Alison J Haughton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3761353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reviewers for Weed Research 2020â^'21. Weed Research, 2021, 61, 532-533.	1.7	0
2	Reviewers for Weed Research 2019–20. Weed Research, 2020, 60, 475-476.	1.7	0
3	Reviewers for Weed Research. Weed Research, 2019, 59, 501-502.	1.7	0
4	Oilseed rape (<i>Brassica napus</i>) as a resource for farmland insect pollinators: quantifying floral traits in conventional varieties and breeding systems. GCB Bioenergy, 2017, 9, 1370-1379.	5.6	42
5	Flight performance of actively foraging honey bees is reduced by a common pathogen. Environmental Microbiology Reports, 2016, 8, 728-737.	2.4	44
6	Networking Our Way to Better Ecosystem Service Provision. Trends in Ecology and Evolution, 2016, 31, 105-115.	8.7	72
7	Dedicated biomass crops can enhance biodiversity in the arable landscape. GCB Bioenergy, 2016, 8, 1071-1081.	5.6	45
8	10 Years Later. Advances in Ecological Research, 2015, 53, 1-53.	2.7	43
9	Using functional traits to quantify the value of plant communities to invertebrate ecosystem service providers in arable landscapes. Journal of Ecology, 2013, 101, 38-46.	4.0	55
10	Effects of local landscape richness on in-field weed metrics across the Great Britain scale. Agriculture, Ecosystems and Environment, 2012, 158, 208-215.	5.3	11
11	Learning How to Deal with Values, Frames and Governance in Sustainability Appraisal. Regional Studies, 2011, 45, 1157-1170.	4.4	45
12	Modelling rotations: can crop sequences explain arable weed seedbank abundance?. Weed Research, 2011, 51, 422-432.	1.7	55
13	The environmental impacts of biomass crops: use by birds of miscanthus in summer and winter in southwestern England. Ibis, 2010, 152, 487-499.	1.9	35
14	How might we model an ecosystem?. Ecological Modelling, 2009, 220, 1935-1949.	2.5	32
15	Functional approaches for assessing plant and invertebrate abundance patterns in arable systems. Basic and Applied Ecology, 2009, 10, 34-42.	2.7	54
16	A novel, integrated approach to assessing social, economic and environmental implications of changing rural landâ€use: a case study of perennial biomass crops. Journal of Applied Ecology, 2009, 46, 315-322.	4.0	117
17	Weed and invertebrate community compositions in arable farmland. Arthropod-Plant Interactions, 2008, 2, 21-30.	1.1	27
18	Providing the evidence base for environmental risk assessments of novel farm management practices. Environmental Science and Policy, 2008, 11, 579-587.	4.9	19

ALISON J HAUGHTON

#	Article	IF	CITATIONS
19	Statistical models to evaluate invertebrate–plant trophic interactions in arable systems. Bulletin of Entomological Research, 2007, 97, 265-280.	1.0	20
20	Effects of genetically modified herbicide-tolerant cropping systems on weed seedbanks in two years of following crops. Biology Letters, 2006, 2, 140-143.	2.3	26
21	Effects of successive seasons of genetically modified herbicide-tolerant maize cropping on weeds and invertebrates. Annals of Applied Biology, 2006, 149, 249-254.	2.5	21
22	Weed seed resources for birds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1921-1928.	2.6	61
23	Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 463-474.	2.6	82
24	Invertebrate biodiversity in maize following withdrawal of triazine herbicides. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1497-1502.	2.6	12
25	An introduction to the Farm-Scale Evaluations of genetically modified herbicide-tolerant crops. Journal of Applied Ecology, 2003, 40, 2-16.	4.0	166
26	Invertebrate responses to the management of genetically modified herbicide–tolerant and conventional spring crops. I. Soil-surface-active invertebrates. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1847-1862.	4.0	114
27	Invertebrate responses to the management of genetically modified herbicide–tolerant and conventional spring crops. II. Within-field epigeal and aerial arthropods. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1863-1877.	4.0	127
28	Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide–tolerant crops. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1899-1913.	4.0	185
29	Weeds in fields with contrasting conventional and genetically modified herbicide–tolerant crops. I. Effects on abundance and diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1819-1832.	4.0	150
30	Invertebrates and vegetation of field margins adjacent to crops subject to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide–tolerant crops. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1879-1898.	4.0	101
31	Crop management and agronomic context of the Farm Scale Evaluations of genetically modified herbicide–tolerant crops. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1801-1818.	4.0	98
32	Weeds in fields with contrasting conventional and genetically modified herbicide–tolerant crops. II. Effects on individual species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1833-1846.	4.0	79
33	On the rationale and interpretation of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1779-1799.	4.0	102
34	DO INCREMENTAL INCREASES OF THE HERBICIDE GLYPHOSATE HAVE INDIRECT CONSEQUENCES FOR SPIDER COMMUNITIES?. Journal of Arachnology, 2002, 30, 288-297.	0.5	19
35	Manipulating the abundance of Lepthyphantes tenuis (Araneae: Linyphiidae) by field margin management. Agriculture, Ecosystems and Environment, 2002, 93, 295-304.	5.3	20
36	The effect of the herbicide glyphosate on non-target spiders: Part I. Direct effects onLepthyphantes tenuis under laboratory conditions. Pest Management Science, 2001, 57, 1033-1036.	3.4	48

#	Article	IF	CITATIONS
37	The effect of the herbicide glyphosate on non-target spiders: Part II. Indirect effects onLepthyphantes tenuis in field margins. Pest Management Science, 2001, 57, 1037-1042.	3.4	40