Peter J Ratcliffe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3761951/publications.pdf

Version: 2024-02-01

212 papers

51,404 citations

100 h-index 209 g-index

224 all docs

224 docs citations

times ranked

224

41081 citing authors

#	Article	IF	CITATIONS
1	The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 1999, 399, 271-275.	27.8	4,528
2	C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation. Cell, 2001, 107, 43-54.	28.9	3,293
3	Oxygen Sensing by Metazoans: The Central Role of the HIF Hydroxylase Pathway. Molecular Cell, 2008, 30, 393-402.	9.7	2,614
4	Role of HIF- $1\hat{l}\pm$ in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 1998, 394, 485-490.	27.8	2,565
5	Regulation of angiogenesis by hypoxia: role of the HIF system. Nature Medicine, 2003, 9, 677-684.	30.7	2,192
6	Oxygen sensing by HIF hydroxylases. Nature Reviews Molecular Cell Biology, 2004, 5, 343-354.	37.0	1,810
7	The Expression and Distribution of the Hypoxia-Inducible Factors HIF-1α and HIF-2α in Normal Human Tissues, Cancers, and Tumor-Associated Macrophages. American Journal of Pathology, 2000, 157, 411-421.	3.8	1,191
8	Hypoxia Inducible Factor- \hat{l} \pm Binding and Ubiquitylation by the von Hippel-Lindau Tumor Suppressor Protein. Journal of Biological Chemistry, 2000, 275, 25733-25741.	3.4	945
9	Independent function of two destruction domains in hypoxia-inducible factor- $\hat{l}\pm$ chains activated by prolyl hydroxylation. EMBO Journal, 2001, 20, 5197-5206.	7.8	945
10	Differential Function of the Prolyl Hydroxylases PHD1, PHD2, and PHD3 in the Regulation of Hypoxia-inducible Factor. Journal of Biological Chemistry, 2004, 279, 38458-38465.	3.4	918
11	The oncometabolite 2â€hydroxyglutarate inhibits histone lysine demethylases. EMBO Reports, 2011, 12, 463-469.	4.5	851
12	Contrasting Properties of Hypoxia-Inducible Factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-Associated Renal Cell Carcinoma. Molecular and Cellular Biology, 2005, 25, 5675-5686.	2.3	847
13	HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: Novel role of fumarate in regulation of HIF stability. Cancer Cell, 2005, 8, 143-153.	16.8	843
14	Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization. Cell, 2009, 136, 839-851.	28.9	727
15	Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature, 2002, 417, 975-978.	27.8	651
16	Widespread, hypoxiaâ€inducible expression of HIFâ€2α in distinct cell populations of different organs. FASEB Journal, 2003, 17, 271-273.	0.5	640
17	Hypoxia-inducible Factor (HIF) Asparagine Hydroxylase Is Identical to Factor Inhibiting HIF (FIH) and Is Related to the Cupin Structural Family. Journal of Biological Chemistry, 2002, 277, 26351-26355.	3.4	624
18	High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood, 2011, 117, e207-e217.	1.4	623

#	Article	IF	CITATIONS
19	Dynamic regulatory network controlling TH17 cell differentiation. Nature, 2013, 496, 461-468.	27.8	608
20	Expression of Hypoxia-Inducible Factor- $1\hat{1}$ and $-2\hat{1}$ in Hypoxic and Ischemic Rat Kidneys. Journal of the American Society of Nephrology: JASN, 2002, 13, 1721-1732.	6.1	521
21	Genome-wide Association of Hypoxia-inducible Factor (HIF)-1α and HIF-2α DNA Binding with Expression Profiling of Hypoxia-inducible Transcripts. Journal of Biological Chemistry, 2009, 284, 16767-16775.	3.4	516
22	Renal Cyst Formation in Fh1-Deficient Mice Is Independent of the Hif/Phd Pathway: Roles for Fumarate in KEAP1 Succination and Nrf2 Signaling. Cancer Cell, 2011, 20, 524-537.	16.8	494
23	Hypoxic Regulation of Lactate Dehydrogenase A. Journal of Biological Chemistry, 1995, 270, 21021-21027.	3.4	471
24	HIF activation identifies early lesions in VHL kidneys. Cancer Cell, 2002, 1, 459-468.	16.8	456
25	Activation of Hypoxia-inducible Factor-1; Definition of Regulatory Domains within the $\hat{l}\pm$ Subunit. Journal of Biological Chemistry, 1997, 272, 11205-11214.	3.4	450
26	Hypoxia and Mitochondrial Inhibitors Regulate Expression of Glucose Transporter-1 via Distinct Cis-acting Sequences. Journal of Biological Chemistry, 1995, 270, 29083-29089.	3.4	449
27	Concordant Regulation of Gene Expression by Hypoxia and 2-Oxoglutarate-dependent Dioxygenase Inhibition. Journal of Biological Chemistry, 2006, 281, 15215-15226.	3.4	434
28	Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nature Genetics, 2008, 40, 170-180.	21.4	433
29	Prognostic Significance of a Novel Hypoxia-Regulated Marker, Carbonic Anhydrase IX, in Invasive Breast Carcinoma. Journal of Clinical Oncology, 2001, 19, 3660-3668.	1.6	406
30	Activation of the HIF pathway in cancer. Current Opinion in Genetics and Development, 2001, 11 , $293-299$.	3.3	363
31	Targeting gene expression to hypoxic tumor cells. Nature Medicine, 1997, 3, 515-520.	30.7	362
32	Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Human Molecular Genetics, 2001, 10, 1029-1038.	2.9	343
33	Structure of Factor-inhibiting Hypoxia-inducible Factor (HIF) Reveals Mechanism of Oxidative Modification of HIF- $1\hat{l}_{\pm}$. Journal of Biological Chemistry, 2003, 278, 1802-1806.	3.4	342
34	Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney International, 1993, 44, 1149-1162.	5.2	341
35	Targeting tumors through the HIF system. Nature Medicine, 2000, 6, 1315-1316.	30.7	310
36	Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nature Genetics, 2015, 47, 717-726.	21.4	310

#	Article	IF	CITATIONS
37	Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Research, 2003, 63, 6130-4.	0.9	306
38	Signalling hypoxia by HIF hydroxylases. Biochemical and Biophysical Research Communications, 2005, 338, 617-626.	2.1	305
39	Oxygen sensors and angiogenesis. Seminars in Cell and Developmental Biology, 2002, 13, 29-37.	5.0	288
40	Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)- $1\hat{l}\pm$. Biochemical Journal, 2008, 416, 387-394.	3.7	278
41	Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Research, 2003, 63, 1764-8.	0.9	273
42	Posttranslational hydroxylation of ankyrin repeats in IÂB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14767-14772.	7.1	258
43	Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer & Metabolism, 2014, 2, 3.	5.0	252
44	Hypoxia, Hypoxia-inducible Transcription Factors, and Renal Cancer. European Urology, 2016, 69, 646-657.	1.9	249
45	The Role of the Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT) in Hypoxic Induction of Gene Expression. Journal of Biological Chemistry, 1996, 271, 15117-15123.	3.4	248
46	Genome-wide mapping of human loci for essential hypertension. Lancet, The, 2003, 361, 2118-2123.	13.7	247
47	Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling. Oncogene, 2000, 19, 6297-6305.	5.9	245
48	Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. Journal of Physiology, 2013, 591, 2027-2042.	2.9	235
49	HLA Has Strongest Association with IgA Nephropathy in Genome-Wide Analysis. Journal of the American Society of Nephrology: JASN, 2010, 21, 1791-1797.	6.1	233
50	HIF-1 and HIF-2: working alone or together in hypoxia?. Journal of Clinical Investigation, 2007, 117, 862-865.	8.2	233
51	Genotype at a promoter polymorphism of the interleukin-6 gene is associated with baseline levels of plasma C-reactive protein. Cardiovascular Research, 2002, 53, 1029-1034.	3.8	227
52	Aberrant succination of proteins in fumarate hydrataseâ€deficient mice and HLRCC patients is a robust biomarker of mutation status. Journal of Pathology, 2011, 225, 4-11.	4.5	225
53	Control of the Hypoxic Response in Drosophila melanogaster by the Basic Helix-Loop-Helix PAS Protein Similar. Molecular and Cellular Biology, 2002, 22, 6842-6853.	2.3	222
54	The human side of hypoxiaâ€inducible factor. British Journal of Haematology, 2008, 141, 325-334.	2.5	222

#	Article	IF	Citations
55	HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O2 levels. Journal of Cell Science, 2003, 116, 3041-3049.	2.0	216
56	The hypoxiaâ€inducible transcription factor pathway regulates oxygen sensing in the simplest animal, <i>Trichoplax adhaerens</i> . EMBO Reports, 2011, 12, 63-70.	4.5	210
57	Oxygen-regulated and Transactivating Domains in Endothelial PAS Protein 1: Comparison with Hypoxia-inducible Factor-1α. Journal of Biological Chemistry, 1999, 274, 2060-2071.	3.4	208
58	Mechanisms of hypoxia signalling: new implications for nephrology. Nature Reviews Nephrology, 2019, 15, 641-659.	9.6	199
59	Measured Haplotype Analysis of the Angiotensin-I Converting Enzyme Gene. Human Molecular Genetics, 1998, 7, 1745-1751.	2.9	197
60	Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay. Biochemical Journal, 2007, 401, 227-234.	3.7	196
61	Asparaginyl Hydroxylation of the Notch Ankyrin Repeat Domain by Factor Inhibiting Hypoxia-inducible Factor. Journal of Biological Chemistry, 2007, 282, 24027-24038.	3.4	189
62	First United Kingdom Heart and Renal Protection (UK-HARP-I) study: Biochemical efficacy and safety of simvastatin and safety of low-dose aspirin in chronic kidney disease. American Journal of Kidney Diseases, 2005, 45, 473-484.	1.9	184
63	Abnormal Sympathoadrenal Development and Systemic Hypotension in <i>PHD3</i> ^{<i>â°'</i>} Mice. Molecular and Cellular Biology, 2008, 28, 3386-3400.	2.3	176
64	Selection and Analysis of a Mutant Cell Line Defective in the Hypoxia-inducible Factor-1 α-Subunit (HIF-1α). Journal of Biological Chemistry, 1998, 273, 8360-8368.	3.4	174
65	Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chemical Science, 2017, 8, 7651-7668.	7.4	174
66	Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 1-39.	5.2	167
67	Mutation of von Hippel–Lindau Tumour Suppressor and Human Cardiopulmonary Physiology. PLoS Medicine, 2006, 3, e290.	8.4	163
68	Regulation of human metabolism by hypoxia-inducible factor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12722-12727.	7.1	160
69	HIF hydroxylation and cellular oxygen sensing. Biological Chemistry, 2004, 385, 223-30.	2.5	156
70	Effects of Iron Supplementation and Depletion on Hypoxic Pulmonary Hypertension. JAMA - Journal of the American Medical Association, 2009, 302, 1444.	7.4	155
71	PHF8, a gene associated with cleft lip/palate and mental retardation, encodes for an NÎμ-dimethyl lysine demethylase. Human Molecular Genetics, 2010, 19, 217-222.	2.9	153
72	Induction of Hypoxia-Inducible Factor-1, Erythropoietin, Vascular Endothelial Growth Factor, and Glucose Transporter-1 by Hypoxia: Evidence Against a Regulatory Role for Src Kinase. Blood, 1997, 89, 503-509.	1.4	150

#	Article	IF	Citations
73	Differential Sensitivity of Hypoxia Inducible Factor Hydroxylation Sites to Hypoxia and Hydroxylase Inhibitors. Journal of Biological Chemistry, 2011, 286, 13041-13051.	3.4	148
74	Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nature Genetics, 2012, 44, 420-425.	21.4	148
75	Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice. Journal of Clinical Investigation, 2011, 121, 1053-1063.	8.2	147
76	Extensive regulation of the nonâ€coding transcriptome by hypoxia: role of <scp>HIF</scp> in releasing paused <scp>RNA</scp> pol2. EMBO Reports, 2014, 15, 70-76.	4.5	146
77	Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants. Science, 2019, 365, 65-69.	12.6	146
78	2-Oxoglutarate analogue inhibitors of hif prolyl hydroxylase. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2677-2680.	2.2	144
79	Inherent <scp>DNA</scp> â€binding specificities of the <scp>HIF</scp> â€1α and <scp>HIF</scp> â€2α transcription factors in chromatin. EMBO Reports, 2019, 20, .	4.5	143
80	Isoenzyme-specific regulation of genes involved in energy metabolism by hypoxia: similarities with the regulation of erythropoietin. Biochemical Journal, 1996, 313, 809-814.	3.7	142
81	5-Carboxy-8-hydroxyquinoline is a broad spectrum 2-oxoglutarate oxygenase inhibitor which causes iron translocation. Chemical Science, 2013, 4, 3110.	7.4	142
82	The pVHL-associated SCF ubiquitin ligase complex: Molecular genetic analysis of elongin B and C, Rbx1 and HIF- $1\hat{1}$ ± in renal cell carcinoma. Oncogene, 2001, 20, 5067-5074.	5.9	141
83	The increase in pulmonary arterial pressure caused by hypoxia depends on iron status. Journal of Physiology, 2008, 586, 5999-6005.	2.9	139
84	New horizons in hypoxia signaling pathways. Experimental Cell Research, 2017, 356, 116-121.	2.6	138
85	Genetic Analysis of the Role of the Asparaginyl Hydroxylase Factor Inhibiting Hypoxia-inducible Factor (HIF) in Regulating HIF Transcriptional Target Genes. Journal of Biological Chemistry, 2004, 279, 42719-42725.	3.4	137
86	Genetic Analysis of Pathways Regulated by the von Hippel-Lindau Tumor Suppressor in Caenorhabditis elegans. PLoS Biology, 2004, 2, e289.	5.6	137
87	Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nature Chemical Biology, 2012, 8, 960-962.	8.0	135
88	HIF Hydroxylase Pathways in Cardiovascular Physiology and Medicine. Circulation Research, 2015, 117, 65-79.	4.5	132
89	New insights into an enigmatic tumour suppressor. Nature Cell Biology, 2003, 5, 7-8.	10.3	125
90	Plant Growth Regulator Daminozide Is a Selective Inhibitor of Human KDM2/7 Histone Demethylases. Journal of Medicinal Chemistry, 2012, 55, 6639-6643.	6.4	125

#	Article	IF	CITATIONS
91	Proteomics-based Identification of Novel Factor Inhibiting Hypoxia-inducible Factor (FIH) Substrates Indicates Widespread Asparaginyl Hydroxylation of Ankyrin Repeat Domain-containing Proteins. Molecular and Cellular Proteomics, 2009, 8, 535-546.	3.8	123
92	Expression of Idh1R132H in the Murine Subventricular Zone Stem Cell Niche Recapitulates Features of Early Gliomagenesis. Cancer Cell, 2016, 30, 578-594.	16.8	122
93	The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Reports, 2012, 13, 251-257.	4.5	120
94	Human AlkB Homologue 5 Is a Nuclear 2-Oxoglutarate Dependent Oxygenase and a Direct Target of Hypoxia-Inducible Factor $1\hat{l}_{\pm}$ (HIF- $1\hat{l}_{\pm}$). PLoS ONE, 2011, 6, e16210.	2.5	120
95	Hypoxia and the regulation of gene expression. Trends in Molecular Medicine, 1998, 4, 122-129.	2.6	119
96	Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4019-4024.	7.1	111
97	Pharmacological targeting of the HIF hydroxylases – A new field in medicine development. Molecular Aspects of Medicine, 2016, 47-48, 54-75.	6.4	111
98	Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nature Communications, 2016, 7, 12673.	12.8	109
99	Loss or Silencing of the PHD1 Prolyl Hydroxylase Protects Livers of Mice Against Ischemia/Reperfusion Injury. Gastroenterology, 2010, 138, 1143-1154.e2.	1.3	108
100	Selective Small Molecule Probes for the Hypoxia Inducible Factor (HIF) Prolyl Hydroxylases. ACS Chemical Biology, 2013, 8, 1488-1496.	3.4	105
101	OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4031-4036.	7.1	105
102	The mini-driver model of polygenic cancer evolution. Nature Reviews Cancer, 2015, 15, 680-685.	28.4	104
103	Peptide blockade of HIFÂ degradation modulates cellular metabolism and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10423-10428.	7.1	101
104	Recurrent chromosomal gains and heterogeneous driver mutations characterise papillary renal cancer evolution. Nature Communications, 2015, 6, 6336.	12.8	100
105	Optimal Translational Termination Requires C4 Lysyl Hydroxylation of eRF1. Molecular Cell, 2014, 53, 645-654.	9.7	99
106	Identification of Hypoxically Inducible mRNAs in HeLa Cells Using Differentialâ€Display PCR. FEBS Journal, 1996, 241, 403-410.	0.2	98
107	The use of dioxygen by HIF prolyl hydroxylase (PHD1). Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1547-1550.	2.2	97
108	Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia. Journal of Applied Physiology, 2014, 116, 893-904.	2.5	97

#	Article	IF	Citations
109	HIF prolyl hydroxylases in the rat; organ distribution and changes in expression following hypoxia and coronary artery ligation. Journal of Molecular and Cellular Cardiology, 2006, 41, 68-77.	1.9	96
110	The SIN3A histone deacetylase complex is required for a complete transcriptional response to hypoxia. Nucleic Acids Research, 2018, 46, 120-133.	14.5	96
111	Determination and comparison of specific activity of the HIF-prolyl hydroxylases. FEBS Letters, 2004, 576, 145-150.	2.8	91
112	Dysregulation of hypoxia pathways in fumarate hydratase-deficient cells is independent of defective mitochondrial metabolism. Human Molecular Genetics, 2010, 19, 3844-3851.	2.9	91
113	Tuning the Transcriptional Response to Hypoxia by Inhibiting Hypoxia-inducible Factor (HIF) Prolyl and Asparaginyl Hydroxylases. Journal of Biological Chemistry, 2016, 291, 20661-20673.	3.4	91
114	Regulation of Type II Transmembrane Serine Proteinase TMPRSS6 by Hypoxia-inducible Factors. Journal of Biological Chemistry, 2011, 286, 4090-4097.	3.4	90
115	Pan-genomic binding of hypoxia-inducible transcription factors. Biological Chemistry, 2013, 394, 507-517.	2.5	90
116	Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney International, 1993, 43, 815-823.	5.2	89
117	Molecular mechanisms of carbonic anhydrase IXâ€mediated pH regulation under hypoxia. BJU International, 2008, 101, 8-15.	2.5	88
118	Reversion of lethality and growth defects in Fatiga oxygenâ€sensor mutant flies by loss of Hypoxiaâ€Inducible Factorâ€Î±/Sima. EMBO Reports, 2005, 6, 1070-1075.	4.5	86
119	Cardiopulmonary function in two human disorders of the hypoxiaâ€inducible factor (HIF) pathway: von Hippelâ€Lindau disease and HIFâ€2α gainâ€ofâ€function mutation. FASEB Journal, 2011, 25, 2001-2011.	0.5	86
120	Normoxic Stabilization of Hypoxia-Inducible Factor-1α by Modulation of the Labile Iron Pool in Differentiating U937 Macrophages: Effect of Natural Resistance–Associated Macrophage Protein 1. Cancer Research, 2006, 66, 2600-2607.	0.9	84
121	Increased Angiogenesis Protects against Adipose Hypoxia and Fibrosis in Metabolic Disease-resistant $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 1 (HSD1)-deficient Mice. Journal of Biological Chemistry, 2012, 287, 4188-4197.	3.4	82
122	Dynamic Combinatorial Chemistry Employing Boronic Acids/Boronate Esters Leads to Potent Oxygenase Inhibitors. Angewandte Chemie - International Edition, 2012, 51, 6672-6675.	13.8	82
123	Clinical iron deficiency disturbs normal human responses to hypoxia. Journal of Clinical Investigation, 2016, 126, 2139-2150.	8.2	82
124	A Role for Cytosolic Fumarate Hydratase in Urea Cycle Metabolism and Renal Neoplasia. Cell Reports, 2013, 3, 1440-1448.	6.4	78
125	The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity. Nature Cell Biology, 2012, 14, 201-208.	10.3	77
126	Regulation of theDrosophilabHLH-PAS Protein Sima by Hypoxia: Functional Evidence for Homology with Mammalian HIF-1α. Biochemical and Biophysical Research Communications, 1998, 249, 811-816.	2.1	76

#	Article	IF	Citations
127	FIHâ€Dependent Asparaginyl Hydroxylation of Ankyrin Repeat Domainâ€Containing Proteins. Annals of the New York Academy of Sciences, 2009, 1177, 9-18.	3.8	75
128	Regulation of growth differentiation factor 15 expression by intracellular iron. Blood, 2009, 113, 1555-1563.	1.4	75
129	Hif- $2\hat{l}\pm$ is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood, 2013, 122, 1741-1745.	1.4	75
130	Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity. Biochemical Journal, 2004, 383, 429-437.	3.7	71
131	Prolyl hydroxylase 2 inactivation enhances glycogen storage and promotes excessive neutrophilic responses. Journal of Clinical Investigation, 2017, 127, 3407-3420.	8.2	71
132	The interstitial response to renal injury: Fibroblast–like cells show phenotypic changes and have reduced potential for erythropoietin gene expression. Kidney International, 1997, 52, 715-724.	5.2	70
133	Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. ELife, 2019, 8, .	6.0	70
134	Factorâ€inhibiting hypoxiaâ€inducible factor (FIH) catalyses the postâ€translational hydroxylation of histidinyl residues within ankyrin repeat domains. FEBS Journal, 2011, 278, 1086-1097.	4.7	68
135	Regulation of ventilatory sensitivity and carotid body proliferation in hypoxia by the PHD2/HIFâ€2 pathway. Journal of Physiology, 2016, 594, 1179-1195.	2.9	68
136	Adult hematopoietic stem cells lacking Hif-1α self-renew normally. Blood, 2016, 127, 2841-2846.	1.4	67
137	Gene panel sequencing improves the diagnostic work-up of patients with idiopathic erythrocytosis and identifies new mutations. Haematologica, 2016, 101, 1306-1318.	3.5	66
138	Analogues of dealanylalahopcin are inhibitors of human HIF prolyl hydroxylases. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1451-1454.	2.2	65
139	Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance. Journal of Experimental Medicine, 2015, 212, 2223-2234.	8.5	65
140	Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer. Nature Communications, 2016, 7, 13183.	12.8	65
141	Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Reports, 2021, 35, 109020.	6.4	64
142	Asparagine and Aspartate Hydroxylation of the Cytoskeletal Ankyrin Family Is Catalyzed by Factor-inhibiting Hypoxia-inducible Factor. Journal of Biological Chemistry, 2011, 286, 7648-7660.	3.4	63
143	Captureâ€C reveals preformed chromatin interactions between <scp>HIF</scp> â€binding sites and distant promoters. EMBO Reports, 2016, 17, 1410-1421.	4.5	63
144	Leuâ€574 of human HIFâ€1α is a molecular determinant of prolyl hydroxylation. FASEB Journal, 2004, 18, 1028-1030.	0.5	62

#	Article	IF	CITATIONS
145	Interaction of Hydroxylated Collagen IV with the von Hippel-Lindau Tumor Suppressor. Journal of Biological Chemistry, 2007, 282, 13264-13269.	3.4	57
146	Cellular oxygen sensing in health and disease. Pediatric Nephrology, 2008, 23, 681-694.	1.7	57
147	Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain. PLoS ONE, 2015, 10, e0132004.	2.5	57
148	Puzzling Patterns of Predisposition. Science, 2009, 324, 192-194.	12.6	55
149	On the pivotal role of PPARa in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury. FASEB Journal, 2016, 30, 2684-2697.	0.5	54
150	Drosophila melanogasterSL2 cells contain a hypoxically inducible DNA binding complex which recognises mammalian HIF-1 binding sites. FEBS Letters, 1996, 387, 161-166.	2.8	53
151	Carotid body hyperplasia and enhanced ventilatory responses to hypoxia in mice with heterozygous deficiency of PHD2. Journal of Physiology, 2013, 591, 3565-3577.	2.9	53
152	Mutation analysis of hypoxia-inducible factors HIF1A and HIF2A in renal cell carcinoma. Anticancer Research, 2009, 29, 4337-43.	1.1	52
153	Oxygen sensing and hypoxia-induced responses. Essays in Biochemistry, 2007, 43, 1-16.	4.7	51
154	Asparagine \hat{l}^2 -hydroxylation stabilizes the ankyrin repeat domain fold. Molecular BioSystems, 2009, 5, 52-58.	2.9	49
155	Mutation analysis of HIF prolyl hydroxylases (PHD/EGLN) in individuals with features of phaeochromocytoma and renal cell carcinoma susceptibility. Endocrine-Related Cancer, 2010, 18, 73-83.	3.1	49
156	Adipocyte Pseudohypoxia Suppresses Lipolysis and Facilitates Benign Adipose Tissue Expansion. Diabetes, 2015, 64, 733-745.	0.6	49
157	Regulation of HIF: Prolyl Hydroxylases. Novartis Foundation Symposium, 2008, , 15-32.	1.1	48
158	A cross-sectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease. BMJ Open, 2015, 5, e007911.	1.9	48
159	From Erythropoietin to Oxygen: Hypoxia-Inducible Factor Hydroxylases and the Hypoxia Signal Pathway. Blood Purification, 2002, 20, 445-450.	1.8	47
160	Hypoxiaâ€Inducible Factor Prolylâ€Hydroxylase: Purification and Assays of PHD2. Methods in Enzymology, 2007, 435, 25-42.	1.0	46
161	A Photoreactive Small-Molecule Probe for 2-Oxoglutarate Oxygenases. Chemistry and Biology, 2011, 18, 642-654.	6.0	46
162	Sudestada1, a <i>Drosophila</i> ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4025-4030.	7.1	46

#	Article	IF	Citations
163	The HIF prolyl hydroxylase PHD3 is a potential substrate of the TRiC chaperonin. FEBS Letters, 2004, 570, 166-170.	2.8	45
164	Characterization of different isoforms of the HIF prolyl hydroxylase PHD1 generated by alternative initiation. Biochemical Journal, 2006, 397, 179-186.	3.7	45
165	Fumarate Hydratase Deficiency and Cancer: Activation of Hypoxia Signaling?. Cancer Cell, 2007, 11, 303-305.	16.8	44
166	Erythrocytes alter the pattern of renal hypoxic injury: predominance of proximal tubular injury with moderate hypoxia. Clinical Science, 1989, 76, 19-29.	4.3	41
167	Characterisation of functional domains within the mouse erythropoietin $3\hat{a}\in^2$ enhancer conveying oxygen-regulated responses in different cell lines. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1217, 297-306.	2.4	40
168	Signaling hypoxia by hypoxia-inducible factor protein hydroxylases: a historical overview and future perspectives. Hypoxia (Auckland, N Z), 2014, 2, 197.	1.9	40
169	The HIF complex recruits the histone methyltransferase SET1B to activate specific hypoxia-inducible genes. Nature Genetics, 2021, 53, 1022-1035.	21.4	38
170	Roles of individual prolylâ€4â€hydroxylase isoforms in the first 24 hours following transient focal cerebral ischaemia: insights from genetically modified mice. Journal of Physiology, 2012, 590, 4079-4091.	2.9	37
171	PHD2 inactivation in Type I cells drives HIFâ€2αâ€dependent multilineage hyperplasia and the formation of paragangliomaâ€like carotid bodies. Journal of Physiology, 2018, 596, 4393-4412.	2.9	37
172	Erythrocytosis associated with a novel missense mutation in the BPGM gene. Haematologica, 2014, 99, e201-e204.	3.5	35
173	Hypoxia drives glucose transporter 3 expression through hypoxia-inducible transcription factor (HIF)–mediated induction of the long noncoding RNA NICI. Journal of Biological Chemistry, 2020, 295, 4065-4078.	3.4	34
174	Multiple renal cancer susceptibility polymorphisms modulate the HIF pathway. PLoS Genetics, 2017, 13, e1006872.	3.5	34
175	Influence of hypoxia on hepatic and renal endothelin gene expression. Pflugers Archiv European Journal of Physiology, 1996, 431, 587-593.	2.8	33
176	Genetic Evidence of a Precisely Tuned Dysregulation in the Hypoxia Signaling Pathway during Oncogenesis. Cancer Research, 2014, 74, 6554-6564.	0.9	32
177	Marked and rapid effects of pharmacological HIF-2α antagonism on hypoxic ventilatory control. Journal of Clinical Investigation, 2020, 130, 2237-2251.	8.2	32
178	The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases. Nature Chemical Biology, 2018, 14, 688-695.	8.0	31
179	Systemic silencing of Phd2 causes reversible immune regulatory dysfunction. Journal of Clinical Investigation, 2019, 129, 3640-3656.	8.2	30
180	Selection of Mutant CHO Cells with Constitutive Activation of the HIF System and Inactivation of the von Hippel-Lindau Tumor Suppressor. Journal of Biological Chemistry, 2001, 276, 44323-44330.	3.4	29

#	Article	IF	Citations
181	Understanding hypoxia signalling in cells – a new therapeutic opportunity?. Clinical Medicine, 2006, 6, 573-578.	1.9	29
182	The prolyl hydroxylase enzymes that act as oxygen sensors regulating destruction of hypoxia-inducible factor \hat{l}_{\pm} . Advances in Enzyme Regulation, 2004, 44, 75-92.	2.6	28
183	MYPT1, the targeting subunit of smooth-muscle myosin phosphatase, is a substrate for the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (FIH). Biochemical Journal, 2009, 420, 327-336.	3.7	27
184	Update on hypoxia-inducible factors and hydroxylases in oxygen regulatory pathways: from physiology to the rapeutics. Hypoxia (Auckland, N Z), 2017, Volume 5, 11-20.	1.9	26
185	Striking Oxygen Sensitivity of the Peptidylglycine α-Amidating Monooxygenase (PAM) in Neuroendocrine Cells. Journal of Biological Chemistry, 2015, 290, 24891-24901.	3.4	25
186	Quantitative Mass Spectrometry Reveals Dynamics of Factor-inhibiting Hypoxia-inducible Factor-catalyzed Hydroxylation*. Journal of Biological Chemistry, 2011, 286, 33784-33794.	3.4	22
187	Dual-action inhibitors of HIF prolyl hydroxylases that induce binding of a second iron ion. Organic and Biomolecular Chemistry, 2013, 11, 732-745.	2.8	21
188	Structureâ€Activity Relationship and Crystallographic Studies on 4â€Hydroxypyrimidine HIF Prolyl Hydroxylase Domain Inhibitors. ChemMedChem, 2020, 15, 270-273.	3.2	21
189	Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. Nature Immunology, 2022, 23, 927-939.	14.5	21
190	ExCITED about HIF. Nature Structural and Molecular Biology, 2003, 10, 501-503.	8.2	19
191	Evaluation of aspirin metabolites as inhibitors of hypoxia-inducible factor hydroxylases. Chemical Communications, 2008, , 6393.	4.1	16
192	Hyperplasia of Pulmonary Neuroepithelial Bodies (NEB) in Lungs of Prolyl Hydroxylase â^1(PHD-1) Deficient Mice. Advances in Experimental Medicine and Biology, 2012, 758, 149-155.	1.6	12
193	Hyperplasia and hypertrophy of pulmonary neuroepithelial bodies, presumed airway hypoxia sensors, in hypoxia-inducible factor prolyl hydroxylase-deficient mice. Hypoxia (Auckland, N Z), 2016, 4, 69.	1.9	11
194	Angiogenesis: escape from hypoxia. Nature Medicine, 2009, 15, 491-493.	30.7	10
195	Nuclear entry and export of FIH are mediated by HIF1 $\hat{l}\pm$ and exportin1 respectively. Journal of Cell Science, 2018, 131, .	2.0	9
196	Co-incidence of RCC-susceptibility polymorphisms with HIF cis-acting sequences supports a pathway tuning model of cancer. Scientific Reports, 2019, 9, 18768.	3.3	9
197	Developmental role of PHD2 in the pathogenesis of pseudohypoxic pheochromocytoma. Endocrine-Related Cancer, 2021, 28, 757-772.	3.1	9
198	Genetic basis of oxygen sensing in the carotid body: $HIF2\hat{l}\pm$ and an isoform switch in cytochrome c oxidase subunit 4. Science Signaling, 2020, 13, .	3.6	7

#	Article	IF	CITATIONS
199	Precisely Tuned Inhibition of HIF Prolyl Hydroxylases Is Key for Cardioprotection After Ischemia. Circulation Research, 2021, 128, 1208-1210.	4.5	7
200	Abnormal whole-body energy metabolism in iron-deficient humans despite preserved skeletal muscle oxidative phosphorylation. Scientific Reports, 2022, 12, 998.	3.3	6
201	Nuclear magnetic resonance studies of 87Rb+ transport in perfused rat kidney. Biochemical Society Transactions, 1988, 16, 596-597.	3.4	5
202	Photoactivable peptides for identifying enzyme–substrate and protein–protein interactions. Chemical Communications, 2011, 47, 1488-1490.	4.1	5
203	Novel Insights into FH-associated Disease are KEAPing the Lid on Oncogenic HIF Signalling. Oncotarget, 2011, 2, 820-821.	1.8	4
204	Factor inhibiting HIF can catalyze two asparaginyl hydroxylations in VNVN motifs of ankyrin fold proteins. Journal of Biological Chemistry, 2022, 298, 102020.	3.4	4
205	HIF-1α Is Not Essential For The Establishment Of MLL-Leukaemic Stem Cells. Blood, 2013, 122, 3767-3767.	1.4	3
206	Endothelial Oxygen Sensing in Alveolar Maintenance. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 917-919.	5.6	2
207	Analysis of von Hippel–Lindau Tumor Suppressor as a Mediator of Cellular Oxygen Sensing. Methods in Enzymology, 2004, 381, 305-320.	1.0	1
208	Benefits and Risks of Manipulating the HIF Hydroxylase Pathway in Ischemic Heart Disease., 2012, , 17-25.		1
209	Regulation of endogenous erythropoietin production. , 2009, , 19-40.		1
210	Harveian Oration 2020: Elucidation of molecular oxygen sensing mechanisms in human cells: implications for medicine. Clinical Medicine, 2022, 22, 23-33.	1.9	1
211	Erythropoietin: An Historical Overview of Physiology, Molecular Biology and Gene Regulation. , 2009, , 1-18.		0
212	Influence of hypoxia on hepatic and renal endothelin gene expression. Pflugers Archiv European Journal of Physiology, 1996, 431, 587-593.	2.8	0