiles of European beech, Norway spruce and Scots pine dominated forest sites. Pedobiologia, 2014, 57, 181-189.	1.2	40
108	Micro-scale modeling of pesticide degradation coupled to carbon turnover in the detritusphere: model description and sensitivity analysis. Biogeochemistry, 2014, 117, 185-204.	3.5	20

#	Article	IF	CITATIONS
109	Seasonal controls on grassland microbial biogeography: Are they governed by plants, abiotic properties or both?. Soil Biology and Biochemistry, 2014, 71, 21-30.	8.8	79
110	Microplate-scale fluorometric soil enzyme assays as tools to assess soil quality in a long-term agricultural field experiment. Applied Soil Ecology, 2014, 75, 80-85.	4.3	75
111	Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14478-14483.	7.1	157
112	Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant and Soil, 2014, 382, 203-218.	3.7	149
113	Drivers for ammonia-oxidation along a land-use gradient in grassland soils. Soil Biology and Biochemistry, 2014, 69, 179-186.	8.8	12
114	Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biology and Biochemistry, 2014, 70, 151-158.	8.8	135
115	Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems. Applied Soil Ecology, 2013, 64, 32-48.	4.3	129
116	Field-scale manipulation of soil temperature and precipitation change soil CO2 flux in a temperate agricultural ecosystem. Agriculture, Ecosystems and Environment, 2013, 165, 88-97.	5.3	83
117	Distribution and ecological impact of artemisinin derived from Artemisia annua L. in an agricultural ecosystem. Soil Biology and Biochemistry, 2013, 57, 164-172.	8.8	20
118	ECOFUN-MICROBIODIV: an FP7 European project for developing and evaluating innovative tools for assessing the impact of pesticides on soil functional microbial diversityâ€"towards new pesticide registration regulation? Environmental Science and Pollution Research, 2013, 20, 1203-1205.	5.3	29
119	midDRIFTS-based partial least square regression analysis allows predicting microbial biomass, enzyme activities and 16S rRNA gene abundance in soils of temperate grasslands. Soil Biology and Biochemistry, 2013, 57, 504-512.	8.8	16
120	Temporal variation in surface and subsoil abundance and function of the soil microbial community in an arable soil. Soil Biology and Biochemistry, 2013, 61, 76-85.	8.8	134
121	Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley. Food Chemistry, 2013, 136, 1470-1477.	8.2	101
122	Soil management of copper mine tailing soils â€" Sludge amendment and tree vegetation could improve biological soil quality. Science of the Total Environment, 2013, 456-457, 82-90.	8.0	80
123	Succession of bacterial and fungal 4-chloro-2-methylphenoxyacetic acid degraders at the soil-litter interface. FEMS Microbiology Ecology, 2013, 86, 85-100.	2.7	20
124	Different Land Use Intensities in Grassland Ecosystems Drive Ecology of Microbial Communities Involved in Nitrogen Turnover in Soil. PLoS ONE, 2013, 8, e73536.	2.5	52
125	Carbon flow into microbial and fungal biomass as a basis for the belowground food web of agroecosystems. Pedobiologia, 2012, 55, 111-119.	1.2	98
126	Development of a primer system to study abundance and diversity of the gene coding for alanine aminopeptidase pepN gene in Gram-negative soil bacteria. Journal of Microbiological Methods, 2012, 91, 14-21.	1.6	2

#	Article	IF	Citations
127	The influence of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) on the mineralization of litter-derived alkanes and the abundance of the alkane monooxygenase gene (alkB) in the detritusphere of Pisum sativum (L.). Biology and Fertility of Soils, 2012, 48, 933-940.	4.3	2
128	General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types. PLoS ONE, 2012, 7, e43292.	2.5	142
129	Input related microbial carbon dynamic of soil organic matter in particle size fractions. Soil Biology and Biochemistry, 2012, 47, 209-219.	8.8	47
130	Microscale distribution and function of soil microorganisms in the interface between rhizosphere and detritusphere. Soil Biology and Biochemistry, 2012, 49, 174-183.	8.8	64
131	Effects of resource availability and quality on the structure of the micro-food web of an arable soil across depth. Soil Biology and Biochemistry, 2012, 50, 1-11.	8.8	60
132	Assessing the effect of organic residue quality on active decomposing fungi in a tropical Vertisol using 15N-DNA stable isotope probing. Fungal Ecology, 2011, 4, 115-119.	1.6	33
133	Identification of active bacteria involved in decomposition of complex maize and soybean residues in a tropical Vertisol using 15N-DNA stable isotope probing. Pedobiologia, 2011, 54, 187-193.	1.2	57
134	Land-use intensity modifies spatial distribution and function of soil microorganisms in grasslands. Pedobiologia, 2011, 54, 341-351.	1.2	29
135	Effects of sulfadiazine-contaminated fresh and stored manure on a soil microbial community. European Journal of Soil Biology, 2011, 47, 61-68.	3.2	46
136	Interactive effects of drought and N fertilization on the spatial distribution of methane assimilation in grassland soils. Global Change Biology, 2011, 17, 2629-2639.	9.5	62
137	Can differences in microbial abundances help explain enhanced <scp>N₂O</scp> emissions in a permanent grassland under elevated atmospheric <scp>CO₂</scp> ?. Global Change Biology, 2011, 17, 3176-3186.	9.5	68
138	Abundance and activity of nitrate reducers in an arable soil are more affected by temporal variation and soil depth than by elevated atmospheric [CO2]. FEMS Microbiology Ecology, 2011, 76, 209-219.	2.7	30
139	Influence of land-use intensity on the spatial distribution of N-cycling microorganisms in grassland soils. FEMS Microbiology Ecology, 2011, 77, 95-106.	2.7	70
140	An assessment of potential public health risk associated with the extended survival of indicator and pathogenic bacteria in freshwater lake sediments. International Journal of Hygiene and Environmental Health, 2011, 214, 258-264.	4.3	47
141	Distribution of High Bacterial Taxa Across the Chronosequence of Two Alpine Glacier Forelands. Microbial Ecology, 2011, 61, 303-312.	2.8	69
142	Effects of <i>Aporrectodea caliginosa</i> (Savigny) on nitrogen mobilization and decomposition of elevated O ₂ Charlock mustard litter. Journal of Plant Nutrition and Soil Science, 2010, 173, 861-868.	1.9	9
143	Small-scale Diversity and Succession of Fungi in the Detritusphere of Rye Residues. Microbial Ecology, 2010, 59, 130-140.	2.8	65
144	Regulation of bacterial and fungal MCPA degradation at the soil–litter interface. Soil Biology and Biochemistry, 2010, 42, 1879-1887.	8.8	42

#	Article	IF	Citations
145	Functional microbial community response to nutrient pulses by artificial groundwater recharge practice in surface soils and subsoils. FEMS Microbiology Ecology, 2010, 72, 445-455.	2.7	39
146	Indirect effects of soil moisture reverse soil C sequestration responses of a spring wheat agroecosystem to elevated CO ₂ . Global Change Biology, 2010, 16, 469-483.	9.5	35
147	Organische Bodensubstanz., 2010,, 51-81.		0
148	Organische Bodensubstanz., 2010, , 51-81.		0
149	Flooding forested groundwater recharge areas modifies microbial communities from top soil to groundwater table. FEMS Microbiology Ecology, 2009, 67, 171-182.	2.7	23
150	Response of total and nitrate-dissimilating bacteria to reduced N deposition in a spruce forest soil profile. FEMS Microbiology Ecology, 2009, 67, 444-454.	2.7	51
151	Potential indicators of soil quality in temperate forest ecosystems: a case study in the Basque Country. Annals of Forest Science, 2009, 66, 303.	2.0	20
152	Microbial biomass and enzyme activities under reduced nitrogen deposition in a spruce forest soil. Applied Soil Ecology, 2009, 43, 11-21.	4.3	73
153	Long-term Effect of Municipal Solid Waste Amendment on Microbial Abundance and Humus-associated Enzyme Activities Under Semiarid Conditions. Microbial Ecology, 2008, 55, 651-661.	2.8	96
154	Soil organic matter mineralization and residue decomposition of spring wheat grown under elevated CO2 atmosphere. Agriculture, Ecosystems and Environment, 2008, 123, 63-68.	5.3	26
155	Localization of acid phosphatase activities in the roots of white lupin plants grown under phosphorus-deficient conditions. Soil Science and Plant Nutrition, 2008, 54, 95-102.	1.9	33
156	Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere. Soil Biology and Biochemistry, 2008, 40, 1306-1321.	8.8	145
157	Transient elevation of carbon dioxide modifies the microbial community composition in a semi-arid grassland. Soil Biology and Biochemistry, 2008, 40, 162-171.	8.8	46
158	Direct and indirect effects of nitrogen deposition on litter decomposition. Soil Biology and Biochemistry, 2008, 40, 688-698.	8.8	106
159	Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface. Soil Biology and Biochemistry, 2008, 40, 864-878.	8.8	7 5
160	Local response of bacterial densities and enzyme activities to elevated atmospheric CO2 and different N supply in the rhizosphere of Phaseolus vulgaris L Soil Biology and Biochemistry, 2008, 40, 1225-1234.	8.8	42
161	Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biology and Biochemistry, 2008, 40, 1496-1505.	8.8	89
162	Microorganisms as driving factors for the community structure of testate amoebae along an altitudinal transect in tropical mountain rain forests. Soil Biology and Biochemistry, 2008, 40, 2427-2433.	8.8	27

#	Article	IF	CITATIONS
163	Organoâ€mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 2008, 171, 61-82.	1.9	892
164	Soilâ \in carbon preservation through habitat constraints and biological limitations on decomposer activity. Journal of Plant Nutrition and Soil Science, 2008, 171, 27-35.	1.9	156
165	Interannual Ecosystem CO ₂ Dynamics in The Alpine Zone of The Eastern Alps, Austria. Arctic, Antarctic, and Alpine Research, 2008, 40, 487-496.	1.1	15
166	Seasonal and Diurnal Net Methane Emissions from Organic Soils of the Eastern Alps, Austria: Effects of Soil Temperature, Water Balance, and Plant Biomass. Arctic, Antarctic, and Alpine Research, 2007, 39, 438-448.	1.1	33
167	PHYSIOLOGICAL AND BIOCHEMICAL METHODS FOR STUDYING SOIL BIOTA AND THEIR FUNCTION. , 2007, , 53-83.		42
168	Phospholipid fatty acid profiles and xylanase activity in particle size fractions of forest soil and casts of Lumbricus terrestris L. (Oligochaeta, Lumbricidae). Applied Soil Ecology, 2007, 35, 412-422.	4.3	39
169	Use of stable isotopes (13C) for studying the mobilisation of old soil organic carbon by endogeic earthworms (Lumbricidae). European Journal of Soil Biology, 2007, 43, S201-S208.	3.2	28
170	Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time PCR. Journal of Microbiological Methods, 2007, 69, 497-503.	1.6	75
171	Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochemical Cycles, 2007, 21, .	4.9	272
172	Low amounts of herbivory by root-knot nematodes affect microbial community dynamics and carbon allocation in the rhizosphere. FEMS Microbiology Ecology, 2007, 62, 268-279.	2.7	57
173	Fuzzy classification of microbial biomass and enzyme activities in grassland soils. Soil Biology and Biochemistry, 2007, 39, 1799-1808.	8.8	16
174	Lipid composition of Collembola and their food resources in deciduous forest standsâ€"Implications for feeding strategies. Soil Biology and Biochemistry, 2007, 39, 1990-2000.	8.8	76
175	Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L Soil Biology and Biochemistry, 2007, 39, 2208-2221.	8.8	134
176	Endogeic earthworms alter carbon translocation by fungi at the soil–litter interface. Soil Biology and Biochemistry, 2007, 39, 2854-2864.	8.8	53
177	Low-level herbivory by root-knot nematodes (Meloidogyne incognita) modifies root hair morphology and rhizodeposition in host plants (Hordeum vulgare). Plant and Soil, 2007, 301, 151-164.	3.7	56
178	Microbial biomass activities in urban soils in two consecutive years. Journal of Plant Nutrition and Soil Science, 2006, 169, 799-808.	1.9	31
179	Abundance of narG, nirS, nirK, and nosZ Genes of Denitrifying Bacteria during Primary Successions of a Glacier Foreland. Applied and Environmental Microbiology, 2006, 72, 5957-5962.	3.1	524
180	Localization and Visualization of Microbial Community Structure and Activity in Soil Microhabitats. , 2006, , 439-461.		5

#	Article	IF	Citations
181	Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function. Ecology Letters, 2006, 9, 1015-1024.	6.4	101
182	Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure. FEMS Microbiology Ecology, 2006, 56, 219-235.	2.7	143
183	Biological and physicochemical processes and control of soil organic matter stabilization and turnover. European Journal of Soil Science, 2006, 57, 425-425.	3.9	11
184	Reply to Comments by He and Zhang (2005) on â€~Biochemical characterization of urban soil profiles from Stuttgart, Germany'. Soil Biology and Biochemistry, 2006, 38, 415.	8.8	0
185	Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biology and Biochemistry, 2006, 38, 1430-1437.	8.8	169
186	Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biology and Biochemistry, 2006, 38, 2448-2460.	8.8	132
187	Effect of soil microorganisms on the sorption of zinc and lead compounds by goethite. Journal of Plant Nutrition and Soil Science, 2006, 169, 95-100.	1.9	11
188	Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic and Applied Ecology, 2005, 6, 367-383.	2.7	109
189	Biochemical characterization of urban soil profiles from Stuttgart, Germany. Soil Biology and Biochemistry, 2005, 37, 1373-1385.	8.8	124
190	Activity of microorganisms in the rhizosphere of herbicide treated and untreated transgenic glufosinate-tolerant and wildtype oilseed rape grown in containment. Plant and Soil, 2005, 266, 105-116.	3.7	46
191	Root Exudation, Phosphorus Acquisition, and Microbial Diversity in the Rhizosphere of White Lupine as Affected by Phosphorus Supply and Atmospheric Carbon Dioxide Concentration. Journal of Environmental Quality, 2005, 34, 2157-2166.	2.0	72
192	APPLICATION OF LIPID ANALYSIS TO UNDERSTAND TROPHIC INTERACTIONS IN SOIL. Ecology, 2005, 86, 2075-2082.	3.2	79
193	Role of Microorganisms in Carbon Cycling in Soils. , 2005, , 139-157.		15
194	Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biology and Biochemistry, 2004, 36, 1685-1698.	8.8	158
195	Effects of long term CO2enrichment on microbial community structure in calcareous grassland. Plant and Soil, 2004, 264, 313-323.	3.7	57
196	Structure and activity of the nitrate-reducing community in the rhizosphere of Lolium perenne and Trifolium repens under long-term elevated atmospheric pCO2. FEMS Microbiology Ecology, 2004, 49, 445-454.	2.7	73
197	Effects of level and quality of organic matter input on carbon storage and biological activity in soil: Synthesis of a long-term experiment. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	61
198	Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry, 2003, 35, 453-461.	8.8	783

#	Article	IF	Citations
199	Long term CO2 enrichment stimulates N-mineralisation and enzyme activities in calcareous grassland. Soil Biology and Biochemistry, 2003, 35, 965-972.	8.8	97
200	Bioindication of air pollution effects near a copper smelter in Brazil using mango trees and soil microbiological properties. Environmental Pollution, 2003, 126, 313-321.	7. 5	33
201	Functional diversity of soil organisms $\hat{a}\in$ " a review of recent research activities in Germany. Journal of Plant Nutrition and Soil Science, 2002, 165, 408.	1.9	113
202	Dynamics of invertase, xylanase and coupled quality indices of decomposing green and brown plant residues. Soil Biology and Biochemistry, 2002, 34, 501-508.	8.8	37
203	Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 515, 111-124.	1.7	103
204	Microbial community composition and functional diversity in the rhizosphere of maize. Plant and Soil, 2002, 238, 301-312.	3.7	122
205	The response of soil microbial biomass and activity of a Norway spruce forest to liming and drought. Journal of Plant Nutrition and Soil Science, 2001, 164, 9-19.	1.9	14
206	Microbial Population Structures in Soil Particle Size Fractions of a Long-Term Fertilizer Field Experiment. Applied and Environmental Microbiology, 2001, 67, 4215-4224.	3.1	623
207	Below-Ground Microbial Community Development in a High Temperature World. Oikos, 1999, 85, 193.	2.7	84
208	Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biology and Biochemistry, 1999, 31, 261-273.	8.8	291
209	Xylanase, invertase and protease at the soil–litter interface of a loamy sand. Soil Biology and Biochemistry, 1999, 31, 1171-1179.	8.8	131
210	Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil Biology and Biochemistry, 1999, 31, 1253-1264.	8.8	151
211	Effects of mesofauna in a spruce forest on soil microbial communities and N cycling in field mesocosms. Soil Biology and Biochemistry, 1999, 31, 1783-1792.	8.8	32
212	Xylanase, Invertase and Urease Activity in Particle - Size Fractions of Soils. , 1999, , 275-286.		8
213	Impact of faunal complexity on nutrient supply in field mesocosms from a spruce forest soil. Plant and Soil, 1998, 198, 45-52.	3.7	13
214	Impact of elevated atmospheric CO2concentration on soil microbial biomass and activity in a complex, weedy field model ecosystem. Global Change Biology, 1998, 4, 335-346.	9.5	41
215	Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biology and Biochemistry, 1998, 30, 9-17.	8.8	287
216	Invertase and xylanase activity of bulk soil and particle-size fractions during maize straw decomposition. Soil Biology and Biochemistry, 1998, 31, 9-18.	8.8	101

#	Article	IF	CITATIONS
217	Temporal dynamics of microbial biomass, xylanase activity, N-mineralisation and potential nitrification in different tillage systems. Applied Soil Ecology, 1996, 4, 181-191.	4.3	66
218	Impact of faunal complexity on microbial biomass and N turnover in field mesocosms from a spruce forest soil. Biology and Fertility of Soils, 1996, 22, 22-30.	4.3	48
219	A method of preparing mesocosms for assessing complex biotic processes in soils. Biology and Fertility of Soils, 1995, 19, 257-262.	4.3	35
220	Microbial biomass, N mineralization, and the activities of various enzymes in relation to nitrate leaching and root distribution in a slurry-amended grassland. Biology and Fertility of Soils, 1994, 18, 7-12.	4.3	30
221	Mikrobiologische Beurteilung biologischer Bodendekontaminationsverfahren im Modellversuch. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1994, 157, 345-350.	0.4	7
222	Effect of cattle slurry in grassland on microbial biomass and on activities of various enzymes. Biology and Fertility of Soils, 1993, 16, 249-254.	4.3	88
223	Bodenmikrobiologische Prozesse und Testaceen (Protozoa) als Indikatoren f $\tilde{A}\frac{1}{4}$ r Schwermetallbelastung. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1992, 155, 319-322.	0.4	20
224	Nitrogen Cycle Enzymes. Soil Science Society of America Book Series, 0, , 211-245.	0.3	19
225	Effect of soil P status on barley growth, P uptake, and soil microbial properties after incorporation of cover crop shoot and root residues. Journal of Plant Nutrition and Soil Science, 0, , .	1.9	3