Daniele Barettin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3759712/publications.pdf Version: 2024-02-01

DANIELE RADETTIN

#	Article	IF	CITATIONS
1	Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results. Nanotechnology, 2014, 25, 195201.	2.6	25
2	Effect of dielectric Bragg grating nanostructuring on dye sensitized solar cells. Optics Express, 2012, 20, A888.	3.4	21
3	Model of a GaAs Quantum Dot Embedded in a Polymorph AlGaAs Nanowire. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1-9.	2.9	16
4	Nanophotonics for Perovskite Solar Cells. Advanced Photonics Research, 2022, 3, .	3.6	15
5	Comparison of wurtzite atomistic and piezoelectric continuum strain models: Implications for the electronic band structure. Superlattices and Microstructures, 2010, 47, 134-138.	3.1	14
6	Influence of electromechanical coupling on optical properties of InGaN quantum-dot based light-emitting diodes. Nanotechnology, 2017, 28, 015701.	2.6	14
7	Carrier transport and emission efficiency in InGaN quantum-dot based light-emitting diodes. Nanotechnology, 2017, 28, 275201.	2.6	13
8	Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules. Journal of Applied Physics, 2015, 117, 094306.	2.5	12
9	Engineering the Charge Transport Properties of Resonant Silicon Nanoparticles in Perovskite Solar Cells. Energy Technology, 2020, 8, 1900877.	3.8	12
10	Giant Enhancement of Radiative Recombination in Perovskite Light-Emitting Diodes with Plasmonic Core-Shell Nanoparticles. Nanomaterials, 2021, 11, 45.	4.1	12
11	Electromechanical field effects in InAs/GaAs quantum dots based on continuum k→·p→ and atomistic tight-binding methods. Computational Materials Science, 2021, 197, 110678.	3.0	11
12	Piezoelectric models for semiconductor quantum dots. Microelectronics Journal, 2008, 39, 1226-1228.	2.0	10
13	Fabry-Perot Pressure Sensors Based on Polycrystalline Diamond Membranes. Materials, 2021, 14, 1780.	2.9	8
14	Piezo-electric fields and state-filling photo-luminescence in natural InP/GaInP2 Wigner molecule structures. Applied Physics Letters, 2021, 118, .	3.3	5
15	Effect of dielectric Bragg grating nanostructuring on dye sensitized solar cells. Optics Express, 2012, 20, A888-97.	3.4	4
16	Entropic algorithms and the lid method as exploration tools for complex landscapes. Physical Review E, 2011, 84, 036706.	2.1	3
17	Excitonic lasing of strain-free InP(As) quantum dots in AlInAs microdisk. Applied Physics Letters, 2017, 110, .	3.3	3
18	Band-mixing and strain effects in InAs/GaAs quantum rings. Superlattices and Microstructures, 2010, 47, 103-107.	3.1	2

DANIELE BARETTIN

#	Article	IF	CITATIONS
19	Comparison of continuum and atomistic methods for the analysis of InAs/GaAs quantum dots. , 2011, , .		2
20	Charge Transport Mechanisms of Black Diamond at Cryogenic Temperatures. Nanomaterials, 2022, 12, 2253.	4.1	2
21	Strain and piezoelectric effects in quantum-dot structures. , 2011, , .		1
22	Optimization by record dynamics. Computer Physics Communications, 2014, 185, 730-735.	7.5	1
23	Piezoelectric tunability and topological insulator transition in a GaN/InN/GaN quantum-well device. JPhys Materials, 2021, 4, 034008.	4.2	1
24	Optimization of InGaN quantum-dot based light-emitting diodes by means of cellular automata algorithms. Optical and Quantum Electronics, 2022, 54, .	3.3	1
25	Modelling of GaAs quantum dot embedded in a polymorph AlGaAs nano wire. , 2013, , .		Ο
26	Realistic models of quantum-dot heterostructures. , 2014, , .		0
27	Realistic model of LED structure with InGaN quantum-dots active region. , 2015, , .		Ο
28	A valence force field-Monte Carlo algorithm for quantum dot growth modeling. , 2017, , .		0
29	SiC and Diamond Membrane Based Pressure Sensors for Harsh Environments. , 2021, , .		0