Hendrik-Jan Thibaut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/375954/publications.pdf

Version: 2024-02-01

45 papers

3,583 citations

236925 25 h-index 214800 47 g-index

59 all docs 59 docs citations

59 times ranked 6562 citing authors

#	Article	IF	CITATIONS
1	Animal models for COVID-19. Nature, 2020, 586, 509-515.	27.8	705
2	The life cycle of non-polio enteroviruses and how to target it. Nature Reviews Microbiology, 2018, 16, 368-381.	28.6	275
3	Favipiravir at high doses has potent antiviral activity in SARS-CoV-2â^infected hamsters, whereas hydroxychloroquine lacks activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26955-26965.	7.1	240
4	STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nature Communications, 2020, 11, 5838.	12.8	225
5	Itraconazole Inhibits Enterovirus Replication by Targeting the Oxysterol-Binding Protein. Cell Reports, 2015, 10, 600-615.	6.4	201
6	PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature, 2017, 541, 412-416.	27.8	168
7	Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nature Genetics, 2021, 53, 435-444.	21.4	162
8	A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature, 2021, 590, 320-325.	27.8	148
9	Combating enterovirus replication: State-of-the-art on antiviral research. Biochemical Pharmacology, 2012, 83, 185-192.	4.4	133
10	Sialic acid-dependent cell entry of human enterovirus D68. Nature Communications, 2015, 6, 8865.	12.8	101
11	A Novel, Broad-Spectrum Inhibitor of Enterovirus Replication That Targets Host Cell Factor Phosphatidylinositol 4-Kinase III \hat{I}^2 . Antimicrobial Agents and Chemotherapy, 2013, 57, 4971-4981.	3.2	96
12	The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis. European Heart Journal, 2015, 36, 2909-2919.	2.2	95
13	The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways. PLoS Pathogens, 2021, 17, e1009500.	4.7	91
14	Enterovirus D68 receptor requirements unveiled by haploid genetics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1399-1404.	7.1	86
15	Selective Serotonin Reuptake Inhibitor Fluoxetine Inhibits Replication of Human Enteroviruses B and D by Targeting Viral Protein 2C. Antimicrobial Agents and Chemotherapy, 2013, 57, 1952-1956.	3.2	81
16	Mutations in the Nonstructural Protein 3A Confer Resistance to the Novel Enterovirus Replication Inhibitor TTP-8307. Antimicrobial Agents and Chemotherapy, 2009, 53, 1850-1857.	3.2	68
17	Broad-range inhibition of enterovirus replication by OSW-1, a natural compound targeting OSBP. Antiviral Research, 2015, 117, 110-114.	4.1	59
18	Antiviral Activity of Broad-Spectrum and Enterovirus-Specific Inhibitors against Clinical Isolates of Enterovirus D68. Antimicrobial Agents and Chemotherapy, 2015, 59, 7782-7785.	3.2	54

#	Article	IF	CITATIONS
19	Towards the design of combination therapy for the treatment of enterovirus infections. Antiviral Research, 2011, 90, 213-217.	4.1	45
20	Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 397-402.	7.1	43
21	An affinity-enhanced, broadly neutralizing heavy chain–only antibody protects against SARS-CoV-2 infection in animal models. Science Translational Medicine, 2021, 13, eabi7826.	12.4	41
22	Binding of Glutathione to Enterovirus Capsids Is Essential for Virion Morphogenesis. PLoS Pathogens, 2014, 10, e1004039.	4.7	37
23	Molecular Biology and Inhibitors of Hepatitis A Virus. Medicinal Research Reviews, 2014, 34, 895-917.	10.5	31
24	Bypassing pan-enterovirus host factor PLA2G16. Nature Communications, 2019, 10, 3171.	12.8	31
25	9-Arylpurines as a Novel Class of Enterovirus Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 316-324.	6.4	28
26	Viral engagement with host receptors blocked by a novel class of tryptophan dendrimers that targets the 5-fold-axis of the enterovirus-A71 capsid. PLoS Pathogens, 2019, 15, e1007760.	4.7	26
27	Toward antiviral therapy/prophylaxis for rhinovirusâ€induced exacerbations of chronic obstructive pulmonary disease: challenges, opportunities, and strategies. Reviews in Medical Virology, 2016, 26, 21-33.	8.3	22
28	Efficient synthesis and anti-enteroviral activity of 9-arylpurines. European Journal of Medicinal Chemistry, 2012, 49, 279-288.	5 . 5	21
29	9-Norbornyl-6-chloropurine (NCP) induces cell death through GSH depletion-associated ER stress and mitochondrial dysfunction. Free Radical Biology and Medicine, 2016, 97, 223-235.	2.9	20
30	Limited evolution of the yellow fever virus 17d in a mouse infection model. Emerging Microbes and Infections, 2019, 8, 1734-1746.	6.5	18
31	MVA-CoV2-S Vaccine Candidate Neutralizes Distinct Variants of Concern and Protects Against SARS-CoV-2 Infection in Hamsters. Frontiers in Immunology, 2022, 13, 845969.	4.8	16
32	Identification of the Cell-Surface Protease ADAM9 as an Entry Factor for Encephalomyocarditis Virus. MBio, $2019,10,1$	4.1	15
33	Inflammatory rather than infectious insults play a role in exocrine tissue damage in a mouse model for coxsackievirus B4â€induced pancreatitis. Journal of Pathology, 2009, 217, 633-641.	4.5	14
34	H1PVAT is a novel and potent early-stage inhibitor of poliovirus replication that targets VP1. Antiviral Research, 2014, 110, 1-9.	4.1	12
35	Hydantoin: The mechanism of its inÂvitro anti-enterovirus activity revisited. Antiviral Research, 2016, 133, 106-109.	4.1	10
36	Intra-host emergence of an enterovirus A71 variant with enhanced PSGL1 usage and neurovirulence. Emerging Microbes and Infections, 2019, 8, 1076-1085.	6. 5	10

#	Article	IF	CITATIONS
37	enAsCas12a Enables CRISPR-Directed Evolution to Screen for Functional Drug Resistance Mutations in Sequences Inaccessible to SpCas9. Molecular Therapy, 2021, 29, 208-224.	8.2	8
38	A High-Throughput Yellow Fever Neutralization Assay. Microbiology Spectrum, 2022, 10, .	3.0	8
39	Potent neutralizing anti-SARS-CoV-2 human antibodies cure infection with SARS-CoV-2 variants in hamster model. IScience, 2022, 25, 104705.	4.1	8
40	Fitness and Virulence of a Coxsackievirus Mutant That Can Circumnavigate the Need for Phosphatidylinositol 4-Kinase Class III Beta. Journal of Virology, 2014, 88, 3048-3051.	3.4	7
41	High Incidence of SARS-CoV-2 Variant of Concern Breakthrough Infections Despite Residual Humoral and Cellular Immunity Induced by BNT162b2 Vaccination in Healthcare Workers: A Long-Term Follow-Up Study in Belgium. Viruses, 2022, 14, 1257.	3.3	7
42	Comparing immunogenicity and protective efficacy of the yellow fever 17D vaccine in mice. Emerging Microbes and Infections, 2021, 10, 2279-2290.	6.5	6
43	Biodistribution and environmental safety of a live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Molecular Therapy - Methods and Clinical Development, 2022, 25, 215-224.	4.1	5
44	Use of Micro-Computed Tomography to Visualize and Quantify COVID-19 Efficiency in Free-Breathing Hamsters. Methods in Molecular Biology, 2022, 2410, 177-192.	0.9	5
45	Metabolically Improved Stem Cell Derived Hepatocyte-Like Cells Support HBV Life Cycle and Are a Promising Tool for HBV Studies and Antiviral Drug Screenings. Biomedicines, 2022, 10, 268.	3.2	2