Hao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3761067/publications.pdf

Version: 2024-02-01

201674 345221 4,166 36 27 36 citations h-index g-index papers 37 37 37 4035 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A graphitized expanded graphite cathode for aluminum-ion battery with excellent rate capability. Journal of Energy Chemistry, 2022, 66, 38-44.	12.9	17
2	Catalytic materials for lithium-sulfur batteries: mechanisms, design strategies and future perspective. Materials Today, 2022, 52, 364-388.	14.2	78
3	Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science, 2022, 375, 66-70.	12.6	183
4	Formulating energy density for designing practical lithium–sulfur batteries. Nature Energy, 2022, 7, 312-319.	39.5	342
5	Lowâ€Tortuous MXene (TiNbC) Accordion Arrays Enabled Fast Ion Diffusion and Charge Transfer in Dendriteâ€Free Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	19.5	14
6	Coldâ€Starting Allâ€Solidâ€State Batteries from Room Temperature by Thermally Modulated Current Collector in Subâ€Minute. Advanced Materials, 2022, 34, .	21.0	5
7	Water–Salt Oligomers Enable Supersoluble Electrolytes for Highâ€Performance Aqueous Batteries. Advanced Materials, 2021, 33, e2007470.	21.0	102
8	Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nature Energy, 2021, 6, 487-494.	39.5	124
9	Creating New Battery Configuration Associated with the Functions of Primary and Rechargeable Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003746.	19.5	19
10	Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nature Energy, 2021, 6, 790-798.	39.5	198
11	Advanced Graphene Materials for Sodium/Potassium/Aluminum-Ion Batteries., 2021, 3, 1221-1237.		34
12	A Morphologically Stable Li/Electrolyte Interface for Allâ€Solidâ€State Batteries Enabled by 3Dâ€Micropatterned Garnet. Advanced Materials, 2021, 33, e2104009.	21.0	76
13	Dynamic spatial progression of isolated lithium during battery operations. Nature, 2021, 600, 659-663.	27.8	111
14	Capacitive charge storage enables an ultrahigh cathode capacity in aluminum-graphene battery. Journal of Energy Chemistry, 2020, 45, 40-44.	12.9	37
15	Theoretical Calculation Guided Design of Single-Atom Catalysts toward Fast Kinetic and Long-Life Li–S Batteries. Nano Letters, 2020, 20, 1252-1261.	9.1	394
16	Heavy Water Enables High-Voltage Aqueous Electrochemistry via the Deuterium Isotope Effect. Journal of Physical Chemistry Letters, 2020, 11, 303-310.	4.6	14
17	Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nature Energy, 2020, 5, 786-793.	39.5	168
18	Self-assembled materials for electrochemical energy storage. MRS Bulletin, 2020, 45, 815-822.	3. 5	7

#	Article	IF	CITATIONS
19	Electrode Design with Integration of High Tortuosity and Sulfur-Philicity for High-Performance Lithium-Sulfur Battery. Matter, 2020, 2, 1605-1620.	10.0	83
20	Dynamic Covalent Synthesis of Crystalline Porous Graphitic Frameworks. CheM, 2020, 6, 933-944.	11.7	123
21	Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities. Nature Nanotechnology, 2020, 15, 231-237.	31.5	65
22	Tortuosity Effects in Lithium-Metal Host Anodes. Joule, 2020, 4, 938-952.	24.0	150
23	Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading. Energy Storage Materials, 2019, 17, 349-357.	18.0	58
24	Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery. Energy Storage Materials, 2019, 17, 38-45.	18.0	124
25	A Two-Dimensional MoS ₂ Catalysis Transistor by Solid-State Ion Gating Manipulation and Adjustment (SIGMA). Nano Letters, 2019, 19, 7293-7300.	9.1	46
26	Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron Microscopy. Nano Letters, 2019, 19, 1326-1335.	9.1	193
27	Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode. Advanced Energy Materials, 2019, 9, 1900858.	19.5	333
28	Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery. Carbon, 2019, 148, 134-140.	10.3	74
29	<i>In Situ</i> X-ray Absorption Spectroscopic Investigation of the Capacity Degradation Mechanism in Mg/S Batteries. Nano Letters, 2019, 19, 2928-2934.	9.1	63
30	Nanostructural and Electrochemical Evolution of the Solid-Electrolyte Interphase on CuO Nanowires Revealed by Cryogenic-Electron Microscopy and Impedance Spectroscopy. ACS Nano, 2019, 13, 737-744.	14.6	78
31	A Defectâ€Free Principle for Advanced Graphene Cathode of Aluminumâ€Ion Battery. Advanced Materials, 2017, 29, 1605958.	21.0	280
32	Highâ€Quality Graphene Microflower Design for Highâ€Performance Li–S and Alâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1700051.	19.5	140
33	Oxide Film Efficiently Suppresses Dendrite Growth in Aluminum-Ion Battery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22628-22634.	8.0	106
34	Synthetic and Structural Studies on Linear and Macrocyclic Pd- and Pt-Bridged Butterfly Fe/S Cluster Complexes. Organometallics, 2017, 36, 1419-1429.	2.3	5
35	Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Science Advances, 2017, 3, eaao7233.	10.3	316
36	Palladium-Catalyzed Reactions of [Et ₃ NH] ⁺ Salts of [(μ-RS)(μ-CO)Fe ₂ (CO) ₆] ^{â^²} Anions with Iodo-Aromatic Compounds To Give the Corresponding Butterfly μ-Acyl Fe/S Cluster Complexes. Organometallics, 2015, 34, 1730-1741.	2.3	5