Peter Högberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3759747/publications.pdf

Version: 2024-02-01

150 papers 21,761 citations

67 h-index 145 g-index

151 all docs

151 docs citations

151 times ranked

16412 citing authors

#	Article	IF	CITATIONS
1	Plant Diversity and Productivity Experiments in European Grasslands. Science, 1999, 286, 1123-1127.	12.6	1,757
2	Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 2001, 411, 789-792.	27.8	1,643
3	The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science, 2000, 290, 291-296.	12.6	1,601
4	Tansley Review No. 95 15 N natural abundance in soilâ€plant systems. New Phytologist, 1997, 137, 179-203.	7.3	1,438
5	Boreal forest plants take up organic nitrogen. Nature, 1998, 392, 914-916.	27.8	894
6	Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 2007, 173, 611-620.	7.3	779
7	Towards a more plant physiological perspective on soil ecology. Trends in Ecology and Evolution, 2006, 21, 548-554.	8.7	745
8	Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three?. Oecologia, 2006, 150, 590-601.	2.0	568
9	Extramatrical ectomycorrhizal mycelium contributes oneâ€third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytologist, 2002, 154, 791-795.	7.3	450
10	ECOSYSTEM EFFECTS OF BIODIVERSITY MANIPULATIONS IN EUROPEAN GRASSLANDS. Ecological Monographs, 2005, 75, 37-63.	5.4	439
11	Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 2006, 12, 489-499.	9.5	394
12	Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia, 2001, 127, 305-308.	2.0	379
13	Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytologist, 2012, 196, 367-382.	7.3	341
14	Quantification of effects of season and nitrogen supply on tree belowâ€ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytologist, 2010, 187, 485-493.	7.3	340
15	High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytologist, 2008, 177, 220-228.	7.3	317
16	Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant, Cell and Environment, 2003, 26, 1287-1296.	5.7	281
17	Fertile forests produce biomass more efficiently. Ecology Letters, 2012, 15, 520-526.	6.4	273
18	Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Global Change Biology, 2005, 11, 1745-1753.	9.5	261

#	Article	IF	Citations
19	Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia, 2001, 129, 125-132.	2.0	250
20	A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. Forest Ecology and Management, 2011, 262, 95-104.	3.2	234
21	A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant and Soil, 2002, 242, 163-170.	3.7	232
22	Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiology, 2012, 32, 776-798.	3.1	223
23	15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia, 1996, 108, 207-214.	2.0	222
24	Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests?. New Phytologist, 2013, 198, 214-221.	7.3	214
25	Insects affect relationships between plant species richness and ecosystem processes. Ecology Letters, 1999, 2, 237-246.	6.4	211
26	Does atmospheric deposition of nitrogen threaten Swedish forests?. Forest Ecology and Management, 1997, 92, 119-152.	3.2	201
27	Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8534-8539.	7.1	197
28	Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs – a hypothesis based on field observations in boreal forest. New Phytologist, 2003, 160, 225-238.	7.3	189
29	Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis. New Phytologist, 2014, 203, 657-666.	7.3	177
30	SOIL CHEMISTRY AND PLANTS IN FENNOSCANDIAN BOREAL FOREST AS EXEMPLIFIED BY A LOCAL GRADIENT. Ecology, 1998, 79, 119-137.	3.2	170
31	Tamm Review: On the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. Forest Ecology and Management, 2017, 403, 161-185.	3.2	167
32	UPTAKE OF ORGANIC NITROGEN IN THE FIELD BY FOUR AGRICULTURALLY IMPORTANT PLANT SPECIES. Ecology, 2000, 81, 1155-1161.	3.2	158
33	15N Abundance of forests is correlated with losses of nitrogen. Plant and Soil, 1993, 157, 147-150.	3.7	157
34	Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and nonâ€nycorrhizal Pinus sylvestris. New Phytologist, 1999, 142, 569-576.	7.3	142
35	Soil nutrient availability, root symbioses and tree species composition in tropical Africa: a review. Journal of Tropical Ecology, 1986, 2, 359-372.	1.1	137
36	Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia, 2003, 137, 252-257.	2.0	132

#	Article	IF	Citations
37	Contrasting effects of low and high nitrogen additions on soil <scp>CO</scp> ₂ flux components and ectomycorrhizal fungal sporocarp production in a boreal forest. Global Change Biology, 2012, 18, 3596-3605.	9.5	131
38	Recovery of ectomycorrhiza after â€~nitrogen saturation' of a conifer forest. New Phytologist, 2011, 189, 515-525.	7.3	128
39	How plant diversity and legumes affect nitrogen dynamics in experimental grassland communities. Oecologia, 2002, 133, 412-421.	2.0	126
40	15 N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytologist, 1990, 115, 483-486.	7.3	125
41	Forests losing large quantities of nitrogen have elevated 15N:14N ratios. Oecologia, 1990, 84, 229-231.	2.0	121
42	Allelopathic effects by <i>Empetrum hermaphroditum</i> on development and nitrogen uptake by roots and mycorrhizae of <i>Pinus silvestris</i> . Canadian Journal of Botany, 1993, 71, 620-628.	1.1	121
43	Species level patterns in 13 C and 15 N abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytologist, 2003, 159, 757-774.	7.3	119
44	Natural 15 N abundance in fruit bodies of ectomycorrhizal fungi from boreal forests. New Phytologist, 1997, 136, 713-720.	7.3	114
45	Nitrogen impacts on forest carbon. Nature, 2007, 447, 781-782.	27.8	113
46	Carbon allocation between tree root growth and root respiration in boreal pine forest. Oecologia, 2002, 132, 579-581.	2.0	112
47	Gross nitrogen mineralisation and fungi-to-bacteria ratios are negatively correlated in boreal forests. Biology and Fertility of Soils, 2007, 44, 363-366.	4.3	112
48	Pine Forest Floor Carbon Accumulation in Response to N and PK Additions: Bomb 14 C Modelling and Respiration Studies. Ecosystems, 2003, 6, 644-658.	3.4	106
49	ECTOMYCORRHIZAS OF TROPICAL ANGIOSPERMOUS TREES. New Phytologist, 1986, 102, 541-549.	7.3	101
50	Uptake of glycine by field grown wheat. New Phytologist, 2001, 150, 59-63.	7.3	98
51	Tamm Review: Revisiting the influence of nitrogen deposition on Swedish forests. Forest Ecology and Management, 2016, 368, 222-239.	3.2	96
52	Phosphorus Limitation in Boreal Forests: Effects of Aluminum and Iron Accumulation in the Humus Layer. Ecosystems, 2002, 5, 300-314.	3.4	94
53	Shortâ€ŧerm dynamics of abiotic and biotic soilÂ ¹³ CO ₂ effluxes after <i>in situ</i> Â ¹³ CO ₂ pulse labelling of a boreal pine forest. New Phytologist, 2009, 183, 349-357.	7.3	93
54	Uptake of Organic Nitrogen in the Field by Four Agriculturally Important Plant Species. Ecology, 2000, 81, 1155.	3.2	91

#	Article	IF	CITATIONS
55	Inorganic soil nitrogen under grassland plant communities of different species composition and diversity. Oikos, 2005, 110, 271-282.	2.7	86
56	Mycorrhizas in Zambian Trees in Relation to Host Taxonomy, Vegetation Type and Successional Patterns. Journal of Ecology, 1986, 74, 775.	4.0	85
57	MYCORRHIZAL ASSOCIATIONS IN SOME WOODLAND AND FOREST TREES AND SHRUBS IN TANZANIA. New Phytologist, 1982, 92, 407-415.	7.3	84
58	15N abundance of soils and plants along an experimentally induced forest nitrogen supply gradient. Oecologia, 1994, 97, 322-325.	2.0	82
59	Substrate-induced respiration measured in situ in a C3-plant ecosystem using additions of C4-sucrose. Soil Biology and Biochemistry, 1996, 28, 1131-1138.	8.8	80
60	Title is missing!. Plant and Soil, 2000, 219, 197-209.	3.7	80
61	Roles of Root Symbioses in African Woodland and Forest: Evidence from 15 N Abundance and Foliar Analysis. Journal of Ecology, 1995, 83, 217.	4.0	78
62	Plant nitrate reductase activity as an indicator of availability of nitrate in forest soils. Canadian Journal of Forest Research, 1986, 16, 1165-1169.	1.7	74
63	Nitrogen-Fixation and Nutrient Relations in Savanna Woodland Trees (Tanzania). Journal of Applied Ecology, 1986, 23, 675.	4.0	71
64	Contrasting patterns of soil N-cycling in model ecosystems of Fennoscandian boreal forests. Oecologia, 2006, 147, 96-107.	2.0	71
65	Production of dissolved organic carbon and low-molecular weight organic acids in soil solution driven by recent tree photosynthate. Biogeochemistry, 2007, 84, 1-12.	3.5	71
66	Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. Forest Ecology and Management, 2009, 257, 1764-1767.	3.2	70
67	The vertical distribution of fine roots of five tree species and maize in Morogoro, Tanzania. Agroforestry Systems, 1988, 6, 63-69.	2.0	68
68	Consequences of More Intensive Forestry for the Sustainable Management of Forest Soils and Waters. Forests, 2011, 2, 243-260.	2.1	68
69	Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. Ecology, 2016, 97, 1012-1022.	3.2	68
70	Studies of 13C in the foliage reveal interactions between nutrients and water in forest fertilization experiments. Plant and Soil, 1993, 152, 207-214.	3.7	67
71	Nitrogen fixation by the woody legumeLeucaena leucocephala in Tanzania. Plant and Soil, 1982, 66, 21-28.	3.7	65
72	13C-discrimination during microbial respiration of added C3-, C4- and 13C-labelled sugars to a C3-forest soil. Oecologia, 2002, 131, 245-249.	2.0	64

#	Article	IF	Citations
73	Interspecific and spatial differences in nitrogen uptake in monocultures and two-species mixtures in north European grasslands. Functional Ecology, 2002, 16, 454-461.	3.6	64
74	Effects of land use on 15N natural abundance of soils in Ethiopian highlands. Plant and Soil, 2000, 222, 109-117.	3.7	57
75	Allocation of carbon to fine root compounds and their residence times in a boreal forest depend on root size class and season. New Phytologist, 2012, 194, 972-981.	7.3	56
76	Boreal bog plants: nitrogen sources and uptake of recently deposited nitrogen. Environmental Pollution, 2003, 126, 191-200.	7.5	51
77	Variation in the <i>δ</i> ¹³ C of foliage of <i>Pinus sylvestris</i> L. in relation to climate and additions of nitrogen: analysis of a 32â€year chronology. Global Change Biology, 2007, 13, 2317-2328.	9.5	51
78	Identification of Coniferous Forests with Incipient Nitrogen Saturation through Analysis of Arginine and Nitrogenâ€15 Abundance of Trees. Journal of Environmental Quality, 1997, 26, 302-309.	2.0	50
79	Shifts in soil microbial community structure, nitrogen cycling and the concomitant declining N availability in ageing primary boreal forest ecosystems. Soil Biology and Biochemistry, 2015, 91, 200-211.	8.8	49
80	Nitrate in soil water in three Norway spruce stands in southwest Sweden as related to N-deposition and soil, stand, and foliage properties. Canadian Journal of Forest Research, 1996, 26, 836-848.	1.7	48
81	Reconstruction of Forest Site History in Ethiopian Highlands Based on ¹³ C Natural Abundance of Soils. Ambio, 2000, 29, 83-89.	5.5	48
82	Development of 15N enrichment in a nitrogen-fertilized forest soil-plant system. Soil Biology and Biochemistry, 1991, 23, 335-338.	8.8	46
83	Aluminium and uptake of base cations by tree roots: A critique of the model proposed by Sverdrup et al Water, Air, and Soil Pollution, 1994, 75, 121-125.	2.4	46
84	Relations among soil microbial community composition, nitrogen turnover, and tree growth in N-loaded and previously N-loaded boreal spruce forest. Forest Ecology and Management, 2013, 302, 319-328.	3.2	46
85	Measurements of abundances of 15N and 13C as tools in retrospective studies of N balances and water stress in forests: A discussion of preliminary results. Plant and Soil, 1995, 168-169, 125-133.	3.7	45
86	14 C - a tool for separation of autotrophic and heterotrophic soil respiration. Global Change Biology, 2006, 12, 972-982.	9.5	44
87	No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest. Tree Physiology, 2007, 27, 749-756.	3.1	44
88	What is the quantitative relation between nitrogen deposition and forest carbon sequestration?. Global Change Biology, 2012, 18, 1-2.	9.5	44
89	Uncertainties in static closed chamber measurements of the carbon isotopic ratio of soil-respired CO. Soil Biology and Biochemistry, 2005, 37, 2273-2276.	8.8	41
90	The lateral spread of tree root systems in boreal forests: Estimates based on 15N uptake and distribution of sporocarps of ectomycorrhizal fungi. Forest Ecology and Management, 2008, 255, 75-81.	3.2	39

#	Article	IF	Citations
91	Dosage and duration effects of nitrogen additions on ectomycorrhizal sporocarp production and functioning: an example from two Nâ€limited boreal forests. Ecology and Evolution, 2014, 4, 3015-3026.	1.9	39
92	Ectomycorrhizae in coastal miombo woodland of Tanzania. Plant and Soil, 1981, 63, 283-289.	3.7	38
93	N2 fixation in three perennial Trifolium species in experimental grasslands of varied plant species richness and composition. Plant Ecology, 2009, 205, 87-104.	1.6	38
94	Effects of young agroforestry trees on soils in on-farm situations in western Kenya. Agroforestry Systems, 1995, 32, 45-52.	2.0	37
95	Shoot nitrate reductase activities of fieldâ€layer species in different forest types. Scandinavian Journal of Forest Research, 1990, 5, 449-456.	1.4	36
96	The return of an experimentally N-saturated boreal forest to an N-limited state: observations on the soil microbial community structure, biotic N retention capacity and gross N mineralisation. Plant and Soil, 2014, 381, 45-60.	3.7	36
97	Longâ€term declines in stream and river inorganic nitrogen (N) export correspond to forest change. Ecological Applications, 2016, 26, 545-556.	3.8	35
98	Nitrate nutrition ofDeschampsia flexuosa (L.) Trin. in relation to nitrogen deposition in Sweden. Oecologia, 1991, 87, 488-494.	2.0	33
99	Title is missing!. Plant and Soil, 2002, 243, 103-117.	3.7	33
100	Historical land use pattern affects the chemistry of forest soils in the Ethiopian highlands. Geoderma, 2004, 118, 149-165.	5.1	33
101	Nitrogen-related root variables of trees along an N-deposition gradient in Europe. Tree Physiology, 1998, 18, 823-828.	3.1	32
102	Root symbioses of trees in African dry tropical forests. Journal of Vegetation Science, 1992, 3, 393-400.	2.2	31
103	Use of 15 N labelling and 15 N natural abundance to quantify the role of mycorrhizas in N uptake by plants: importance of seed N and of changes in the 15 N labelling of available N. New Phytologist, 1994, 127, 515-519.	7.3	31
104	Nutritional assessment of a forest fertilisation experiment in northern Sweden by root bioassays. Forest Ecology and Management, 1994, 64, 59-69.	3.2	31
105	Quantifying forest change in the European Union. Nature, 2021, 592, E13-E14.	27.8	31
106	Variations in 15N abundance in a forest fertilization trial: Critical loads of N, N saturation, contamination and effects of revitalization fertilization. Plant and Soil, 1992, 142, 211-219.	3.7	30
107	The dependence of soil microbial activity on recent photosynthate from trees. Plant and Soil, 2006, 287, 85-94.	3.7	30
108	The natural abundance of 15N in litter and soil profiles under six temperate tree species: N cycling depends on tree species traits and site fertility. Plant and Soil, 2013, 368, 375-392.	3.7	30

#	Article	IF	Citations
109	Is tree root respiration more sensitive than heterotrophic respiration to changes in soil temperature?. New Phytologist, 2010, 188, 9-10.	7.3	29
110	Responses of a Nitrogenâ€Saturated Forest to a Sharp Decrease in Nitrogen Input. Journal of Environmental Quality, 1999, 28, 1970-1977.	2.0	28
111	Winners and losers in herbaceous plant communities: insights from foliar carbon isotope composition in monocultures and mixtures. Journal of Ecology, 2005, 93, 1136-1147.	4.0	28
112	Is the high 15N natural abundance of trees in N-loaded forests caused by an internal ecosystem N isotope redistribution or a change in the ecosystem N isotope mass balance?. Biogeochemistry, 2014, 117, 351-358.	3.5	28
113	Retention of Nitrogen by a Nitrogen‣oaded Scotch Pine Forest. Soil Science Society of America Journal, 1999, 63, 383-389.	2.2	27
114	Does ectomycorrhiza have a universal key role in the formation of soil organic matter in boreal forests?. Soil Biology and Biochemistry, 2020, 140, 107635.	8.8	27
115	Short-term patterns of carbon and nitrogen mineralisation in a fallow field amended with green manures from agroforestry trees. Biology and Fertility of Soils, 2002, 36, 18-25.	4.3	25
116	Managing existing forests can mitigate climate change. Forest Ecology and Management, 2022, 513, 120186.	3.2	24
117	Belowground Competition Directs Spatial Patterns of Seedling Growth in Boreal Pine Forests in Fennoscandia. Forests, 2014, 5, 2106-2121.	2.1	23
118	Species height and root symbiosis, two factors influencing antiherbivore defense of woody plants in East African savanna. Oecologia, 1993, 93, 322-326.	2.0	22
119	Ion leakage after liming or acidifying fertilization of Swedish forests — a study of lysimeters with and without active tree roots. Forest Ecology and Management, 2001, 147, 151-170.	3.2	22
120	Gross nitrogen mineralization rates still high 14 years after suspension of N input to a N-saturated forest. Soil Biology and Biochemistry, 2006, 38, 2001-2003.	8.8	22
121	Application of nitrogen fertilizer to a boreal pine forest has a negative impact on the respiration of ectomycorrhizal hyphae. Plant and Soil, 2012, 352, 405-417.	3.7	22
122	Growth and nitrogen inflow rates in mycorrhizal and non-mycorrhizal seedlings of Pinus sylvestris. Forest Ecology and Management, 1989, 28, 7-17.	3.2	21
123	Factors Determining the 13C Abundance of Soil-Respired CO2 in Boreal Forests. , 2005, , 47-68.		19
124	Shoot nitrate reductase activities of fieldâ€layer species in different forest types. II. Scandinavian Journal of Forest Research, 1992, 7, 1-14.	1.4	18
125	Tree fallows: A comparison between five tropical tree species. Biology and Fertility of Soils, 1996, 23, 50-56.	4.3	17
126	Respiration from C3 plant green manure added to a C4 plant carbon dominated soil. Plant and Soil, 2000, 218/2, 83-89.	3.7	16

#	Article	IF	CITATIONS
127	Carbon benefits from Forest Transitions promoting biomass expansions and thickening. Global Change Biology, 2020, 26, 5365-5370.	9.5	16
128	Uptake of NO x by mycorrhizal and nonâ€mycorrhizal Scots pine seedlings: quantities and effects on amino acid and protein concentrations. New Phytologist, 1991, 119, 83-92.	7.3	15
129	Pre-Industrial Atmospheric Pollution: Was It Important for the pH of Acid-sensitive Swedish Lakes?. Ambio, 2002, 31, 460-465.	5. 5	14
130	Measuring nitrogen fixation by Sesbania sesban planted fallows using 15N tracer technique in Kenya. Agroforestry Systems, 2005, 65, 67-79.	2.0	14
131	Comments on Yakov Kuzyakov's review â€~Sources of CO2 efflux from soil and review of partitioning methods'[Soil Biology & Biochemistry 38, 425–448]. Soil Biology and Biochemistry, 2006, 38, 2997-2998.	8.8	14
132	Can the 15N Dilution Technique be used to Study N2Fixation in Tropical Tree Symbioses as Affected by Water Deficit?. Journal of Experimental Botany, 1993, 44, 1749-1755.	4.8	13
133	Dynamics of soil nitrate after forest fertilization as monitored by the plant nitrate reductase assay. Forest Ecology and Management, 1991, 44, 223-238.	3.2	12
134	Carbon isotopes as proof for plant uptake of organic nitrogen: Relevance of inorganic carbon uptake: Reply to Rasmussen and Kuzyakov. Soil Biology and Biochemistry, 2009, 41, 1588-1589.	8.8	12
135	Large differences in plant nitrogen supply in German and Swedish forests – Implications for management. Forest Ecology and Management, 2021, 482, 118899.	3.2	12
136	Tansley Review No. 95: 15 N natural abundance in soil–plant systems. New Phytologist, 1998, 139, 595-595.	7.3	11
137	Carbon–nitrogen relations of ectomycorrhizal mycelium across a natural nitrogen supply gradient in boreal forest. New Phytologist, 2021, 232, 1839-1848.	7.3	11
138	Interactions between Hillslope Hydrochemistry, Nitrogen Dynamics, and Plants in Fennoscandian Boreal Forest., 2001,, 227-233.		11
139	Seasonality and nitrogen supply modify carbon partitioning in understory vegetation of a boreal coniferous forest. Ecology, 2016, 97, 671-683.	3.2	9
140	Does successful forest regeneration require the nursing of seedlings by nurse trees through mycorrhizal interconnections?. Forest Ecology and Management, 2022, 516, 120252.	3.2	9
141	New nodulating legume tree species from Guinea-Bissau, West Africa. Forest Ecology and Management, 1989, 29, 311-314.	3.2	8
142	Root biomass and symbioses in Acacia mangium replacing tropical forest after logging. Forest Ecology and Management, 1998, 102, 333-338.	3.2	8
143	Diurnal Variation in Acetylene Reduction and Net Hydrogen Evolution in Five Tropical and Subtropical Nitrogen-Fixing Tree Symbioses. Journal of Experimental Botany, 1989, 40, 1163-1168.	4.8	7
144	Uptake of 24Mg by excised pine roots: A preliminary study. Plant and Soil, 1995, 172, 323-326.	3.7	7

#	ARTICLE	IF	CITATIONS
145	Measurements of abundances of 15N and 13C as tools in retrospective studies of N balances and water stress in forests: A discussion of preliminary results. , 1995, , 125-133.		5
146	15N Abundance of forests is correlated with losses of nitrogen. Plant and Soil, 1993, 157, 147-150.	3.7	4
147	Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. Ecology, 2016, , .	3.2	4
148	Fractional contributions by autotrophic and heterotrophic respiration to soil-surface CO2 efflux in Boreal forests., 2004,, 251-267.		4
149	Seasonality and nitrogen supply modify carbon partitioning in understory vegetation of a boreal coniferous forest. Ecology, 2016, 97, 671-83.	3.2	3
150	Carl Olof Tamm: A Swedish scholar. Forest Ecology and Management, 2014, 315, 227-229.	3.2	1