List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3762038/publications.pdf Version: 2024-02-01

FILEN KANDELED

#	Article	IF	CITATIONS
1	Organoâ€mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 2008, 171, 61-82.	1.9	892
2	Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry, 2003, 35, 453-461.	8.8	783
3	Microbial Population Structures in Soil Particle Size Fractions of a Long-Term Fertilizer Field Experiment. Applied and Environmental Microbiology, 2001, 67, 4215-4224.	3.1	623
4	Abundance of narG, nirS, nirK, and nosZ Genes of Denitrifying Bacteria during Primary Successions of a Glacier Foreland. Applied and Environmental Microbiology, 2006, 72, 5957-5962.	3.1	524
5	Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biology and Biochemistry, 1999, 31, 261-273.	8.8	291
6	Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biology and Biochemistry, 1998, 30, 9-17.	8.8	287
7	Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochemical Cycles, 2007, 21, .	4.9	272
8	Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems. Plant and Soil, 2019, 434, 7-45.	3.7	180
9	Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biology and Biochemistry, 2006, 38, 1430-1437.	8.8	169
10	Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28140-28149.	7.1	164
11	Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biology and Biochemistry, 2004, 36, 1685-1698.	8.8	158
12	Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14478-14483.	7.1	157
13	Soilâ€carbon preservation through habitat constraints and biological limitations on decomposer activity. Journal of Plant Nutrition and Soil Science, 2008, 171, 27-35.	1.9	156
14	Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil Biology and Biochemistry, 1999, 31, 1253-1264.	8.8	151
15	Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant and Soil, 2014, 382, 203-218.	3.7	149
16	Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere. Soil Biology and Biochemistry, 2008, 40, 1306-1321.	8.8	145
17	Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure. FEMS Microbiology Ecology, 2006, 56, 219-235.	2.7	143
18	Resource Partitioning between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural Soil. Frontiers in Microbiology, 2016, 7, 1524.	3.5	143

#	Article	IF	CITATIONS
19	General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types. PLoS ONE, 2012, 7, e43292.	2.5	142
20	Scheffer/SchachtschabelSoil Science. , 2016, , .		137
21	Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biology and Biochemistry, 2014, 70, 151-158.	8.8	135
22	Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L Soil Biology and Biochemistry, 2007, 39, 2208-2221.	8.8	134
23	Temporal variation in surface and subsoil abundance and function of the soil microbial community in an arable soil. Soil Biology and Biochemistry, 2013, 61, 76-85.	8.8	134
24	Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biology and Biochemistry, 2006, 38, 2448-2460.	8.8	132
25	Xylanase, invertase and protease at the soil–litter interface of a loamy sand. Soil Biology and Biochemistry, 1999, 31, 1171-1179.	8.8	131
26	Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems. Applied Soil Ecology, 2013, 64, 32-48.	4.3	129
27	Biochemical characterization of urban soil profiles from Stuttgart, Germany. Soil Biology and Biochemistry, 2005, 37, 1373-1385.	8.8	124
28	Microbial community composition and functional diversity in the rhizosphere of maize. Plant and Soil, 2002, 238, 301-312.	3.7	122
29	Functional diversity of soil organisms — a review of recent research activities in Germany. Journal of Plant Nutrition and Soil Science, 2002, 165, 408.	1.9	113
30	Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic and Applied Ecology, 2005, 6, 367-383.	2.7	109
31	Direct and indirect effects of nitrogen deposition on litter decomposition. Soil Biology and Biochemistry, 2008, 40, 688-698.	8.8	106
32	Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 515, 111-124.	1.7	103
33	Invertase and xylanase activity of bulk soil and particle-size fractions during maize straw decomposition. Soil Biology and Biochemistry, 1998, 31, 9-18.	8.8	101
34	Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function. Ecology Letters, 2006, 9, 1015-1024.	6.4	101
35	Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley. Food Chemistry, 2013, 136, 1470-1477.	8.2	101
36	Carbon flow into microbial and fungal biomass as a basis for the belowground food web of agroecosystems. Pedobiologia, 2012, 55, 111-119.	1.2	98

#	Article	IF	CITATIONS
37	Long term CO2 enrichment stimulates N-mineralisation and enzyme activities in calcareous grassland. Soil Biology and Biochemistry, 2003, 35, 965-972.	8.8	97
38	Long-term Effect of Municipal Solid Waste Amendment on Microbial Abundance and Humus-associated Enzyme Activities Under Semiarid Conditions. Microbial Ecology, 2008, 55, 651-661.	2.8	96
39	Small but active – pool size does not matter for carbon incorporation in belowâ€ground food webs. Functional Ecology, 2016, 30, 479-489.	3.6	91
40	Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biology and Biochemistry, 2008, 40, 1496-1505.	8.8	89
41	Effect of cattle slurry in grassland on microbial biomass and on activities of various enzymes. Biology and Fertility of Soils, 1993, 16, 249-254.	4.3	88
42	Below-Ground Microbial Community Development in a High Temperature World. Oikos, 1999, 85, 193.	2.7	84
43	Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity. New Phytologist, 2020, 226, 583-594.	7.3	84
44	Field-scale manipulation of soil temperature and precipitation change soil CO2 flux in a temperate agricultural ecosystem. Agriculture, Ecosystems and Environment, 2013, 165, 88-97.	5.3	83
45	Root exudation patterns in a beech forest: Dependence on soil depth, root morphology, and environment. Soil Biology and Biochemistry, 2017, 107, 188-197.	8.8	83
46	Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria:) Tj ETQqO 0 0 rgBT /	Dverlock 1	0 Tf 50 382 T
47	Soil management of copper mine tailing soils — Sludge amendment and tree vegetation could improve biological soil quality. Science of the Total Environment, 2013, 456-457, 82-90.	8.0	80
48	Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil. Soil Biology and Biochemistry, 2017, 109, 214-226.	8.8	80
49	Microplastics Effects on Reproduction and Body Length of the Soil-Dwelling Nematode Caenorhabditis elegans. Frontiers in Environmental Science, 2020, 8, .	3.3	80
50	APPLICATION OF LIPID ANALYSIS TO UNDERSTAND TROPHIC INTERACTIONS IN SOIL. Ecology, 2005, 86, 2075-2082.	3.2	79
51	Seasonal controls on grassland microbial biogeography: Are they governed by plants, abiotic properties or both?. Soil Biology and Biochemistry, 2014, 71, 21-30.	8.8	79
52	Lipid composition of Collembola and their food resources in deciduous forest stands—Implications for feeding strategies. Soil Biology and Biochemistry, 2007, 39, 1990-2000.	8.8	76
53	Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time PCR. Journal of Microbiological Methods, 2007, 69, 497-503.	1.6	75
54	Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface. Soil Biology and Biochemistry, 2008, 40, 864-878.	8.8	75

#	Article	IF	CITATIONS
55	Microplate-scale fluorometric soil enzyme assays as tools to assess soil quality in a long-term agricultural field experiment. Applied Soil Ecology, 2014, 75, 80-85.	4.3	75
56	Structure and activity of the nitrate-reducing community in the rhizosphere of Lolium perenne and Trifolium repens under long-term elevated atmospheric pCO2. FEMS Microbiology Ecology, 2004, 49, 445-454.	2.7	73
57	Microbial biomass and enzyme activities under reduced nitrogen deposition in a spruce forest soil. Applied Soil Ecology, 2009, 43, 11-21.	4.3	73
58	Root Exudation, Phosphorus Acquisition, and Microbial Diversity in the Rhizosphere of White Lupine as Affected by Phosphorus Supply and Atmospheric Carbon Dioxide Concentration. Journal of Environmental Quality, 2005, 34, 2157-2166.	2.0	72
59	Influence of land-use intensity on the spatial distribution of N-cycling microorganisms in grassland soils. FEMS Microbiology Ecology, 2011, 77, 95-106.	2.7	70
60	Distribution of High Bacterial Taxa Across the Chronosequence of Two Alpine Glacier Forelands. Microbial Ecology, 2011, 61, 303-312.	2.8	69
61	Can differences in microbial abundances help explain enhanced <scp>N₂O</scp> emissions in a permanent grassland under elevated atmospheric <scp>CO₂</scp> ?. Global Change Biology, 2011, 17, 3176-3186.	9.5	68
62	Carbon transfer from maize roots and litter into bacteria and fungi depends on soil depth and time. Soil Biology and Biochemistry, 2016, 93, 79-89.	8.8	67
63	Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments. Biology and Fertility of Soils, 2017, 53, 9-22.	4.3	67
64	Temporal dynamics of microbial biomass, xylanase activity, N-mineralisation and potential nitrification in different tillage systems. Applied Soil Ecology, 1996, 4, 181-191.	4.3	66
65	Small-scale Diversity and Succession of Fungi in the Detritusphere of Rye Residues. Microbial Ecology, 2010, 59, 130-140.	2.8	65
66	Microscale distribution and function of soil microorganisms in the interface between rhizosphere and detritusphere. Soil Biology and Biochemistry, 2012, 49, 174-183.	8.8	64
67	Interactive effects of drought and N fertilization on the spatial distribution of methane assimilation in grassland soils. Global Change Biology, 2011, 17, 2629-2639.	9.5	62
68	Phosphorus availabilities in beech (Fagus sylvatica L.) forests impose habitat filtering on ectomycorrhizal communities and impact tree nutrition. Soil Biology and Biochemistry, 2016, 98, 127-137.	8.8	62
69	Effects of level and quality of organic matter input on carbon storage and biological activity in soil: Synthesis of a long-term experiment. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	61
70	Effects of resource availability and quality on the structure of the micro-food web of an arable soil across depth. Soil Biology and Biochemistry, 2012, 50, 1-11.	8.8	60
71	Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agriculture, Ecosystems and Environment, 2016, 233, 308-317.	5.3	60
72	Assessment of biochar and zero-valent iron for in-situ remediation of chromated copper arsenate contaminated soil. Science of the Total Environment, 2019, 655, 414-422.	8.0	58

#	Article	IF	CITATIONS
73	Effects of long term CO2enrichment on microbial community structure in calcareous grassland. Plant and Soil, 2004, 264, 313-323.	3.7	57
74	Low amounts of herbivory by root-knot nematodes affect microbial community dynamics and carbon allocation in the rhizosphere. FEMS Microbiology Ecology, 2007, 62, 268-279.	2.7	57
75	Identification of active bacteria involved in decomposition of complex maize and soybean residues in a tropical Vertisol using 15N-DNA stable isotope probing. Pedobiologia, 2011, 54, 187-193.	1.2	57
76	Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity. Plant and Soil, 2018, 427, 17-37.	3.7	57
77	Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. Journal of Ecology, 2019, 107, 2197-2210.	4.0	57
78	Low-level herbivory by root-knot nematodes (Meloidogyne incognita) modifies root hair morphology and rhizodeposition in host plants (Hordeum vulgare). Plant and Soil, 2007, 301, 151-164.	3.7	56
79	Forest Soil Phosphorus Resources and Fertilization Affect Ectomycorrhizal Community Composition, Beech P Uptake Efficiency, and Photosynthesis. Frontiers in Plant Science, 2018, 9, 463.	3.6	56
80	Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biology and Biochemistry, 2021, 159, 108302.	8.8	56
81	Mycorrhizal fungal biomass and scavenging declines in phosphorus-impoverished soils during ecosystem retrogression. Soil Biology and Biochemistry, 2016, 92, 119-132.	8.8	55
82	Factors controlling the variability of organic matter in the top- and subsoil of a sandy Dystric Cambisol under beech forest. Geoderma, 2018, 311, 37-44.	5.1	55
83	Temporal variations of phosphorus uptake by soil microbial biomass and young beech trees in two forest soils with contrasting phosphorus stocks. Soil Biology and Biochemistry, 2018, 117, 191-202.	8.8	54
84	Endogeic earthworms alter carbon translocation by fungi at the soil–litter interface. Soil Biology and Biochemistry, 2007, 39, 2854-2864.	8.8	53
85	Carbon flow from litter through soil microorganisms: From incorporation rates to mean residence times in bacteria and fungi. Soil Biology and Biochemistry, 2017, 115, 187-196.	8.8	53
86	Different Land Use Intensities in Grassland Ecosystems Drive Ecology of Microbial Communities Involved in Nitrogen Turnover in Soil. PLoS ONE, 2013, 8, e73536.	2.5	52
87	Response of total and nitrate-dissimilating bacteria to reduced N deposition in a spruce forest soil profile. FEMS Microbiology Ecology, 2009, 67, 444-454.	2.7	51
88	Soil microbial functional activity is governed by a combination of tree species composition and soil properties in temperate forests. Applied Soil Ecology, 2016, 100, 57-64.	4.3	51
89	Impact of faunal complexity on microbial biomass and N turnover in field mesocosms from a spruce forest soil. Biology and Fertility of Soils, 1996, 22, 22-30.	4.3	48
90	Modelling in situ activities of enzymes as a tool to explain seasonal variation of soil respiration from agro-ecosystems. Soil Biology and Biochemistry, 2015, 81, 291-303.	8.8	48

#	Article	IF	CITATIONS
91	Rhizosphere Organic Anions Play a Minor Role in Improving Crop Species' Ability to Take Up Residual Phosphorus (P) in Agricultural Soils Low in P Availability. Frontiers in Plant Science, 2016, 7, 1664.	3.6	48
92	An assessment of potential public health risk associated with the extended survival of indicator and pathogenic bacteria in freshwater lake sediments. International Journal of Hygiene and Environmental Health, 2011, 214, 258-264.	4.3	47
93	Input related microbial carbon dynamic of soil organic matter in particle size fractions. Soil Biology and Biochemistry, 2012, 47, 209-219.	8.8	47
94	Do general spatial relationships for microbial biomass and soil enzyme activities exist in temperate grassland soils?. Soil Biology and Biochemistry, 2015, 88, 430-440.	8.8	47
95	Dynamics of soil respiration and microbial communities: Interactive controls of temperature and substrate quality. Soil Biology and Biochemistry, 2018, 127, 60-70.	8.8	47
96	Activity of microorganisms in the rhizosphere of herbicide treated and untreated transgenic glufosinate-tolerant and wildtype oilseed rape grown in containment. Plant and Soil, 2005, 266, 105-116.	3.7	46
97	Transient elevation of carbon dioxide modifies the microbial community composition in a semi-arid grassland. Soil Biology and Biochemistry, 2008, 40, 162-171.	8.8	46
98	Effects of sulfadiazine-contaminated fresh and stored manure on a soil microbial community. European Journal of Soil Biology, 2011, 47, 61-68.	3.2	46
99	Tracing of Two Pseudomonas Strains in the Root and Rhizoplane of Maize, as Related to Their Plant Growth-Promoting Effect in Contrasting Soils. Frontiers in Microbiology, 2016, 7, 2150.	3.5	46
100	PHYSIOLOGICAL AND BIOCHEMICAL METHODS FOR STUDYING SOIL BIOTA AND THEIR FUNCTION. , 2007, , 53-83.		42
101	Local response of bacterial densities and enzyme activities to elevated atmospheric CO2 and different N supply in the rhizosphere of Phaseolus vulgaris L Soil Biology and Biochemistry, 2008, 40, 1225-1234.	8.8	42
102	Regulation of bacterial and fungal MCPA degradation at the soil–litter interface. Soil Biology and Biochemistry, 2010, 42, 1879-1887.	8.8	42
103	Impact of elevated atmospheric CO2concentration on soil microbial biomass and activity in a complex, weedy field model ecosystem. Global Change Biology, 1998, 4, 335-346.	9.5	41
104	Effects of warming and drought on potential N ₂ O emissions and denitrifying bacteria abundance in grasslands with different land-use. FEMS Microbiology Ecology, 2015, 91, fiv066.	2.7	41
105	Interactions of Mycorrhiza and Protists in the Rhizosphere Systemically Alter Microbial Community Composition, Plant Shoot-to-Root Ratio and Within-Root System Nitrogen Allocation. Frontiers in Environmental Science, 2018, 6, .	3.3	41
106	Vertical gradients of potential enzyme activities in soil profiles of European beech, Norway spruce and Scots pine dominated forest sites. Pedobiologia, 2014, 57, 181-189.	1.2	40
107	Spatial Interaction of Archaeal Ammonia-Oxidizers and Nitrite-Oxidizing Bacteria in an Unfertilized Grassland Soil. Frontiers in Microbiology, 2015, 6, 1567.	3.5	40
108	Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nature Communications, 2021, 12, 4431.	12.8	40

#	Article	IF	CITATIONS
109	Phospholipid fatty acid profiles and xylanase activity in particle size fractions of forest soil and casts of Lumbricus terrestris L. (Oligochaeta, Lumbricidae). Applied Soil Ecology, 2007, 35, 412-422.	4.3	39
110	Functional microbial community response to nutrient pulses by artificial groundwater recharge practice in surface soils and subsoils. FEMS Microbiology Ecology, 2010, 72, 445-455.	2.7	39
111	Microbial community response to changes in substrate availability and habitat conditions in a reciprocal subsoil transfer experiment. Soil Biology and Biochemistry, 2017, 105, 138-152.	8.8	39
112	Disentangling carbon flow across microbial kingdoms in the rhizosphere of maize. Soil Biology and Biochemistry, 2019, 134, 122-130.	8.8	38
113	Dynamics of invertase, xylanase and coupled quality indices of decomposing green and brown plant residues. Soil Biology and Biochemistry, 2002, 34, 501-508.	8.8	37
114	The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research. Science of the Total Environment, 2016, 568, 1076-1085.	8.0	37
115	Changes in bacterial community composition and soil respiration indicate rapid successions of protist grazers during mineralization of maize crop residues. Pedobiologia, 2017, 62, 1-8.	1.2	37
116	Tillage system affects fertilizer-induced nitrous oxide emissions. Biology and Fertility of Soils, 2017, 53, 49-59.	4.3	37
117	The mineralosphere – Succession and physiology of bacteria and fungi colonising pristine minerals in grassland soils under different land-use intensities. Soil Biology and Biochemistry, 2019, 136, 107534.	8.8	36
118	Stochastic Dispersal Rather Than Deterministic Selection Explains the Spatio-Temporal Distribution of Soil Bacteria in a Temperate Grassland. Frontiers in Microbiology, 2020, 11, 1391.	3.5	36
119	A method of preparing mesocosms for assessing complex biotic processes in soils. Biology and Fertility of Soils, 1995, 19, 257-262.	4.3	35
120	Indirect effects of soil moisture reverse soil C sequestration responses of a spring wheat agroecosystem to elevated CO ₂ . Global Change Biology, 2010, 16, 469-483.	9.5	35
121	Controls on microbially regulated soil organic carbon decomposition at the regional scale. Soil Biology and Biochemistry, 2018, 118, 59-68.	8.8	35
122	Response of phosphorus dynamics to sewage sludge application in an agroecosystem in northern France. Applied Soil Ecology, 2019, 137, 178-186.	4.3	34
123	Bioindication of air pollution effects near a copper smelter in Brazil using mango trees and soil microbiological properties. Environmental Pollution, 2003, 126, 313-321.	7.5	33
124	Seasonal and Diurnal Net Methane Emissions from Organic Soils of the Eastern Alps, Austria: Effects of Soil Temperature, Water Balance, and Plant Biomass. Arctic, Antarctic, and Alpine Research, 2007, 39, 438-448.	1.1	33
125	Localization of acid phosphatase activities in the roots of white lupin plants grown under phosphorus-deficient conditions. Soil Science and Plant Nutrition, 2008, 54, 95-102.	1.9	33
126	Assessing the effect of organic residue quality on active decomposing fungi in a tropical Vertisol using 15N-DNA stable isotope probing. Fungal Ecology, 2011, 4, 115-119.	1.6	33

#	Article	IF	CITATIONS
127	Effects of mesofauna in a spruce forest on soil microbial communities and N cycling in field mesocosms. Soil Biology and Biochemistry, 1999, 31, 1783-1792.	8.8	32
128	Resource Type and Availability Regulate Fungal Communities Along Arable Soil Profiles. Microbial Ecology, 2015, 70, 390-399.	2.8	32
129	Microbial biomass activities in urban soils in two consecutive years. Journal of Plant Nutrition and Soil Science, 2006, 169, 799-808.	1.9	31
130	Fungi and bacteria respond differently to changing environmental conditions within a soil profile. Soil Biology and Biochemistry, 2019, 137, 107543.	8.8	31
131	Microbial biomass, N mineralization, and the activities of various enzymes in relation to nitrate leaching and root distribution in a slurry-amended grassland. Biology and Fertility of Soils, 1994, 18, 7-12.	4.3	30
132	Abundance and activity of nitrate reducers in an arable soil are more affected by temporal variation and soil depth than by elevated atmospheric [CO2]. FEMS Microbiology Ecology, 2011, 76, 209-219.	2.7	30
133	Land-use intensity modifies spatial distribution and function of soil microorganisms in grasslands. Pedobiologia, 2011, 54, 341-351.	1.2	29
134	ECOFUN-MICROBIODIV: an FP7 European project for developing and evaluating innovative tools for assessing the impact of pesticides on soil functional microbial diversity—towards new pesticide registration regulation?. Environmental Science and Pollution Research, 2013, 20, 1203-1205.	5.3	29
135	Use of stable isotopes (13C) for studying the mobilisation of old soil organic carbon by endogeic earthworms (Lumbricidae). European Journal of Soil Biology, 2007, 43, S201-S208.	3.2	28
136	Estimates of Soil Bacterial Ribosome Content and Diversity Are Significantly Affected by the Nucleic Acid Extraction Method Employed. Applied and Environmental Microbiology, 2016, 82, 2595-2607.	3.1	28
137	Microorganisms as driving factors for the community structure of testate amoebae along an altitudinal transect in tropical mountain rain forests. Soil Biology and Biochemistry, 2008, 40, 2427-2433.	8.8	27
138	Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environmental Microbiology, 2020, 22, 873-888.	3.8	27
139	Soil organic matter mineralization and residue decomposition of spring wheat grown under elevated CO2 atmosphere. Agriculture, Ecosystems and Environment, 2008, 123, 63-68.	5.3	26
140	Interactions between cover crops and soil microorganisms increase phosphorus availability in conservation agriculture. Plant and Soil, 2021, 463, 307-328.	3.7	26
141	Spatial and temporal variation of resource allocation in an arable soil drives community structure and biomass of nematodes and their role in the micro-food web. Pedobiologia, 2016, 59, 111-120.	1.2	25
142	Temporal and small-scale spatial variation in grassland productivity, biomass quality, and nutrient limitation. Plant Ecology, 2016, 217, 843-856.	1.6	25
143	Mineral-Ecological Cropping Systems—A New Approach to Improve Ecosystem Services by Farming without Chemical Synthetic Plant Protection. Agronomy, 2021, 11, 1710.	3.0	25
144	Flooding forested groundwater recharge areas modifies microbial communities from top soil to groundwater table. FEMS Microbiology Ecology, 2009, 67, 171-182.	2.7	23

#	Article	IF	CITATIONS
145	Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts. FEMS Microbiology Ecology, 2019, 95, .	2.7	23
146	Bacterial colonization of minerals in grassland soils is selective and highly dynamic. Environmental Microbiology, 2020, 22, 917-933.	3.8	23
147	Modeling coupled pesticide degradation and organic matter turnover: From gene abundance to process rates. Soil Biology and Biochemistry, 2016, 103, 349-364.	8.8	22
148	Nicosulfuron application in agricultural soils drives the selection towards NS-tolerant microorganisms harboring various levels of sensitivity to nicosulfuron. Environmental Science and Pollution Research, 2016, 23, 4320-4333.	5.3	22
149	Cross-laboratory comparison of fluorimetric microplate and colorimetric bench-scale soil enzyme assays. Soil Biology and Biochemistry, 2018, 121, 240-248.	8.8	22
150	P and N deficiency change the relative abundance and function of rhizosphere microorganisms during cluster root development of white lupin (<i>Lupinus albus</i> L.). Soil Science and Plant Nutrition, 2018, 64, 686-696.	1.9	22
151	Maize Inoculation with Microbial Consortia: Contrasting Effects on Rhizosphere Activities, Nutrient Acquisition and Early Growth in Different Soils. Microorganisms, 2019, 7, 329.	3.6	22
152	Hydrolyzable microplastics in soil—low biodegradation but formation of a specific microbial habitat?. Biology and Fertility of Soils, 2022, 58, 471-486.	4.3	22
153	Succession of soil microbial communities and enzyme activities in artificial soils. Pedobiologia, 2016, 59, 93-104.	1.2	21
154	Biodegradation of Pesticides at the Limit: Kinetics and Microbial Substrate Use at Low Concentrations. Frontiers in Microbiology, 2020, 11, 2107.	3.5	21
155	Bodenmikrobiologische Prozesse und Testaceen (Protozoa) als Indikatoren für Schwermetallbelastung. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1992, 155, 319-322.	0.4	20
156	Potential indicators of soil quality in temperate forest ecosystems: a case study in the Basque Country. Annals of Forest Science, 2009, 66, 303.	2.0	20
157	Distribution and ecological impact of artemisinin derived from Artemisia annua L. in an agricultural ecosystem. Soil Biology and Biochemistry, 2013, 57, 164-172.	8.8	20
158	Succession of bacterial and fungal 4-chloro-2-methylphenoxyacetic acid degraders at the soil-litter interface. FEMS Microbiology Ecology, 2013, 86, 85-100.	2.7	20
159	Micro-scale modeling of pesticide degradation coupled to carbon turnover in the detritusphere: model description and sensitivity analysis. Biogeochemistry, 2014, 117, 185-204.	3.5	20
160	Recovery of ecosystem functions after experimental disturbance in 73 grasslands differing in landâ€use intensity, plant species richness and community composition. Journal of Ecology, 2019, 107, 2635-2649.	4.0	20
161	Nitrogen Cycle Enzymes. Soil Science Society of America Book Series, 0, , 211-245.	0.3	19
162	Comparison and standardization of soil enzyme assay for meaningful data interpretation. Journal of Microbiological Methods, 2017, 133, 32-34.	1.6	19

#	Article	IF	CITATIONS
163	Carbohydrate depletion in roots impedes phosphorus nutrition in young forest trees. New Phytologist, 2021, 229, 2611-2624.	7.3	19
164	Partitioning of ecosystem respiration in winter wheat and silage maize—modeling seasonal temperature effects. Agriculture, Ecosystems and Environment, 2016, 224, 131-144.	5.3	18
165	Physiological and Biochemical Methods for Studying Soil Biota and Their Functions. , 2015, , 187-222.		17
166	Biogeochemical cycling of phosphorus in subsoils of temperate forest ecosystems. Biogeochemistry, 2020, 150, 313-328.	3.5	17
167	Fuzzy classification of microbial biomass and enzyme activities in grassland soils. Soil Biology and Biochemistry, 2007, 39, 1799-1808.	8.8	16
168	midDRIFTS-based partial least square regression analysis allows predicting microbial biomass, enzyme activities and 16S rRNA gene abundance in soils of temperate grasslands. Soil Biology and Biochemistry, 2013, 57, 504-512.	8.8	16
169	Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by plant removal. PLoS ONE, 2017, 12, e0180264.	2.5	16
170	Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe. Land, 2022, 11, 780.	2.9	16
171	Role of Microorganisms in Carbon Cycling in Soils. , 2005, , 139-157.		15
172	Interannual Ecosystem CO ₂ Dynamics in The Alpine Zone of The Eastern Alps, Austria. Arctic, Antarctic, and Alpine Research, 2008, 40, 487-496.	1.1	15
173	Effects of isopod population density on woodland decomposer microbial community function. Soil Biology and Biochemistry, 2014, 77, 112-120.	8.8	15
174	Reply to Byrnes et al.: Aggregation can obscure understanding of ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5491.	7.1	15
175	An inter-laboratory comparison of gaseous and liquid fumigation based methods for measuring microbial phosphorus (P mic) in forest soils with differing P stocks. Journal of Microbiological Methods, 2016, 128, 66-68.	1.6	15
176	Incorporation of root C and fertilizer N into the food web of an arable field: Variations with functional group and energy channel. Food Webs, 2016, 9, 39-45.	1.2	15
177	Spatial Control of Carbon Dynamics in Soil by Microbial Decomposer Communities. Frontiers in Environmental Science, 2020, 8, .	3.3	15
178	Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters. PLoS ONE, 2017, 12, e0173765.	2.5	15
179	The Evolution of Ecological Diversity in Acidobacteria. Frontiers in Microbiology, 2022, 13, 715637.	3.5	15
180	The response of soil microbial biomass and activity of a Norway spruce forest to liming and drought. Journal of Plant Nutrition and Soil Science, 2001, 164, 9-19.	1.9	14

#	Article	IF	CITATIONS
181	Impact of faunal complexity on nutrient supply in field mesocosms from a spruce forest soil. Plant and Soil, 1998, 198, 45-52.	3.7	13
182	The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils. Journal of Plant Nutrition and Soil Science, 2018, 181, 185-197.	1.9	13
183	Carbon budgets of top- and subsoil food webs in an arable system. Pedobiologia, 2018, 69, 29-33.	1.2	13
184	Drivers for ammonia-oxidation along a land-use gradient in grassland soils. Soil Biology and Biochemistry, 2014, 69, 179-186.	8.8	12
185	Soil Organic Matter. , 2016, , 55-86.		12
186	Middle Bronze Age land use practices in the northwestern Alpine foreland – a multi-proxy study of colluvial deposits, archaeological features and peat bogs. Soil, 2021, 7, 269-304.	4.9	12
187	Biological and physicochemical processes and control of soil organic matter stabilization and turnover. European Journal of Soil Science, 2006, 57, 425-425.	3.9	11
188	Effect of soil microorganisms on the sorption of zinc and lead compounds by goethite. Journal of Plant Nutrition and Soil Science, 2006, 169, 95-100.	1.9	11
189	Resource driven community dynamics of NH 4 + assimilating and N 2 O reducing archaea in a temperate paddy soil. Pedobiologia, 2017, 62, 16-27.	1.2	11
190	Do Soil Warming and Changes in Precipitation Patterns Affect Seed Yield and Seed Quality of Field-Grown Winter Oilseed Rape?. Agronomy, 2020, 10, 520.	3.0	11
191	Saprotrophic and Ectomycorrhizal Fungi Contribute Differentially to Organic P Mobilization in Beech-Dominated Forest Ecosystems. Frontiers in Forests and Global Change, 2020, 3, .	2.3	11
192	The mineralosphere—interactive zone of microbial colonization and carbon use in grassland soils. Biology and Fertility of Soils, 2021, 57, 587-601.	4.3	11
193	Microbial Utilisation of Aboveground Litter-Derived Organic Carbon Within a Sandy Dystric Cambisol Profile. Frontiers in Soil Science, 2021, 1, .	2.2	11
194	Differences in organic matter properties and microbial activity between bulk and rhizosphere soil from the top- and subsoils of three forest stands. Geoderma, 2022, 409, 115589.	5.1	11
195	Water flow drives small scale biogeography of pesticides and bacterial pesticide degraders - A microcosm study using 2,4-D as a model compound. Soil Biology and Biochemistry, 2018, 127, 137-147.	8.8	10
196	Plant litter enhances degradation of the herbicide MCPA and increases formation of biogenic non-extractable residues in soil. Environment International, 2020, 142, 105867.	10.0	10
197	Soil Properties Control Microbial Carbon Assimilation and Its Mean Residence Time. Frontiers in Environmental Science, 2020, 8, .	3.3	10
198	Modeling temperature sensitivity of soil organic matter decomposition: Splitting the pools. Soil Biology and Biochemistry, 2021, 153, 108108.	8.8	10

#	Article	IF	CITATIONS
199	Soil microbial communities are driven by the declining availability of cations and phosphorus during ecosystem retrogression. Soil Biology and Biochemistry, 2021, 163, 108430.	8.8	10
200	The role of microbes in the increase of organic phosphorus availability in the rhizosheath of cover crops. Plant and Soil, 2022, 476, 353-373.	3.7	10
201	Effects of <i>Aporrectodea caliginosa</i> (Savigny) on nitrogen mobilization and decomposition of elevated O ₂ Charlock mustard litter. Journal of Plant Nutrition and Soil Science, 2010, 173, 861-868.	1.9	9
202	Evidence for the importance of litter as a co-substrate for MCPA dissipation in an agricultural soil. Environmental Science and Pollution Research, 2016, 23, 4164-4175.	5.3	9
203	Collection of human and environmental data on pesticide use in Europe and Argentina: Field study protocol for the SPRINT project. PLoS ONE, 2021, 16, e0259748.	2.5	9
204	Xylanase, Invertase and Urease Activity in Particle - Size Fractions of Soils. , 1999, , 275-286.		8
205	Mikrobiologische Beurteilung biologischer Bodendekontaminationsverfahren im Modellversuch. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1994, 157, 345-350.	0.4	7
206	Biogeochemical limitations of carbon stabilization in forest subsoils [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 35-43.	1.9	7
207	13C assimilation as well as functional gene abundance and expression elucidate the biodegradation of glyphosate in a field experiment. Environmental Pollution, 2022, 306, 119382.	7.5	6
208	Direct and plant community mediated effects of management intensity on annual nutrient leaching risk in temperate grasslands. Nutrient Cycling in Agroecosystems, 2022, 123, 83-104.	2.2	6
209	Localization and Visualization of Microbial Community Structure and Activity in Soil Microhabitats. , 2006, , 439-461.		5
210	Landâ€use intensity and biodiversity effects on infiltration capacity and hydraulic conductivity of grassland soils in southern Germany. Ecohydrology, 2021, 14, e2301.	2.4	5
211	A New Framework to Assess Sustainability of Soil Improving Cropping Systems in Europe. Land, 2022, 11, 729.	2.9	5
212	Enzyme kinetics inform about mechanistic changes in tea litter decomposition across gradients in land-use intensity in Central German grasslands. Science of the Total Environment, 2022, 836, 155748.	8.0	4
213	Effect of soil P status on barley growth, P uptake, and soil microbial properties after incorporation of cover crop shoot and root residues. Journal of Plant Nutrition and Soil Science, 0, , .	1.9	3
214	Agricultural management affects active carbon and nitrogen mineralisation potential in soils. Journal of Plant Nutrition and Soil Science, 2022, 185, 513-528.	1.9	3
215	Development of a primer system to study abundance and diversity of the gene coding for alanine aminopeptidase pepN gene in Gram-negative soil bacteria. Journal of Microbiological Methods, 2012, 91, 14-21.	1.6	2
216	The influence of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) on the mineralization of litter-derived alkanes and the abundance of the alkane monooxygenase gene (alkB) in the detritusphere of Pisum sativum (L.). Biology and Fertility of Soils, 2012, 48, 933-940.	4.3	2

#	Article	IF	CITATIONS
217	Soil Organisms and Their Habitat. , 2016, , 87-122.		2
218	Cadmium retention and microbial response in volcanic soils along gradients of soil age and climate on the Galápagos Islands. Journal of Environmental Quality, 2021, 50, 1233-1245.	2.0	2
219	Heavy rainfall following a summer drought stimulates soil redox dynamics and facilitates rapid and deep translocation of glyphosate in floodplain soils. Environmental Sciences: Processes and Impacts, 2022, , .	3.5	2
220	Abandoned pastures and restored savannas have distinct patterns of plant–soil feedback and nutrient cycling compared with native Brazilian savannas. Journal of Applied Ecology, 2022, 59, 1863-1873.	4.0	2
221	Reply to Comments by He and Zhang (2005) on â€~Biochemical characterization of urban soil profiles from Stuttgart, Germany'. Soil Biology and Biochemistry, 2006, 38, 415.	8.8	0
222	Bodenorganismen und ihr Lebensraum. , 2018, , 103-149.		0
223	Organische Bodensubstanz. , 2010, , 51-81.		0
224	Organische Bodensubstanz. , 2010, , 51-81.		0
225	Oat, corncockle, and lupine growth affects resinâ€extractable soil phosphorus and soil microbial properties differently [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 329-340.	1.9	0