
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3758974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Multiplexed Immunohistochemical MALDI-MS Imaging of Biomarkers in Tissues. Journal of the American Society for Mass Spectrometry, 2021, 32, 977-988.	1.2	54
2	The crystal structure of bromide-bound GtACR1 reveals a pre-activated state in the transmembrane anion tunnel. ELife, 2021, 10, .	2.8	11
3	Optical Switching Between Longâ€lived States of Opsin Transmembrane Voltage Sensors. Photochemistry and Photobiology, 2021, 97, 1001-1015.	1.3	5
4	Analog Retinal Redshifts Visible Absorption of QuasAr Transmembrane Voltage Sensors into Nearâ€infrared. Photochemistry and Photobiology, 2020, 96, 55-66.	1.3	6
5	Electronic Preresonance Stimulated Raman Scattering Imaging of Red-Shifted Proteorhodopsins: Toward Quantitation of the Membrane Potential. Journal of Physical Chemistry Letters, 2019, 10, 4374-4381.	2.1	9
6	Redshifted and Nearâ€infrared Active Analog Pigments Based upon Archaerhodopsinâ€3. Photochemistry and Photobiology, 2019, 95, 959-968.	1.3	13
7	Pre-resonance stimulated Raman scattering spectroscopy and imaging of membrane potential using near-infrared rhodopsins. , 2019, , .		2
8	Raman spectroscopy of a near infrared absorbing proteorhodopsin: Similarities to the bacteriorhodopsin O photointermediate. PLoS ONE, 2018, 13, e0209506.	1.1	11
9	Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals. IUCrJ, 2018, 5, 103-117.	1.0	8
10	Photocleavage-based affinity purification of biomarkers from serum: Application to multiplex allergy testing. PLoS ONE, 2018, 13, e0191987.	1.1	1
11	Structural Changes in an Anion Channelrhodopsin: Formation of the K and L Intermediates at 80 K. Biochemistry, 2017, 56, 2197-2208.	1.2	13
12	Proteome-wide drug screening using mass spectrometric imaging of bead-arrays. Scientific Reports, 2016, 6, 26125.	1.6	11
13	Resonance Raman Study of an Anion Channelrhodopsin: Effects of Mutations near the Retinylidene Schiff Base. Biochemistry, 2016, 55, 2371-2380.	1.2	30
14	The early development and application of FTIR difference spectroscopy to membrane proteins: A personal perspective. Biomedical Spectroscopy and Imaging, 2016, 5, 231-267.	1.2	20
15	Proton Transfers in a Channelrhodopsin-1 Studied by Fourier Transform Infrared (FTIR) Difference Spectroscopy and Site-directed Mutagenesis. Journal of Biological Chemistry, 2015, 290, 12719-12730.	1.6	20
16	Comparison of the Structural Changes Occurring during the Primary Phototransition of Two Different Channelrhodopsins from <i>Chlamydomonas</i> Algae. Biochemistry, 2015, 54, 377-388.	1.2	17
17	Antiâ€kelchâ€like 12 and antiâ€hexokinase 1: novel autoantibodies in primary biliary cirrhosis. Liver International, 2015, 35, 642-651.	1.9	66
18	Correlated matrixâ€assisted laser desorption/ionization mass spectrometry and fluorescent imaging of photocleavable peptideâ€coded random beadâ€arrays. Rapid Communications in Mass Spectrometry, 2014, 28, 49-62.	0.7	10

#	Article	IF	CITATIONS
19	Retinal Chromophore Structure and Schiff Base Interactions in Red-Shifted Channelrhodopsin-1 from <i>Chlamydomonas augustae</i> . Biochemistry, 2014, 53, 3961-3970.	1.2	28
20	Multiplexed VeraCode bead-based serological immunoassay for colorectal cancer. Journal of Immunological Methods, 2013, 400-401, 58-69.	0.6	15
21	Ultrasensitive Measurements of Microbial Rhodopsin Photocycles Using Photochromic FRET. Photochemistry and Photobiology, 2012, 88, 90-97.	1.3	26
22	Near-IR Resonance Raman Spectroscopy of Archaerhodopsin 3: Effects of Transmembrane Potential. Journal of Physical Chemistry B, 2012, 116, 14592-14601.	1.2	36
23	Conformational changes in the archaerhodopsin-3 proton pump: detection of conserved strongly hydrogen bonded water networks. Journal of Biological Physics, 2012, 38, 153-168.	0.7	16
24	Expression and Spectroscopic Characterization of Melanopsin and Squid Rhodopsin. Biophysical Journal, 2011, 100, 420a.	0.2	0
25	An ELISA-based high throughput protein truncation test for inherited breast cancer. Breast Cancer Research, 2010, 12, R78.	2.2	17
26	His-75 in Proteorhodopsin, a Novel Component in Light-driven Proton Translocation by Primary Pumps. Journal of Biological Chemistry, 2009, 284, 2836-2843.	1.6	71
27	Active Water in Proteinâ^'Protein Communication within the Membrane: The Case of SRIIâ^'Htrll Signal Relay. Biochemistry, 2009, 48, 811-813.	1.2	6
28	Photocleavage-based affinity purification and printing of cell-free expressed proteins: Application to proteome microarrays. Analytical Biochemistry, 2008, 383, 103-115.	1.1	10
29	Different Structural Changes Occur in Blue- and Green-Proteorhodopsins during the Primary Photoreaction. Biochemistry, 2008, 47, 11490-11498.	1.2	13
30	Raman Spectroscopy Reveals Direct Chromophore Interactions in the Leu/Gln105 Spectral Tuning Switch of Proteorhodopsins. Journal of Physical Chemistry B, 2008, 112, 11770-11776.	1.2	39
31	Protonation State of Glu142 Differs in the Green- and Blue-Absorbing Variants of Proteorhodopsin. Biochemistry, 2008, 47, 3447-3453.	1.2	29
32	Cell-free Co-expression of Functional Membrane Proteins and Apolipoprotein, Forming Soluble Nanolipoprotein Particles. Molecular and Cellular Proteomics, 2008, 7, 2246-2253.	2.5	109
33	Subpicosecond Protein Backbone Changes Detected during the Green-Absorbing Proteorhodopsin Primary Photoreaction. Journal of Physical Chemistry B, 2007, 111, 11824-11831.	1.2	28
34	Cell-Free Protein Synthesis Systems: Biotechnological Applications. Biotechnology and Genetic Engineering Reviews, 2006, 22, 151-170.	2.4	2
35	Conformational Changes in the Photocycle of Anabaena Sensory Rhodopsin. Journal of Biological Chemistry, 2006, 281, 15208-15214.	1.6	42
36	Photoactivation Perturbs the Membrane-embedded Contacts between Sensory Rhodopsin II and Its Transducer. Journal of Biological Chemistry, 2005, 280, 28365-28369.	1.6	36

#	Article	IF	CITATIONS
37	Conformational Dynamics of Amyloid β-Protein Assembly Probed Using Intrinsic Fluorescenceâ€. Biochemistry, 2005, 44, 13365-13376.	1.2	60
38	N-terminal labeling of proteins using initiator tRNA. Methods, 2005, 36, 252-260.	1.9	25
39	Cell-free N-terminal protein labeling using initiator suppressor tRNA. Analytical Biochemistry, 2004, 326, 25-32.	1.1	45
40	Structural Changes in the Photoactive Site of Proteorhodopsin during the Primary Photoreactionâ€. Biochemistry, 2004, 43, 9075-9083.	1.2	59
41	A high-throughput nonisotopic protein truncation test. Nature Biotechnology, 2003, 21, 194-197.	9.4	53
42	Methionine Changes in Bacteriorhodopsin Detected by FTIR and Cell-Free Selenomethionine Substitution. Biophysical Journal, 2003, 84, 960-966.	0.2	19
43	Conformational Changes Detected in a Sensory Rhodopsin II-Transducer Complex. Journal of Biological Chemistry, 2003, 278, 36556-36562.	1.6	43
44	Building Photonic Proteins. , 2003, , .		0
45	A Fourier Transform Infrared Study of Neurospora Rhodopsin: Similarities with Archaeal Rhodopsins¶â€. Photochemistry and Photobiology, 2002, 76, 341.	1.3	34
46	Photochemical Control of the Infectivity of Adenoviral Vectors Using a Novel Photocleavable Biotinylation Reagent. Chemistry and Biology, 2002, 9, 567-573.	6.2	17
47	A Fourier Transform Infrared Study of Neurospora Rhodopsin: Similarities with Archaeal Rhodopsins¶â€. Photochemistry and Photobiology, 2002, 76, 341-349.	1.3	4
48	Ultrasensitive Fluorescence-Based Detection of Nascent Proteins in Gels. Analytical Biochemistry, 2000, 279, 218-225.	1.1	63
49	FTIR Analysis of the SII540Intermediate of Sensory Rhodopsin II:Â Asp73 Is the Schiff Base Proton Acceptorâ€. Biochemistry, 2000, 39, 2823-2830.	1.2	38
50	Photocleavable peptide-DNA conjugates: synthesis and applications to DNA analysis using MALDI-MS. Nucleic Acids Research, 1999, 27, 4626-4631.	6.5	36
51	Matrix-assisted laser desorption/ionization mass spectrometry of DNA using photocleavable biotin. New Biotechnology, 1999, 16, 127-133.	2.7	11
52	tRNA-mediated protein engineering. Current Opinion in Biotechnology, 1999, 10, 64-70.	3.3	30
53	Probing Intramolecular Orientations in Rhodopsin and Metarhodopsin II by Polarized Infrared Difference Spectroscopyâ€. Biochemistry, 1999, 38, 13200-13209.	1.2	20
54	Photoactivation of Rhodopsin: Interplay between Protein and Chromophore. Novartis Foundation Symposium, 1999, 224, 102-123.	1.2	3

#	Article	IF	CITATIONS
55	Detection of threonine structural changes upon formation of the M-intermediate of bacteriorhodopsin: evidence for assignment to Thr-89. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 363-372.	0.5	8
56	Conformational Changes in the Core Structure of Bacteriorhodopsin. Biochemistry, 1998, 37, 10279-10285.	1.2	24
57	Photoactivation of Rhodopsin Causes an Increased Hydrogen-Deuterium Exchange of Buried Peptide Groups. Biophysical Journal, 1998, 74, 192-198.	0.2	42
58	Photocleavable aminotag phosphoramidites for 5'-termini DNA/RNA labeling. Nucleic Acids Research, 1998, 26, 3572-3576.	6.5	22
59	[8] Photocleavable affinity tags for isolation and detection of biomolecules. Methods in Enzymology, 1998, 291, 135-154.	0.4	20
60	Tyrosine Structural Changes Detected during the Photoactivation of Rhodopsin. Journal of Biological Chemistry, 1998, 273, 23735-23739.	1.6	40
61	Threonine-89 Participates in the Active Site of Bacteriorhodopsin:  Evidence for a Role in Color Regulation and Schiff Base Proton Transfer. Biochemistry, 1997, 36, 7490-7497.	1.2	18
62	A Biophysical Study of Integral Membrane Protein Foldingâ€. Biochemistry, 1997, 36, 15156-15176.	1.2	170
63	Spontaneous, pH-Dependent Membrane Insertion of a Transbilayer α-Helixâ€. Biochemistry, 1997, 36, 15177-15192.	1.2	234
64	Similarity of bacteriorhodopsin structural changes triggered by chromophore removal and light-driven proton transport. FEBS Letters, 1997, 407, 285-288.	1.3	13
65	Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban. Biophysical Journal, 1996, 70, 1728-1736.	0.2	82
66	Asp76 Is the Schiff Base Counterion and Proton Acceptor in the Proton-Translocating Form of Sensory Rhodopsin lâ€. Biochemistry, 1996, 35, 6690-6696.	1.2	46
67	Site-directed isotope labeling of membrane proteins: A new tool for spectroscopists. Techniques in Protein Chemistry, 1996, 7, 151-159.	0.3	2
68	Photocleavable biotin phosphoramidite for 5'-end-labeling, affinity purification and phosphorylation of synthetic oligonucleotides. Nucleic Acids Research, 1996, 24, 361-366.	6.5	56
69	Site-directed isotope labeling and FTIR spectroscopy: assignment of tyrosine bands in the bR → M difference spectrum of bacteriorhodopsin. Biophysical Chemistry, 1995, 56, 63-70.	1.5	21
70	Effect of carboxyl mutations on functional properties of bovine rhodopsin. Biophysical Chemistry, 1995, 56, 79-87.	1.5	44
71	Protein Conformational Changes during the Bacteriorhodopsin Photocycle. Journal of Biological Chemistry, 1995, 270, 29746-29751.	1.6	10
72	Site-Directed Isotope Labeling and FT-IR Spectroscopy: The Tyr 185/Pro 186 Peptide Bond of Bacteriorhodopsin Is Perturbed during the Primary Photoreaction. Journal of the American Chemical Society, 1995, 117, 11614-11615.	6.6	17

#	Article	IF	CITATIONS
73	Site-Directed Isotope Labeling and ATR-FTIR Difference Spectroscopy of Bacteriorhodopsin: The Peptide Carbonyl Group of Tyr 185 Is Structurally Active During the bR .fwdarw. N Transition. Biochemistry, 1995, 34, 2-6.	1.2	85
74	Asp 46 can substitute for Asp 96 as the Schiff base proton donor in bacteriorhodopsin. Biochemistry, 1995, 34, 15599-15606.	1.2	6
75	Structural Model of the Phospholamban Ion Channel Complex in Phospholipid Membranes. Journal of Molecular Biology, 1995, 248, 824-834.	2.0	122
76	Site-directed isotope labelling and FTIR spectroscopy of bacteriorhodopsin. Nature Structural Biology, 1994, 1, 512-517.	9.7	68
77	Photoactivation of rhodopsin involves alterations in cysteine side chains: detection of an S-H band in the Meta I–>Meta II FTIR difference spectrum. Biophysical Journal, 1994, 66, 2085-2091.	0.2	46
78	The Schiff Base Counterion of Bacteriorhodopsin is Protonated in Sensory Rhodopsin I: Spectroscopic and Functional Characterization of the Mutants D76N and D76A. Biochemistry, 1994, 33, 5600-5606.	1.2	47
79	Detection of a water molecule in the active-site of bacteriorhodopsin: hydrogen bonding changes during the primary photoreaction. Biochemistry, 1994, 33, 12757-12762.	1.2	107
80	Water molecules are active during the primary photoreaction of bacteriorhodopsin. , 1994, 2089, 118.		1
81	Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films. Nature, 1993, 366, 48-50.	13.7	159
82	Cell-free synthesis, functional refolding, and spectroscopic characterization of bacteriorhodopsin, an integral membrane protein. Biochemistry, 1993, 32, 13777-13781.	1.2	38
83	Fourier transform infrared difference spectroscopy of the nicotinic acetylcholine receptor: evidence for specific protein structural changes upon desensitization. Biochemistry, 1993, 32, 5448-5454.	1.2	72
84	FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185 .fwdarw. Phe: Detection of a stable O-like species and characterization of its photocycle at low temperature. Biochemistry, 1993, 32, 2282-2290.	1.2	33
85	Fourier transform infrared difference spectroscopy of rhodopsin mutants: Light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation. Biochemistry, 1993, 32, 10277-10282.	1.2	90
86	Static and time-resolved absorption spectroscopy of the bacteriorhodopsin mutant Tyr-185 .fwdarw. Phe: Evidence for an equilibrium between bR570 and an O-like species. Biochemistry, 1993, 32, 2263-2271.	1.2	39
87	Fourier transform Raman spectroscopy of the bacteriorhodopsin mutant Tyr-185 .fwdarw. Phe: Formation of a stable O-like species during light adaptation and detection of its transient N-like photoproduct. Biochemistry, 1993, 32, 2272-2281.	1.2	41
88	<title>FTIR spectroscopy, site-directed mutagenesis, and isotope labeling: a new approach for studying membrane proteins</title> . , 1992, 1575, 109.		2
89	Incorporation of the nicotinic acetylcholine receptor into planar multilamellar films: characterization by fluorescence and Fourier transform infrared difference spectroscopy. Biophysical Journal, 1992, 61, 983-992.	0.2	64
90	Probing conformational changes in the nicotinic acetylcholine receptor by Fourier transform infrared difference spectroscopy. Biophysical Journal, 1992, 62, 64-66.	0.2	40

#	Article	IF	CITATIONS
91	FTIR difference spectroscopy of bacteriorhodopsin: Toward a molecular model. Journal of Bioenergetics and Biomembranes, 1992, 24, 147-167.	1.0	291
92	TIME-RESOLVED FOURIER TRANSFORM INFRARED SPECTROSCOPY OF THE BACTERIORHODOPSIN MUTANT TYR-185→E: ASP-96 REPROTONATES DURING O FORMATION; ASP-85 AND ASP-212 DEPROTONATE DURING O DECAY. Photochemistry and Photobiology, 1992, 56, 1085-1095.	1.3	83
93	Conformational changes in sensory rhodopsin I: similarities and differences with bacteriorhodopsin, halorhodopsin, and rhodopsin. Biochemistry, 1991, 30, 5395-5400.	1.2	35
94	Fourier transform infrared evidence for a predominantly alpha-helical structure of the membrane bound channel forming COOH-terminal peptide of colicin E1. Biophysical Journal, 1991, 59, 516-522.	0.2	62
95	Protein dynamics in the bacteriorhodopsin photocycle: submillisecond Fourier transform infrared spectra of the L, M, and N photointermediates Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 2388-2392.	3.3	184
96	Biomolecular/solidâ€state nanoheterostructures. Applied Physics Letters, 1990, 56, 692-694.	1.5	42
97	Vibrational spectroscopy of bacteriorhodopsin mutants: evidence for the interaction of proline-186 with the retinylidene chromophore. Biochemistry, 1990, 29, 5954-5960.	1.2	41
98	Polarized Fourier transform infrared spectroscopy of bacteriorhodopsin. Transmembrane alpha helices are resistant to hydrogen/deuterium exchange. Biophysical Journal, 1990, 58, 1539-1546.	0.2	99
99	Substitution of membrane-embedded aspartic acids in bacteriorhodopsin causes specific changes in different steps of the photochemical cycle. Biochemistry, 1989, 28, 10035-10042.	1.2	81
100	Substitution of amino acids in helix F of bacteriorhodopsin: effects on the photochemical cycle. Biochemistry, 1989, 28, 10028-10034.	1.2	28
101	Vibrational spectroscopy of bacteriorhodopsin mutants: chromophore isomerization perturbs trytophan-86. Biochemistry, 1989, 28, 7052-7059.	1.2	52
102	Ftir Spectroscopy: The Detection Of Individual Chemical Groups In Complex Biomolecules. Proceedings of SPIE, 1989, 1057, 44.	0.8	0
103	Composite Biomolecular/Solid State Nanostructures. Materials Research Society Symposia Proceedings, 1989, 174, 151.	0.1	2
104	INFRARED STUDIES OF BACTERIORHODOPSIN. Photochemistry and Photobiology, 1988, 47, 883-887.	1.3	30
105	PHOTOEXCITATION OF RHODOPSIN: CONFORMATION CHANGES IN THE CHROMOPHORE, PROTEIN AND ASSOCIATED LIPIDS AS DETERMINED BY FTIR DIFFERENCE SPECTROSCOPY. Photochemistry and Photobiology, 1988, 48, 497-504.	1.3	72
106	Vibrational spectroscopy of bacteriorhodopsin mutants: I. Tyrosine-185 protonates and deprotonantes during the photocycle. Proteins: Structure, Function and Bioinformatics, 1988, 3, 219-229.	1.5	106
107	Fourier transform infrared study of the halorhodopsin chloride pump. Biochemistry, 1988, 27, 2420-2424.	1.2	61
108	Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry, 1988, 27, 8516-8520.	1.2	545

#	Article	IF	CITATIONS
109	FTIR evidence for tryptophan perturbations during the bacteriorhodopsin photocycle. Journal of the American Chemical Society, 1988, 110, 7223-7224.	6.6	41
110	Fourier Transform Infrared Techniques for Probing Membrane Protein Structure. Annual Review of Biophysics and Biophysical Chemistry, 1988, 17, 541-570.	12.2	252
111	Millisecond Fourier-transform infrared difference spectra of bacteriorhodopsin's M412 photoproduct Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 5221-5225.	3.3	136
112	Bacteriorhodopsin's M412and BR605protein conformations are similar Significance for proton transport. FEBS Letters, 1987, 223, 289-293.	1.3	19
113	Conformational changes in bacteriorhodopsin studied by infrared attenuated total reflection. Biophysical Journal, 1987, 52, 629-635.	0.2	49
114	Evidence for rhodopsin refolding during the decay of Meta II. Biophysical Journal, 1987, 51, 345-350.	0.2	59
115	Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 2. Tyrosines-26 and -64. Biochemistry, 1987, 26, 6708-6717.	1.2	37
116	Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550 intermediates. Biochemistry, 1987, 26, 6696-6707.	1.2	103
117	Orientation of the bacteriorhodopsin chromophore probed by polarized Fourier transform infrared difference spectroscopy. Biochemistry, 1986, 25, 7793-7798.	1.2	102
118	Nanometer molecular lithography. Applied Physics Letters, 1986, 48, 676-678.	1.5	81
119	[25] Fourier transform infrared studies of an active proton transport pump. Methods in Enzymology, 1986, 127, 343-353.	0.4	12
120	Evidence for a tyrosine protonation change during the primary phototransition of bacteriorhodopsin at low temperature Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 347-351.	3.3	129
121	Fourier transform infrared spectroscopic evidence for the existence of two conformations of the bacteriorhodopsin primary photoproduct at low temperature. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 808, 140-148.	0.5	43
122	PRIMARY PHOTOCHEMISTRY OF BACTERIORHODOPSIN: COMPARISON OF FOURIER TRANSFORM INFRARED DIFFERENCE SPECTRA WITH RESONANCE RAMAN SPECTRA . Photochemistry and Photobiology, 1984, 40, 675-679.	1.3	56
123	Fourier transform infrared evidence for Schiff base alteration in the first step of the bacteriorhodopsin photocycle. Biochemistry, 1984, 23, 6103-6109.	1.2	87
124	Quantitative analysis of resonance Raman spectra of purple membrane from Halobacterium halobium: L550 intermediate. Biochemistry, 1983, 22, 3460-3466.	1.2	38
125	Infrared evidence that the Schiff base of bacteriorhodopsin is protonated: bR570 and K intermediates Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 4045-4049.	3.3	134
126	[76] Kinetic resonance raman spectroscopy of purple membrane using rotating sample. Methods in Enzymology, 1982, 88, 643-648.	0.4	4

#	Article	IF	CITATIONS
127	X-ray diffraction and electron microscope study of phase separation in rod outer segment photoreceptor membrane multilayers. Biophysical Journal, 1982, 39, 241-251.	0.2	47
128	Conformational changes of bacteriorhodopsin detected by Fourier transform infrared difference spectroscopy. Biochemical and Biophysical Research Communications, 1981, 103, 483-489.	1.0	157
129	Incorporation of photoreceptor membrane into a multilamellar film. Biophysical Journal, 1980, 31, 45-52.	0.2	26
130	A Spectroscopic Study of Rhodopsin Alpha-Helix Orientation. Biophysical Journal, 1980, 31, 53-64.	0.2	90
131	Surface-induced lamellar orientation of multilayer membrane arrays. Theoretical analysis and a new method with application to purple membrane fragments. Biophysical Journal, 1980, 31, 65-96.	0.2	151
132	Nonequilibrium linear behavior of biological systems. Existence of enzyme-mediated multidimensional inflection points. Biophysical Journal, 1980, 30, 209-230.	0.2	47
133	Circular dichroism of oriented photoreceptor membrane film. Biochemical and Biophysical Research Communications, 1980, 94, 618-624.	1.0	3
134	Anomalous amide I infrared absorption of purple membrane. Science, 1979, 204, 311-312.	6.0	106
135	Polarized infrared spectroscopy of oriented purple membrane. Biophysical Journal, 1979, 25, 473-487.	0.2	245
136	Raman spectroscopy of uncomplexed valinomycin. 2. Nonpolar and polar solution. Journal of the American Chemical Society, 1977, 99, 2032-2039.	6.6	35
137	Raman spectroscopy of uncomplexed valinomycin. I. The solid state. Journal of the American Chemical Society, 1977, 99, 2024-2032.	6.6	21
138	Opsin structure probed by raman spectroscopy of photoreceptor membranes. Science, 1976, 191, 1176-1178.	6.0	69
139	Models of Ionic Transport in Biological Membranes: Raman Spectroscopy as a Probe of Valinomycin, Gramicidin A′, and Rhodopsin Conformations. American Journal of Clinical Pathology, 1975, 63, 695-713.	0.4	19
140	Raman spectroscopic study of the valinomycin-KSCN complex. Journal of Molecular Biology, 1974, 89, 205-222.	2.0	34
141	THE MOLECULAR ORGANIZATION AND FUNCTION OF BIOLOGICAL MEMBRANES: A POSSIBLE MICROSCOPIC		0