List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3760519/publications.pdf Version: 2024-02-01

		1238	1316
399	55,101	110	224
papers	citations	h-index	g-index
412 all docs	412 docs citations	412 times ranked	45493 citing authors

#	Article	IF	CITATIONS
1	Universal scaling law of glass rheology. Nature Materials, 2022, 21, 404-409.	27.5	9
2	Deformation behavior of a nanoporous metallic glass at room temperature. International Journal of Plasticity, 2022, 152, 103232.	8.8	25
3	3D Continuously Porous Graphene for Energy Applications. Advanced Materials, 2022, 34, e2108750.	21.0	53
4	Tracking the sliding of grain boundaries at the atomic scale. Science, 2022, 375, 1261-1265.	12.6	115
5	Metal-carbide eutectics with multiprincipal elements make superrefractory alloys. Science Advances, 2022, 8, .	10.3	17
6	In situ atomic-scale observation of dislocation climb and grain boundary evolution in nanostructured metal. Nature Communications, 2022, 13, .	12.8	22
7	Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction. Nanoscale, 2021, 13, 10916-10924.	5.6	13
8	Dislocation-mediated shear amorphization in boron carbide. Science Advances, 2021, 7, .	10.3	49
9	3D Bimodal Porous Amorphous Carbon with Self-Similar Porosity by Low-Temperature Sequential Chemical Dealloying. Chemistry of Materials, 2021, 33, 1013-1021.	6.7	11
10	Vapor phase dealloying kinetics of MnZn alloys. Acta Materialia, 2021, 212, 116916.	7.9	19
11	Hidden Effects of Negative Stacking Fault Energies in Complex Concentrated Alloys. Physical Review Letters, 2021, 126, 255502.	7.8	18
12	Decoupling between calorimetric and dynamical glass transitions in high-entropy metallic glasses. Nature Communications, 2021, 12, 3843.	12.8	24
13	Effect of Local Atomic Structure on Sodium Ion Storage in Hard Amorphous Carbon. Nano Letters, 2021, 21, 6504-6510.	9.1	37
14	Fast attenuation of high-frequency acoustic waves in bicontinuous nanoporous gold. Applied Physics Letters, 2021, 119, .	3.3	2
15	Twisting of 2D Kagomé Sheets in Layered Intermetallics. ACS Central Science, 2021, 7, 1381-1390.	11.3	14
16	Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zinc–air batteries. Nanoscale, 2021, 13, 10862-10870.	5.6	21
17	Decoupling between Shockley partials and stacking faults strengthens multiprincipal element alloys. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
18	Inlaid ReS ₂ Quantum Dots in Monolayer MoS ₂ . ACS Nano, 2020, 14, 899-906.	14.6	19

#	Article	IF	CITATIONS
19	Highâ€Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transitionâ€Metal Dichalcogenide Nanosheets. Angewandte Chemie, 2020, 132, 3629-3636.	2.0	11
20	Highâ€Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transitionâ€Metal Dichalcogenide Nanosheets. Angewandte Chemie - International Edition, 2020, 59, 3601-3608.	13.8	136
21	Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers. Energy and Environmental Science, 2020, 13, 2849-2855.	30.8	101
22	Hyperpolarized Xe NMR signal advancement by metal-organic framework entrapment in aqueous solution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17558-17563.	7.1	175
23	Dirac Fermion Kinetics in 3D Curved Graphene. Advanced Materials, 2020, 32, e2005838.	21.0	24
24	Structures and Structural Evolution of Sublayer Surfaces of Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 21603-21608.	2.0	2
25	Twisted 1T TaS2 bilayers by lithiation exfoliation. Nanoscale, 2020, 12, 18031-18038.	5.6	3
26	Exploring the oxygen electrode bi-functional activity of Ni–N–C-doped graphene systems with N, C co-ordination and OH ligand effects. Journal of Materials Chemistry A, 2020, 8, 20453-20462.	10.3	49
27	Catalytic oxidation mechanisms of carbon monoxide over single- and double-vacancy Mn-embedded graphene. New Journal of Chemistry, 2020, 44, 9402-9410.	2.8	22
28	Theoretical Study on a Nitrogen-Doped Graphene Nanoribbon with Edge Defects as the Electrocatalyst for Oxygen Reduction Reaction. ACS Omega, 2020, 5, 5142-5149.	3.5	27
29	Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design. ACS Nano, 2020, 14, 4374-4382.	14.6	107
30	Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li–O ₂ Batteries: Cell Performances and Operando STEM Observations. Nano Letters, 2020, 20, 2183-2190.	9.1	11
31	Dealloying Kinetics of AgAu Nanoparticles by <i>In Situ</i> Liquid-Cell Scanning Transmission Electron Microscopy. Nano Letters, 2020, 20, 1944-1951.	9.1	47
32	Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions. Nature Communications, 2020, 11, 1011.	12.8	47
33	Evaluating the catalytic activity of transition metal dimers for the oxygen reduction reaction. Journal of Colloid and Interface Science, 2020, 568, 54-62.	9.4	41
34	Zincâ€Mediated Template Synthesis of Feâ€N Electrocatalysts with Densely Accessible Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Advanced Materials, 2020, 32, e1907399.	21.0	319
35	The interaction of deformation twins with long-period stacking ordered precipitates in a magnesium alloy subjected to shock loading. Acta Materialia, 2020, 188, 203-214.	7.9	31
36	Spin–orbit torque generated by a ferromagnet/a metallic glass bilayer. Applied Physics Express, 2020, 13, 053002.	2.4	1

#	Article	IF	CITATIONS
37	Scalable synthesis of nanoporous boron for high efficiency ammonia electrosynthesis. Materials Today, 2020, 38, 58-66.	14.2	29
38	Chemical doping induced zone-edge phonon renormalization in single-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m </mml:msub></mml:mrow>. Physical Review B, 2019, 100, .</mml:math 	ⁱⁱ 3.2	13
39	Experimental observations of the mechanisms associated with the high hardening and low strain to failure of magnesium. Materialia, 2019, 8, 100504.	2.7	13
40	Operando Observations of SEI Film Evolution by Mass ensitive Scanning Transmission Electron Microscopy. Advanced Energy Materials, 2019, 9, 1902675.	19.5	64
41	Unprecedented Electromagnetic Interference Shielding from Three-Dimensional Bi-continuous Nanoporous Graphene. Matter, 2019, 1, 1077-1087.	10.0	53
42	Unveiling Electronic Properties in Metal–Phthalocyanine-Based Pyrazine-Linked Conjugated Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 16810-16816.	13.7	227
43	3D bicontinuous nanoporous plasmonic heterostructure for enhanced hydrogen evolution reaction under visible light. Nano Energy, 2019, 58, 552-559.	16.0	29
44	A Phthalocyanineâ€Based Layered Twoâ€Dimensional Conjugated Metal–Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 10787-10792.	2.0	58
45	A Phthalocyanineâ€Based Layered Twoâ€Dimensional Conjugated Metal–Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 10677-10682.	13.8	278
46	High-temperature bulk metallic glasses developed by combinatorial methods. Nature, 2019, 569, 99-103.	27.8	185
47	The atomic origin of nickel-doping-induced catalytic enhancement in MoS ₂ for electrochemical hydrogen production. Nanoscale, 2019, 11, 7123-7128.	5.6	75
48	Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn–Air Batteries. Advanced Materials, 2019, 31, e1900843.	21.0	236
49	Room-temperature superplasticity in Au nanowires and their atomistic mechanisms. Nanoscale, 2019, 11, 8727-8735.	5.6	9
50	Capturing Reversible Cation Migration in Layered Structure Materials for Naâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1900189.	19.5	41
51	Extraordinary tensile strength and ductility of scalable nanoporous graphene. Science Advances, 2019, 5, eaat6951.	10.3	78
52	Fast coalescence of metallic glass nanoparticles. Nature Communications, 2019, 10, 5249.	12.8	37
53	Flexible supercapacitor electrodes fabricated by dealloying nanocrystallized Al-Ni-Co-Y-Cu metallic glasses. Journal of Alloys and Compounds, 2019, 772, 164-172.	5.5	26
54	Atomic structure and mechanical response of coincident stacking faults in boron suboxide. Materials Research Letters, 2019, 7, 75-81.	8.7	5

#	Article	IF	CITATIONS
55	Lithiophilic 3D Nanoporous Nitrogenâ€Doped Graphene for Dendriteâ€Free and Ultrahighâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2019, 31, e1805334.	21.0	254
56	Time-resolved atomic-scale observations of deformation and fracture of nanoporous gold under tension. Acta Materialia, 2019, 165, 99-108.	7.9	39
57	Free-standing nanoporous gold for direct plasmon enhanced electro-oxidation of alcohol molecules. Nano Energy, 2019, 56, 286-293.	16.0	48
58	Flaw-free nanoporous Ni for tensile properties. Acta Materialia, 2019, 166, 402-412.	7.9	25
59	Three-Dimensional Nanoporous Co ₉ S ₄ P ₄ Pentlandite as a Bifunctional Electrocatalyst for Overall Neutral Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 3880-3888.	8.0	73
60	Vapor phase dealloying: A versatile approach for fabricating 3D porous materials. Acta Materialia, 2019, 163, 161-172.	7.9	45
61	Atomic origins of high electrochemical CO ₂ reduction efficiency on nanoporous gold. Nanoscale, 2018, 10, 8372-8376.	5.6	46
62	Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy. Scientific Reports, 2018, 8, 3134.	3.3	25
63	Reversible anionic redox activity in Na ₃ RuO ₄ cathodes: a prototype Na-rich layered oxide. Energy and Environmental Science, 2018, 11, 299-305.	30.8	126
64	Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying. Nature Communications, 2018, 9, 276.	12.8	123
65	Synthesizing 1T–1H Two-Phase Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Monolayers by Chemical Vapor Deposition. ACS Nano, 2018, 12, 1571-1579.	14.6	62
66	Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 2018, 20, 6024-6033.	2.8	43
67	Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bulletin, 2018, 43, 43-48.	3.5	96
68	Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. Nano Energy, 2018, 45, 273-279.	16.0	54
69	Three-Dimensional Nanoporous Heterojunction of Monolayer MoS ₂ @rGO for Photoenhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 2183-2191.	5.1	27
70	Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49, 354-362.	16.0	74
71	Anisotropic and Multicomponent Nanostructures by Controlled Symmetry Breaking of Metal Halide Intermediates. Nano Letters, 2018, 18, 2324-2328.	9.1	4
72	Operando observations of RuO2 catalyzed Li2O2 formation and decomposition in a Li-O2 micro-battery. Nano Energy, 2018, 47, 427-433.	16.0	47

#	Article	IF	CITATIONS
73	Scanning distortion correction in STEM images. Ultramicroscopy, 2018, 184, 274-283.	1.9	23
74	Graphene-based quasi-solid-state lithium–oxygen batteries with high energy efficiency and a long cycling lifetime. NPG Asia Materials, 2018, 10, 1037-1045.	7.9	35
75	Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide. Physical Review Letters, 2018, 121, 145504.	7.8	73
76	Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses. Nature Communications, 2018, 9, 3965.	12.8	115
77	One-Dimensional Atomic Segregation at Semiconductor–Metal Interfaces of Polymorphic Transition Metal Dichalcogenide Monolayers. Nano Letters, 2018, 18, 6157-6163.	9.1	4
78	Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials. Physical Review Letters, 2018, 120, 205502.	7.8	35
79	Lowâ€Temperature Carbideâ€Mediated Growth of Bicontinuous Nitrogenâ€Doped Mesoporous Graphene as an Efficient Oxygen Reduction Electrocatalyst. Advanced Materials, 2018, 30, e1803588.	21.0	73
80	Locating Si atoms in Si-doped boron carbide: A route to understand amorphization mitigation mechanism. Acta Materialia, 2018, 157, 106-113.	7.9	42
81	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie, 2018, 130, 13486-13491.	2.0	10
82	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2018, 57, 13302-13307.	13.8	64
83	Deformation behaviour of 18R long-period stacking ordered structure in an Mg-Zn-Y alloy under shock loading. Intermetallics, 2018, 102, 21-25.	3.9	3
84	A Rapid Method to Aromatic Aminoalkyl Esters via the Catalyst-Free Difunctionalization of C–N Bonds. Synthesis, 2018, 50, 2587-2594.	2.3	3
85	Hierarchical Nanoporous Copper Fabricated by Oneâ€Step Dealloying Toward Ultrasensitive Surfaceâ€Enhanced Raman Sensing. Advanced Materials Interfaces, 2018, 5, 1800332.	3.7	22
86	Macroporous mesh of nanoporous gold in electrochemical monitoring of superoxide release from skeletal muscle cells. Biosensors and Bioelectronics, 2017, 88, 41-47.	10.1	27
87	Coral-Shaped MoS ₂ Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 3653-3660.	8.0	98
88	Preferred location for conducting filament formation in thin-film nano-ionic electrolyte: study of microstructure by atom-probe tomography. Journal of Materials Science: Materials in Electronics, 2017, 28, 6846-6851.	2.2	3
89	Nobleâ€Metalâ€Free Metallic Glass as a Highly Active and Stable Bifunctional Electrocatalyst for Water Splitting. Advanced Materials Interfaces, 2017, 4, 1601086.	3.7	60
90	Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017, 544, 460-464.	27.8	843

MINGWEI CHEN

#	Article	IF	CITATIONS
91	Characterization of Gd-rich precipitates in a fully lamellar TiAl alloy. Scripta Materialia, 2017, 137, 50-54.	5.2	14
92	Tunable Nanoporous Metallic Glasses Fabricated by Selective Phase Dissolution and Passivation for Ultrafast Hydrogen Uptake. Chemistry of Materials, 2017, 29, 4478-4483.	6.7	38
93	Full Performance Nanoporous Graphene Based Liâ€O ₂ Batteries through Solution Phase Oxygen Reduction and Redoxâ€Additive Mediated Li ₂ O ₂ Oxidation. Advanced Energy Materials, 2017, 7, 1601933.	19.5	65
94	Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8, 15437.	12.8	813
95	High-quality single-layer nanosheets of MS ₂ (M = Mo, Nb, Ta, Ti) directly exfoliated from AMS ₂ (A = Li, Na, K) crystals. Journal of Materials Chemistry C, 2017, 5, 5977-5983.	5.5	35
96	Structure and mechanical properties of boron-rich boron carbides. Journal of the European Ceramic Society, 2017, 37, 4514-4523.	5.7	89
97	Primary and secondary precipitates in a hierarchical-precipitate-strengthened ferritic alloy. Journal of Alloys and Compounds, 2017, 706, 584-588.	5.5	15
98	Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene. Nature Communications, 2017, 8, 14885.	12.8	58
99	Structure and viscosity of phaseâ€separated BaO–SiO ₂ glasses. Journal of the American Ceramic Society, 2017, 100, 1982-1993.	3.8	20
100	Enhanced Superconductivity in Restacked TaS ₂ Nanosheets. Journal of the American Chemical Society, 2017, 139, 4623-4626.	13.7	84
101	Observation of superconductivity in 1T′-MoS ₂ nanosheets. Journal of Materials Chemistry C, 2017, 5, 10855-10860.	5.5	77
102	Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying. Nature Communications, 2017, 8, 1066.	12.8	69
103	Chemical Selectivity at Grain Boundary Dislocations in Monolayer Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Transition Metal Dichalcogenides. ACS Applied Materials & Interfaces, 2017, 9, 29438-29444.	8.0	10
104	Direct Observations of the Formation and Redoxâ€Mediatorâ€Assisted Decomposition of Li ₂ O ₂ in a Liquidâ€Cell Li–O ₂ Microbattery by Scanning Transmission Electron Microscopy. Advanced Materials, 2017, 29, 1702752.	21.0	41
105	Tuning Surface Structure of 3D Nanoporous Gold by Surfactantâ€Free Electrochemical Potential Cycling. Advanced Materials, 2017, 29, 1703601.	21.0	54
106	Two-Dimensional Hallmark of Highly Interconnected Three-Dimensional Nanoporous Graphene. ACS Omega, 2017, 2, 3691-3697.	3.5	32
107	Stability limits and transformation pathways of <i>α</i> -quartz under high pressure. Physical Review B, 2017, 95, .	3.2	15
108	Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nature Communications, 2017, 8, 135.	12.8	218

#	Article	IF	CITATIONS
109	Correlation between Local Structure Order and Spatial Heterogeneity in a Metallic Glass. Physical Review Letters, 2017, 119, 215501.	7.8	116
110	Superhard B ₂ CO phases derived from carbon allotropes. RSC Advances, 2017, 7, 52192-52199.	3.6	12
111	Transparent magnetic semiconductor with embedded metallic glass nano-granules. Materials and Design, 2017, 132, 208-214.	7.0	16
112	Microstructural characterization of boron-rich boron carbide. Acta Materialia, 2017, 136, 202-214.	7.9	91
113	A nanoporous nickel catalyst for selective hydrogenation of carbonates into formic acid in water. Green Chemistry, 2017, 19, 716-721.	9.0	46
114	Mechanical properties of refractory high-entropy alloys: Experiments and modeling. Journal of Alloys and Compounds, 2017, 696, 1139-1150.	5.5	307
115	New twinning route in face-centered cubic nanocrystalline metals. Nature Communications, 2017, 8, 2142.	12.8	110
116	Effect of Chemical Doping on Cathodic Performance of Bicontinuous Nanoporous Graphene for Liâ€O ₂ Batteries. Advanced Energy Materials, 2016, 6, 1501870.	19.5	132
117	3D Bicontinuous Nanoporous Reduced Graphene Oxide for Highly Sensitive Photodetectors. Advanced Functional Materials, 2016, 26, 1271-1277.	14.9	48
118	Valenceâ€band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2380-2386.	1.8	13
119	Graphene@Nanoporous Nickel Cathode for Liâ^'O ₂ Batteries. ChemNanoMat, 2016, 2, 176-181.	2.8	12
120	3D Nanoporous Metal Phosphides toward High‣fficiency Electrochemical Hydrogen Production. Advanced Materials, 2016, 28, 2951-2955.	21.0	163
121	A room-temperature magnetic semiconductor from a ferromagnetic metallic glass. Nature Communications, 2016, 7, 13497.	12.8	71
122	Intrinsic correlation between \hat{l}^2 -relaxation and spatial heterogeneity in a metallic glass. Nature Communications, 2016, 7, 11516.	12.8	197
123	Metallic Classes. SpringerBriefs in the Mathematics of Materials, 2016, , 9-14.	0.3	0
124	Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy and Environmental Science, 2016, 9, 2257-2261.	30.8	535
125	Earthâ€Abundant and Durable Nanoporous Catalyst for Exhaustâ€Gas Conversion. Advanced Functional Materials, 2016, 26, 1609-1616.	14.9	18
126	Electric Properties of Dirac Fermions Captured into 3D Nanoporous Graphene Networks. Advanced Materials, 2016, 28, 10304-10310.	21.0	47

#	Article	IF	CITATIONS
127	Correlation between Chemical Dopants and Topological Defects in Catalytically Active Nanoporous Graphene. Advanced Materials, 2016, 28, 10644-10651.	21.0	110
128	An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene. Nanoscale, 2016, 8, 18551-18557.	5.6	13
129	Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials. Physical Review Letters, 2016, 117, 135501.	7.8	45
130	Atomic‣ized Pores Enhanced Electrocatalysis of TaS ₂ Nanosheets for Hydrogen Evolution. Advanced Materials, 2016, 28, 8945-8949.	21.0	167
131	Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance. NPG Asia Materials, 2016, 8, e266-e266.	7.9	101
132	Structural evolution of nanoscale metallic glasses during high-pressure torsion: A molecular dynamics analysis. Scientific Reports, 2016, 6, 36627.	3.3	21
133	Chemical Vapor Deposition of Monolayer Mo1â^'xWxS2 Crystals with Tunable Band Gaps. Scientific Reports, 2016, 6, 21536.	3.3	101
134	Engineering water dissociation sites in MoS ₂ nanosheets for accelerated electrocatalytic hydrogen production. Energy and Environmental Science, 2016, 9, 2789-2793.	30.8	503
135	Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Scientific Reports, 2016, 6, 33466.	3.3	52
136	Nucleation of amorphous shear bands at nanotwins in boron suboxide. Nature Communications, 2016, 7, 11001.	12.8	43
137	Unveiling Three-Dimensional Stacking Sequences of 1T Phase MoS ₂ Monolayers by Electron Diffraction. ACS Nano, 2016, 10, 10308-10316.	14.6	21
138	Atomic-scale disproportionation in amorphous silicon monoxide. Nature Communications, 2016, 7, 11591.	12.8	138
139	Structure Analysis of Amorphous Materials Using a STEM Electron Diffraction Method. Materia Japan, 2016, 55, 8-14.	0.1	1
140	Nanotwinned Boron Suboxide (B6O): New Ground State of B6O. Nano Letters, 2016, 16, 4236-4242.	9.1	42
141	Online Monitoring of Superoxide Anions Released from Skeletal Muscle Cells Using an Electrochemical Biosensor Based on Thick-Film Nanoporous Gold. ACS Sensors, 2016, 1, 921-928.	7.8	27
142	Visualizing Under oordinated Surface Atoms on 3D Nanoporous Gold Catalysts. Advanced Materials, 2016, 28, 1753-1759.	21.0	85
143	Atomistic mechanism of nano-scale phase separation in fcc-based high entropy alloys. Journal of Alloys and Compounds, 2016, 663, 340-344.	5.5	16
144	Bicontinuous nanotubular graphene–polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy, 2016, 19, 391-400.	16.0	137

#	Article	IF	CITATIONS
145	Size Effects in the Mechanical Properties of Bulk Bicontinuous Ta/Cu Nanocomposites Made by Liquid Metal Dealloying. Advanced Engineering Materials, 2016, 18, 46-50.	3.5	75
146	Macrodeformation Twins in Single-Crystal Aluminum. Physical Review Letters, 2016, 116, 075501.	7.8	92
147	Non-aqueous nanoporous gold based supercapacitors with high specific energy. Scripta Materialia, 2016, 116, 76-81.	5.2	22
148	Large-scale growth of sharp gold nano-cones for single-molecule SERS detection. RSC Advances, 2016, 6, 2882-2887.	3.6	36
149	A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia, 2016, 102, 187-196.	7.9	1,665
150	Onâ€Chip Microâ€₽seudocapacitors for Ultrahigh Energy and Power Delivery. Advanced Science, 2015, 2, 1500067.	11.2	66
151	Nanoporous Metal Papers for Scalable Hierarchical Electrode. Advanced Science, 2015, 2, 1500086.	11.2	26
152	Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates. Scientific Reports, 2015, 5, 16327.	3.3	80
153	Environment-Sensitive Thermal Coarsening of Nanoporous Gold. Materials Transactions, 2015, 56, 468-472.	1.2	22
154	Composition mediated serration dynamics in Zr-based bulk metallic glasses. Applied Physics Letters, 2015, 107, .	3.3	30
155	3D Nanoporous Nitrogenâ€Doped Graphene with Encapsulated RuO ₂ Nanoparticles for Li–O ₂ Batteries. Advanced Materials, 2015, 27, 6137-6143.	21.0	195
156	Nanoporous Graphene with Singleâ€Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 14031-14035.	13.8	628
157	Metallic Glass as a Mechanical Material for Microscanners. Advanced Functional Materials, 2015, 25, 5677-5682.	14.9	26
158	Multifunctional Porous Graphene for Highâ€Efficiency Steam Generation by Heat Localization. Advanced Materials, 2015, 27, 4302-4307.	21.0	769
159	Extraordinary Supercapacitor Performance of a Multicomponent and Mixedâ€Valence Oxyhydroxide. Angewandte Chemie, 2015, 127, 8218-8222.	2.0	16
160	A Highâ€Voltage and Ultralongâ€Life Sodium Full Cell for Stationary Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 11701-11705.	13.8	126
161	A Layered P2―and O3â€Type Composite as a Highâ€Energy Cathode for Rechargeable Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 5894-5899.	13.8	321
162	Extraordinary Supercapacitor Performance of a Multicomponent and Mixedâ€Valence Oxyhydroxide. Angewandte Chemie - International Edition, 2015, 54, 8100-8104.	13.8	50

#	Article	IF	CITATIONS
163	Aligned Nanoporous Pt–Cu Bimetallic Microwires with High Catalytic Activity toward Methanol Electrooxidation. ACS Catalysis, 2015, 5, 3779-3785.	11.2	117
164	Multicomponent nanoporous metals prepared by dealloying Pd80â^'xNixP20 metallic glasses. Intermetallics, 2015, 61, 66-71.	3.9	18
165	Visualization of topological landscape in shear-flow dynamics of amorphous solids. Europhysics Letters, 2015, 110, 38002.	2.0	2
166	B22-O-12In Situ Atomic Scale Observation of Grain Rotation Mediated by Grain Boundary Dislocations. Microscopy (Oxford, England), 2015, 64, i52.2-i52.	1.5	0
167	An electrochemical biosensor based on gold microspheres and nanoporous gold for real-time detection of superoxide anion in skeletal muscle tissue. , 2015, 2015, 7962-5.		2
168	Hybrid nanostructured aluminum alloy with super-high strength. NPG Asia Materials, 2015, 7, e229-e229.	7.9	82
169	Propensity of bond exchange as a window into the mechanical properties of metallic glasses. Applied Physics Letters, 2015, 106, .	3.3	13
170	Sample size induced brittle-to-ductile transition of single-crystal aluminum nitride. Acta Materialia, 2015, 88, 252-259.	7.9	38
171	Probing the structure of a liquid metal during vitrification. Acta Materialia, 2015, 87, 174-186.	7.9	38
172	High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na _{0.8} Ni _{0.4} Ti _{0.6} O ₂ . Energy and Environmental Science, 2015, 8, 1237-1244.	30.8	215
173	Nanoporous metal/oxide hybrid materials for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 3620-3626.	10.3	45
174	A nanoporous metal recuperated MnO ₂ anode for lithium ion batteries. Nanoscale, 2015, 7, 15111-15116.	5.6	58
175	Regulating the coarsening of the $\hat{1}^3 \hat{a} \in 2$ phase in superalloys. NPG Asia Materials, 2015, 7, e212-e212.	7.9	52
176	High Catalytic Activity of Nitrogen and Sulfur Coâ€Đoped Nanoporous Graphene in the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 2131-2136.	13.8	760
177	Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chemistry, 2015, 7, 45-49.	13.6	637
178	Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Research, 2014, 7, 1569-1580.	10.4	54
179	Origin of yielding in metallic glass: Stress-induced flow. Applied Physics Letters, 2014, 104, 251901.	3.3	10
180	Nanoporous Metal Enhanced Catalytic Activities of Amorphous Molybdenum Sulfide for Highâ€Efficiency Hydrogen Production. Advanced Materials, 2014, 26, 3100-3104.	21.0	204

#	Article	IF	CITATIONS
181	Threeâ€Dimensional Hierarchical Nanoporosity for Ultrahigh Power and Excellent Cyclability of Electrochemical Pseudocapacitors. Advanced Energy Materials, 2014, 4, 1301809.	19.5	27
182	Enzyme-Free Electrochemical Glucose Sensors Prepared by Dealloying Pd-Ni-P Metallic Glasses. Advances in Materials Science and Engineering, 2014, 2014, 1-6.	1.8	0
183	Highâ€Quality Threeâ€Dimensional Nanoporous Graphene. Angewandte Chemie - International Edition, 2014, 53, 4822-4826.	13.8	215
184	Comparative Study on Plastic Deformation of Nanocrystalline Al and Ni. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1631-1638.	2.2	7
185	Core–Shell‧tructured CNT@RuO ₂ Composite as a Highâ€Performance Cathode Catalyst for Rechargeable Li–O ₂ Batteries. Angewandte Chemie - International Edition, 2014, 53, 442-446.	13.8	495
186	Bicontinuous Nanoporous Nâ€doped Graphene for the Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 4145-4150.	21.0	261
187	Myotube formation on gelatin nanofibers – Multi-walled carbon nanotubes hybrid scaffolds. Biomaterials, 2014, 35, 6268-6277.	11.4	109
188	Periosteumâ€Mimetic Structures Made from Freestanding Microgrooved Nanosheets. Advanced Materials, 2014, 26, 3290-3296.	21.0	94
189	Reduced Graphene Oxide Thin Films as Ultrabarriers for Organic Electronics. Advanced Energy Materials, 2014, 4, 1300986.	19.5	59
190	Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold. Physical Chemistry Chemical Physics, 2014, 16, 3523.	2.8	56
191	Large Enhancement of Quantum Dot Fluorescence by Highly Scalable Nanoporous Gold. Advanced Materials, 2014, 26, 1289-1294.	21.0	69
192	Monodispersed hierarchical Co ₃ O ₄ spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 13805.	10.3	122
193	The synergistic effect of nanoporous AuPd alloy catalysts on highly chemoselective 1,4-hydrosilylation of conjugated cyclic enones. Chemical Communications, 2014, 50, 3344.	4.1	31
194	Low-temperature solution-processable Ni(OH) ₂ ultrathin nanosheet/N-graphene nanohybrids for high-performance supercapacitor electrodes. Nanoscale, 2014, 6, 5960-5966.	5.6	41
195	A Highâ€Capacity, Lowâ€Cost Layered Sodium Manganese Oxide Material as Cathode for Sodiumâ€lon Batteries. ChemSusChem, 2014, 7, 2115-2119.	6.8	93
196	Fe ₂ O ₃ nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chemical Communications, 2014, 50, 1215-1217.	4.1	297
197	Chemically exfoliated ReS ₂ nanosheets. Nanoscale, 2014, 6, 12458-12462.	5.6	160
198	Asymmetric metal oxide pseudocapacitors advanced by three-dimensional nanoporous metal electrodes. Journal of Materials Chemistry A, 2014, 2, 8448.	10.3	74

#	Article	IF	CITATIONS
199	Inelastic electron-tunneling spectroscopy of nanoporous gold films. Physical Review B, 2014, 89, .	3.2	4
200	Mixing Time of Molecules Inside of Nanoporous Gold. SIAM Journal on Applied Mathematics, 2014, 74, 1298-1314.	1.8	3
201	Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nature Communications, 2014, 5, 4402.	12.8	286
202	Selfâ€Grown Oxyâ€Hydroxide@ Nanoporous Metal Electrode for Highâ€Performance Supercapacitors. Advanced Materials, 2014, 26, 269-272.	21.0	152
203	Flow Unit Perspective on Room Temperature Homogeneous Plastic Deformation in Metallic Glasses. Physical Review Letters, 2014, 113, 045501.	7.8	165
204	Structural origins of Johari-Goldstein relaxation in a metallic glass. Nature Communications, 2014, 5, 3238.	12.8	144
205	Asymmetric twins in rhombohedral boron carbide. Applied Physics Letters, 2014, 104, 021907.	3.3	32
206	Nanoporous metal based flexible asymmetric pseudocapacitors. Journal of Materials Chemistry A, 2014, 2, 10910-10916.	10.3	87
207	Nucleation of shear bands in amorphous alloys. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3938-3942.	7.1	93
208	Atomic Observation of Catalysis-Induced Nanopore Coarsening of Nanoporous Gold. Nano Letters, 2014, 14, 1172-1177.	9.1	109
209	Formation and properties of P-free Pd-based metallic glasses with high glass-forming ability. Journal of Alloys and Compounds, 2014, 617, 310-313.	5.5	10
210	Fabrication of large-scale nanoporous nickel with a tunable pore size for energy storage. Journal of Power Sources, 2014, 247, 896-905.	7.8	140
211	Surface coating of lithium–manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4422.	10.3	112
212	Dispersing Pt atoms onto nanoporous gold for high performance direct formic acid fuel cells. Chemical Science, 2014, 5, 403-409.	7.4	93
213	Angstrom-beam electron diffraction of amorphous materials. Journal of Non-Crystalline Solids, 2014, 383, 52-58.	3.1	15
214	Using Hardness Tests to Quantify Bulk Plasticity and Predict Transition Velocities in <scp>SiC</scp> Materials. International Journal of Applied Ceramic Technology, 2013, 10, 114-122.	2.1	9
215	Non-invasive measurement of glucose uptake of skeletal muscle tissue models using a glucose nanobiosensor. Biosensors and Bioelectronics, 2013, 50, 194-201.	10.1	20
216	Crystalline Liquid and Rubber-Like Behavior in Cu Nanowires. Nano Letters, 2013, 13, 3812-3816.	9.1	45

#	Article	IF	CITATIONS
217	Crossover from stochastic activation to cooperative motions of shear transformation zones in metallic glasses. Applied Physics Letters, 2013, 103, 081904.	3.3	38
218	High-energy-density nonaqueous MnO2@nanoporous gold based supercapacitors. Journal of Materials Chemistry A, 2013, 1, 9202.	10.3	84
219	Geometric Frustration of Icosahedron in Metallic Classes. Science, 2013, 341, 376-379.	12.6	423
220	Conducting MoS ₂ Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Letters, 2013, 13, 6222-6227.	9.1	1,948
221	A Coreâ€Shell Nanoporous Ptâ€Cu Catalyst with Tunable Composition and High Catalytic Activity. Advanced Functional Materials, 2013, 23, 4156-4162.	14.9	118
222	In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nature Communications, 2013, 4, 2413.	12.8	147
223	Atomic structure of amorphous shear bands in boron carbide. Nature Communications, 2013, 4, 2483.	12.8	190
224	Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors. Journal of Power Sources, 2013, 225, 304-310.	7.8	52
225	Dynamic shear punching of metallic glass matrix composites. Intermetallics, 2013, 36, 31-35.	3.9	13
226	Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys. Acta Materialia, 2013, 61, 7726-7740.	7.9	85
227	First-Order Liquid-Liquid Phase Transition in Cerium. Physical Review Letters, 2013, 110, 125503.	7.8	111
228	Microstructure characterization of Cu-rich nanoprecipitates in a Fe–2.5 Cu–1.5 Mn–4.0 Ni–1.0 Al multicomponent ferritic alloy. Acta Materialia, 2013, 61, 2133-2147.	7.9	153
229	Nanoporous Gold Based Optical Sensor for Sub-ppt Detection of Mercury Ions. ACS Nano, 2013, 7, 4595-4600.	14.6	175
230	Enhanced Supercapacitor Performance of MnO ₂ by Atomic Doping. Angewandte Chemie - International Edition, 2013, 52, 1664-1667.	13.8	251
231	Electroplated Thick Manganese Oxide Films with Ultrahigh Capacitance. Advanced Energy Materials, 2013, 3, 857-863.	19.5	70
232	Evolution of structural and dynamic heterogeneities and activation energy distribution of deformation units in metallic glass. Applied Physics Letters, 2013, 102, .	3.3	86
233	Toward the Theoretical Capacitance of RuO ₂ Reinforced by Highly Conductive Nanoporous Gold. Advanced Energy Materials, 2013, 3, 851-856.	19.5	184
234	Threeâ€Dimensional (3D) Bicontinuous Au/Amorphousâ€Ge Thin Films as Fast and Highâ€Capacity Anodes for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 281-285.	19.5	115

#	Article	IF	CITATIONS
235	Regulating Infrared Photoresponses in Reduced Graphene Oxide Phototransistors by Defect and Atomic Structure Control. ACS Nano, 2013, 7, 6310-6320.	14.6	112
236	Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials, 2013, 12, 850-855.	27.5	2,326
237	Geometrically Controlled Nanoporous PdAu Bimetallic Catalysts with Tunable Pd/Au Ratio for Direct Ethanol Fuel Cells. ACS Catalysis, 2013, 3, 1220-1230.	11.2	152
238	A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Scientific Reports, 2013, 3, 1327.	3.3	79
239	Transiently suppressed relaxations in metallic glass. Applied Physics Letters, 2013, 103, .	3.3	6
240	Nanoporous Gold-Catalyzed [4+2] Benzannulation between ortho-Alkynylbenzaldehydes and Alkynes. Synlett, 2012, 2012, 66-69.	1.8	44
241	Screw-rotation twinning through helical movement of triple-partials. Applied Physics Letters, 2012, 101, 121901.	3.3	14
242	Deformation behavior of metallic glass thin films. Journal of Applied Physics, 2012, 112, 063504.	2.5	12
243	Origin of ferromagnetism and oxygen-vacancy ordering induced cross-controlled magnetoelectric offects at room temperature, lournal of Applied Physics, 2012, 111, Direct observation of interlocked domain walls in hexagonal cmml:math	2.5	35
244	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>R</mml:mi> MnO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< td=""><td></td><td></td></mml:mrow<></mml:msub></mml:math 		

#	Article	IF	CITATIONS
253	Aerobic oxidation of alcohols in the liquid phase with nanoporous gold catalysts. Chemical Communications, 2012, 48, 4540.	4.1	82
254	Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM. Acta Materialia, 2012, 60, 5686-5696.	7.9	65
255	Direct synthesis of fullerene-intercalated porous carbon nanofibers by chemical vapor deposition. Carbon, 2012, 50, 5162-5166.	10.3	12
256	Formation and properties of strontium-based bulk metallic glasses with ultralow glass transition temperature. Journal of Materials Research, 2012, 27, 2593-2600.	2.6	17
257	Structural Origins of the Excellent Glass Forming Ability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub> <mml:mi>Pd</mml:mi> <mml:mn> 40</mml:mn> </mml:msub> <mml:msub> <mml:m mathvariant="normal">P <mml:mn> 20</mml:mn> </mml:m </mml:msub> . Physical Review</mml:math 	ii> 7∖8 <td>ıl:mis<mml:n< td=""></mml:n<></td>	ıl:mis <mml:n< td=""></mml:n<>
258	Letters, 2012, 108, 175501. Coherent Atomic and Electronic Heterostructures of Single-Layer MoS ₂ . ACS Nano, 2012, 6, 7311-7317.	14.6	806
259	Thermal properties of nanoporous gold. Physical Review B, 2012, 85, .	3.2	22
260	Rapid Degradation of Azo Dye by Feâ€Based Metallic Glass Powder. Advanced Functional Materials, 2012, 22, 2567-2570.	14.9	259
261	Tunable Photoluminescence from Graphene Oxide. Angewandte Chemie - International Edition, 2012, 51, 6662-6666.	13.8	584
262	Low temperature uniform plastic deformation of metallic glasses during elastic iteration. Acta Materialia, 2012, 60, 3741-3747.	7.9	30
263	Biofunctionalized nanoporous gold for electrochemical biosensors. Electrochimica Acta, 2012, 67, 1-5.	5.2	60
264	Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors. Journal of Power Sources, 2012, 197, 325-329.	7.8	100
265	Influence of Aging and Thermomechanical Treatments on the Mechanical Properties of a Nanocluster-Strengthened Ferritic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 351-359.	2.2	39
266	Tailored nanoporous gold for ultrahigh fluorescence enhancement. Physical Chemistry Chemical Physics, 2011, 13, 3795.	2.8	29
267	A nanostructured skeleton catalyst: Suzuki-coupling with a reusable and sustainable nanoporous metallic glass Pd-catalyst. Chemical Communications, 2011, 47, 5985.	4.1	60
268	Liquid-Gated Ambipolar Transport in Ultrathin Films of a Topological Insulator Bi ₂ Te ₃ . Nano Letters, 2011, 11, 2601-2605.	9.1	81
269	Wrinkled Nanoporous Gold Films with Ultrahigh Surface-Enhanced Raman Scattering Enhancement. ACS Nano, 2011, 5, 4407-4413.	14.6	249
270	Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Scientific Reports, 2011, 1, 112.	3.3	198

#	Article	IF	CITATIONS
271	Atomic structure of nanoclusters in oxide-dispersion-strengthened steels. Nature Materials, 2011, 10, 922-926.	27.5	306
272	Temperature-induced anomalous brittle-to-ductile transition of bulk metallic glasses. Applied Physics Letters, 2011, 99, .	3.3	24
273	Effect of Residual Silver on Surface-Enhanced Raman Scattering of Dealloyed Nanoporous Gold. Journal of Physical Chemistry C, 2011, 115, 19583-19587.	3.1	66
274	Localized surface plasmon resonance of nanoporous gold. Applied Physics Letters, 2011, 98, .	3.3	135
275	Characterization of Nanoscale Mechanical Heterogeneity in a Metallic Glass by Dynamic Force Microscopy. Physical Review Letters, 2011, 106, 125504.	7.8	347
276	Distorted icosahedral Ni5Nb3Zr5 clusters in the as-quenched and hydrogenated amorphous (Ni0.6Nb0.4)0.65Zr0.35 alloys. Journal of Non-Crystalline Solids, 2011, 357, 3357-3360.	3.1	7
277	Field Emission from Atomically Thin Edges of Reduced Graphene Oxide. ACS Nano, 2011, 5, 4945-4952.	14.6	139
278	Local Structure Analysis of Metallic Glasses by Angstrom Beam Electron Diffraction Using Aberration Corrected STEM. Nihon Kessho Gakkaishi, 2011, 53, 326-331.	0.0	0
279	Direct observation of local atomic order in a metallic glass. Nature Materials, 2011, 10, 28-33.	27.5	483
280	Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology, 2011, 6, 232-236.	31.5	1,914
281	A brief overview of bulk metallic glasses. NPG Asia Materials, 2011, 3, 82-90.	7.9	389
282	Photoluminescence from Chemically Exfoliated MoS ₂ . Nano Letters, 2011, 11, 5111-5116.	9.1	3,402
283	Highly optimized embedded-atom-method potentials for fourteen fcc metals. Physical Review B, 2011, 83,	3.2	422
284	Effect of Au Content on Thermal Stability and Mechanical Properties of Au-Cu-Ag-Si Bulk Metallic Glasses. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1486-1490.	2.2	15
285	Nanoporous PdNi Bimetallic Catalyst with Enhanced Electrocatalytic Performances for Electro-oxidation and Oxygen Reduction Reactions. Advanced Functional Materials, 2011, 21, 4364-4370.	14.9	251
286	Li Storage in 3D Nanoporous Auâ€ S upported Nanocrystalline Tin. Advanced Materials, 2011, 23, 2443-2447.	21.0	198
287	Reusable and Sustainable Nanostructured Skeleton Catalyst: Heck Reaction with Nanoporous Metallic Glass Pd (PdNPore) as a Support, Stabilizer and Ligandâ€Free Catalyst. Advanced Synthesis and Catalysis, 2011, 353, 2927-2932.	4.3	39
288	Nanoindentation characterization of deformation and failure of aluminum oxynitride. Acta Materialia, 2011, 59, 1671-1679.	7.9	47

#	Article	IF	CITATIONS
289	Nano-twinned structure and photocatalytic properties under visible light for undoped nano-titania synthesised by hydrothermal reaction in water–ethanol mixture. Journal of Supercritical Fluids, 2011, 58, 136-141.	3.2	22
290	Modulated Na\$_{2}\$Ti\$_{4}\$O\$_{9}\$:Zr Nanobelt via Site-Specific Zr Doping. Applied Physics Express, 2011, 4, 085003. Accorded and electronic structure of Pd cmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	2.4	3
291	aisplay="mine"> <mmi:msub><mmi:mrow" /><mmi:mn>40</mmi:mn></mmi:mrow" </mmi:msub> Ni <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mmi:msub><mmi:mrow /><mmi:mn>40</mmi:mn></mmi:mrow </mmi:msub>P<mmi:math< td=""><td>3.2</td><td>24</td></mmi:math<></mmi:math 	3.2	24
292	Enhanced Electrochemical Performances of Nanoporous Gold by Surface Modification of Titanium Dioxide Nanoparticles. Materials Transactions, 2010, 51, 1566-1569.	1.2	14
293	Addition of Fe2O3 as oxygen carrier for preparation of nanometer-sized oxide strengthened steels. Journal of Nuclear Materials, 2010, 405, 199-202.	2.7	11
294	Bis(phthalocyaninato)yttrium grown on Au(111): Electronic structure of a single molecule and the stability of two-dimensional films investigated by scanning tunneling microscopy/spectroscopy at 4.8 K. Nano Research, 2010, 3, 604-611.	10.4	12
295	Correlation between surface whisker growth and interfacial precipitation in aluminum thin films on silicon substrates. Journal of Materials Science, 2010, 45, 3367-3374.	3.7	8
296	A Threeâ€Dimensional Goldâ€Decorated Nanoporous Copper Core–Shell Composite for Electrocatalysis and Nonenzymatic Biosensing. Advanced Functional Materials, 2010, 20, 2279-2285.	14.9	159
297	Controlled Formation and Mechanical Characterization of Metallic Glassy Nanowires. Advanced Materials, 2010, 22, 872-875.	21.0	43
298	Nanostructured Materials as Catalysts: Nanoporousâ€Goldâ€Catalyzed Oxidation of Organosilanes with Water. Angewandte Chemie - International Edition, 2010, 49, 10093-10095.	13.8	215
299	Influences of grain size and grain boundary segregation on mechanical behavior of nanocrystalline Ni. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2297-2304.	5.6	55
300	Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nature Materials, 2010, 9, 904-907.	27.5	638
301	Effect of doping and counterdoping on high-pressure phase transitions of silicon. Applied Physics Letters, 2010, 96, 251910.	3.3	8
302	Size dependence of molecular fluorescence enhancement of nanoporous gold. Applied Physics Letters, 2010, 96, 073701.	3.3	52
303	On the effect of impurities in metallic glass formation. Applied Physics Letters, 2010, 96, .	3.3	13
304	Relating activation of shear transformation zones to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>β</mml:mi>relaxations in metallic glasses. Physical Review B, 2010. 81</mml:math 	3.2	279
305	Deformation-induced change in the structure of metallic glasses during multistep indentation. Physical Review B, 2010, 81, .	3.2	8
306	Stress-Temperature Scaling for Steady-State Flow in Metallic Glasses. Physical Review Letters, 2010, 104, 205701.	7.8	183

#	Article	IF	CITATIONS
307	Coupling between chemical and dynamic heterogeneities in a multicomponent bulk metallic glass. Physical Review B, 2010, 81, .	3.2	74
308	Novel Nanoporous Auâ^'Pd Alloy with High Catalytic Activity and Excellent Electrochemical Stability. Journal of Physical Chemistry C, 2010, 114, 2600-2603.	3.1	124
309	Pressure-induced depolarization and resonance in Raman scattering of single-crystalline boron carbide. Physical Review B, 2010, 81, .	3.2	43
310	Ni-rich Ni–Pd–P bulk metallic glasses with significantly improved glass-forming ability and mechanical properties by Si addition. Intermetallics, 2010, 18, 1790-1793.	3.9	19
311	Local atomic structure of Ni60Pd20P20 and Ni60Pd20P17B3 bulk metallic glasses and the origin of glass forming ability. Journal of Alloys and Compounds, 2010, 496, 135-139.	5.5	7
312	Electrochemical synthesis of palladium nanostructures with controllable morphology. Nanotechnology, 2010, 21, 085601.	2.6	27
313	Growth of Topological Insulator Bi ₂ Te ₃ Ultrathin Films on Si(111) Investigated by Low-Energy Electron Microscopy. Crystal Growth and Design, 2010, 10, 4491-4493.	3.0	37
314	Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Physical Chemistry Chemical Physics, 2010, 12, 239-246.	2.8	200
315	Spin-Dependent Electronâ`'Phonon Interaction in SmFeAsO by Low-Temperature Raman Spectroscopy. Journal of the American Chemical Society, 2010, 132, 15223-15227. Doping and temperature dependence of Raman scattering from (mml:math	13.7	14
316	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline">< mml:mrow> < mml:msub> < mml:mrow> < mml:mtext> NdFeAsO < /mml:mtext> < /mml:mrow> < mn xmlns:mml="http://www.w3.org/1998/Math/MathML"	nl:mrow><	mml:mn>1<

#	Article	IF	CITATIONS
325	Depressurization Amorphization of Single-Crystal Boron Carbide. Physical Review Letters, 2009, 102, 075505.	7.8	148
326	Formation of an intermediate compound with a B12H12cluster: experimental and theoretical studies on magnesium borohydride Mg(BH4)2. Nanotechnology, 2009, 20, 204013.	2.6	104
327	Nanoporous Metals for Catalytic and Optical Applications. MRS Bulletin, 2009, 34, 569-576.	3.5	378
328	Characteristic Length and Temperature Dependence of Surface Enhanced Raman Scattering of Nanoporous Gold. Journal of Physical Chemistry C, 2009, 113, 10956-10961.	3.1	79
329	Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios. Applied Physics Letters, 2009, 94, .	3.3	75
330	High-pressure Raman spectroscopy of carbon onions and nanocapsules. Applied Physics Letters, 2009, 95, .	3.3	21
331	Atomic-Scale Heterogeneity of a Multicomponent Bulk Metallic Glass with Excellent Glass Forming Ability. Physical Review Letters, 2009, 103, 075502.	7.8	189
332	Doping Effect on High-Pressure Structural Stability of ZnO Nanowires. Journal of Physical Chemistry C, 2009, 113, 1164-1167.	3.1	22
333	Plastic Deformation-Assisted Synthesis of Metallic Glass Nanostructures. Materials Transactions, 2009, 50, 1890-1893.	1.2	4
334	Glass-Forming Ability and Properties of New Au-Based Glassy Alloys with Low Au Concentrations. Materials Transactions, 2009, 50, 1290-1293.	1.2	20
335	Micromechanisms of serrated flow in a Ni50Pd30P20 bulk metallic glass with a large compression plasticity. Acta Materialia, 2008, 56, 2834-2842.	7.9	75
336	Interface structure and properties of a brass-reinforced Ni59Zr20Ti16Si2Sn3 bulk metallic glass composite. Acta Materialia, 2008, 56, 3077-3087.	7.9	25
337	Dynamic Compressive Failure of AlON Under Controlled Planar Confinement. Journal of the American Ceramic Society, 2008, 91, 3619-3629.	3.8	56
338	Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility. Annual Review of Materials Research, 2008, 38, 445-469.	9.3	513
339	Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14769-14772.	7.1	487
340	Nanoporous Metals by Dealloying Multicomponent Metallic Glasses. Chemistry of Materials, 2008, 20, 4548-4550.	6.7	272
341	Metallic Glass Nanowire. Nano Letters, 2008, 8, 516-519.	9.1	32
342	Synthesis and Optical Properties of Three-Dimensional Porous Coreâ^'Shell Nanoarchitectures. Langmuir, 2008, 24, 4426-4429.	3.5	40

#	Article	IF	CITATIONS
343	Formation of Rosette-Like Nanopatterns by Selective Corrosion of Metallic Glass. Japanese Journal of Applied Physics, 2008, 47, 8678-8680.	1.5	3
344	Three-dimensional morphology of nanoporous gold. Applied Physics Letters, 2008, 92, .	3.3	235
345	Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold. Applied Physics Letters, 2008, 92, .	3.3	47
346	Unusually Small Electrical Resistance of Three-Dimensional Nanoporous Gold in External Magnetic Fields. Physical Review Letters, 2008, 101, 166601.	7.8	79
347	TEM Sample Preparation for Microcompressed Nanocrystalline Ni. Materials Transactions, 2008, 49, 2091-2095.	1.2	8
348	Electron holography of single-crystal iron nanorods encapsulated in carbon nanotubes. Journal of Applied Physics, 2007, 101, 014323.	2.5	21
349	Electrical conductivity of a bulk metallic glass composite. Applied Physics Letters, 2007, 91, .	3.3	18
350	Deposition and Characterization of Fe[sub 0.55]Co[sub 0.45] Nanowires. Journal of the Electrochemical Society, 2007, 154, D572.	2.9	19
351	Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Applied Physics Letters, 2007, 91, .	3.3	342
352	<i>In situ</i> Raman characterization of reversible phase transition in stress-induced amorphous silicon. Applied Physics Letters, 2007, 91, .	3.3	20
353	Ultra-Large Room-Temperature Compressive Plasticity of a Nanocrystalline Metal. Nano Letters, 2007, 7, 2108-2111.	9.1	78
354	Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements. Applied Physics Letters, 2007, 90, 153120.	3.3	333
355	Experimental and numerical investigation on ductile-brittle fracture transition in a magnesium alloy. Journal of Materials Science, 2007, 42, 7702-7707.	3.7	14
356	Raman spectroscopy of pressure-induced amorphous boron carbide. Applied Physics Letters, 2006, 88, 131905.	3.3	117
357	Extraordinary Plasticity of Ductile Bulk Metallic Glasses. Physical Review Letters, 2006, 96, 245502.	7.8	275
358	Measuring Elastic Energy Density of Bulk Metallic Glasses by Nanoindentation. Materials Transactions, 2006, 47, 1981-1984.	1.2	14
359	Dynamic plasticity and failure of high-purity alumina under shock loading. Nature Materials, 2006, 5, 614-618.	27.5	149
360	Temperature dependence of Raman scattering in Si crystals with heavy B and/or Ge doping. Materials Science in Semiconductor Processing, 2006, 9, 257-260.	4.0	4

#	Article	IF	CITATIONS
361	Tensile behavior and dynamic failure of aluminum 6092/B4C composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 433, 70-82.	5.6	64
362	Strengthening and softening of nanocrystalline nickel during multistep nanoindentation. Applied Physics Letters, 2006, 88, 161922.	3.3	58
363	Mechanical scratching induced phase transitions and reactions of boron carbide. Journal of Applied Physics, 2006, 100, 123517.	2.5	32
364	Mechanical Behavior of Nanocrystalline Metals. , 2006, , .		4
365	Reaction at the interface between Si melt and a Ba-doped silica crucible. Journal of Crystal Growth, 2005, 277, 154-161.	1.5	10
366	Microstructural Characterization of Commercial Hot-Pressed Boron Carbide Ceramics. Journal of the American Ceramic Society, 2005, 88, 1935-1942.	3.8	130
367	Epitaxial Casting of Nanotubular Mesoporous Platinum. Angewandte Chemie - International Edition, 2005, 44, 4002-4006.	13.8	77
368	Redistribution of alloying elements in quasicrystallizedZr65Al7.5Ni10Cu7.5Ag10bulk metallic glass. Physical Review B, 2005, 71, .	3.2	8
369	Comment on "Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel". Science, 2005, 308, 356c-356c.	12.6	27
370	Effect of heavy boron doping on pressure-induced phase transitions in single-crystal silicon. Applied Physics Letters, 2005, 87, 191911.	3.3	25
371	The influence of a martensitic phase transformation on stress development in thermal barrier coating systems. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2279-2286.	2.2	11
372	Metallic Mesoporous Nanocomposites for Electrocatalysis. Journal of the American Chemical Society, 2004, 126, 6876-6877.	13.7	410
373	Deformation Twinning in Nanocrystalline Aluminum. Science, 2003, 300, 1275-1277.	12.6	1,058
374	Microstructural characterization of a platinum-modified diffusion aluminide bond coat for thermal barrier coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 2289-2299.	2.2	22
375	Evolution of a diffusion aluminide bond coat for thermal barrier coatings during thermal cycling. Acta Materialia, 2003, 51, 2205-2217.	7.9	179
376	Diffusionally accommodated interfacial sliding in metal-silicon systems. Acta Materialia, 2003, 51, 2831-2846.	7.9	27
377	Shock-Induced Localized Amorphization in Boron Carbide. Science, 2003, 299, 1563-1566.	12.6	483
378	Nanocrystalline grain structures developed in commercial purity Cu by low-temperature cold rolling. Journal of Materials Research, 2002, 17, 3004-3007.	2.6	51

#	Article	IF	CITATIONS
379	Enhanced tensile ductility and toughness in nanostructured Cu. Applied Physics Letters, 2002, 80, 2395-2397.	3.3	254
380	Annealing embrittlement of Al89Fe10Zr1 amorphous alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 325, 182-185.	5.6	13
381	High tensile ductility in a nanostructured metal. Nature, 2002, 419, 912-915.	27.8	2,527
382	Plastic deformation and interfacial sliding in Al and Cu thin film: Si substrate systems due to thermal cycling. Journal of Electronic Materials, 2001, 30, 1537-1548.	2.2	24
383	Kinetic evidence for the structural similarity between a supercooled liquid and an icosahedral phase in Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Applied Physics Letters, 2001, 79, 42-44.	3.3	43
384	Grain growth behaviour of quasicrystals from the supercooled liquid region of Zr65Cu7.5Al7.5Ni10Ag10 metallic glass. Philosophical Magazine Letters, 2000, 80, 79-84.	1.2	34
385	Partitioning behavior of Al in a nanocrystalline FeZrBAl soft magnetic alloy. Journal of Applied Physics, 2000, 87, 439-442.	2.5	6
386	Ductile quasicrystalline alloys. Applied Physics Letters, 2000, 76, 967-969.	3.3	79
387	Atomic force microscopy study of plastic deformation and interfacial sliding in Al thin film: Si substrate systems due to thermal cycling. Applied Physics Letters, 2000, 77, 4298-4300.	3.3	24
388	Formation of icosahedral quasicrystals in an annealed Zr65Al7.5Ni10Cu12.5Ag5metallic glass. Philosophical Magazine Letters, 2000, 80, 263-269.	1.2	14
389	Quasicrystals and nano-quasicrystals in annealed ZrAlNiCuAg metallic glasses. Intermetallics, 2000, 8, 493-498.	3.9	13
390	Distribution of Nb and Co in an α-Fe/Nd2Fe14B-type nanocomposite. Journal of Applied Physics, 2000, 88, 6928-6930.	2.5	7
391	Impurity oxygen redistribution in a nanocrystallized Zr65Cr15Al10Pd10 metallic glass. Applied Physics Letters, 1999, 74, 812-814.	3.3	44
392	Precipitation of icosahedral phase from a supercooled liquid region in Zr65Cu7.5Al7.5Ni10Ag10 metallic glass. Applied Physics Letters, 1999, 75, 3497-3499.	3.3	82
393	Fracture behavior of a nanocrystallized Zr65Cu15Al10Pd10 metallic glass. Applied Physics Letters, 1999, 74, 2131-2133.	3.3	19
394	Quasicrystals in a partially devitrified Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Applied Physics Letters, 1999, 75, 1697-1699.	3.3	197
395	High Strength and Good Ductility of Bulk Quasicrystalline Base Alloys in Zr ₆₅ Al _{7.5} Ni ₁₀ Cu _{17.5&ar System. Materials Transactions, JIM, 1999, 40, 1137-1143.}	np ຸກາ ຍnus;	& 1;1& gt;x& 5;
396	Influence of lamellar lath orientation on crack propagation in a gamma TiAl alloy. Scripta Materialia, 1997, 36, 497-501.	5.2	10

#	Article	IF	CITATIONS
397	Modulated structure in a rapidly solidified Ni-47Al alloy. Materials Letters, 1996, 28, 513-516.	2.6	4
398	In Situ Straining Tem Observation of Fracture behavior in Pst Crystals of TiAl. Materials Research Society Symposia Proceedings, 1994, 364, 1047.	0.1	1
399	Dynamic Restoration Mechanism of a Fe3Al Based Alloy During Elevated Temperature Deformation. Materials Research Society Symposia Proceedings, 1994, 364, 255.	0.1	0