Barton F Haynes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3758753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. Annual Review of Medicine, 2022, 73, 1-16.	12.2	91
2	A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Science Translational Medicine, 2022, 14, eabj7125.	12.4	93
3	Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials. Translational Research, 2022, 242, 38-55.	5.0	41
4	Structural diversity of the SARS-CoV-2 Omicron spike. Molecular Cell, 2022, 82, 2050-2068.e6.	9.7	125
5	Mouse and human antibodies bind HLA-E-leader peptide complexes and enhance NK cell cytotoxicity. Communications Biology, 2022, 5, 271.	4.4	14
6	mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice. Cell Reports, 2022, 38, 110514.	6.4	23
7	D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host and Microbe, 2021, 29, 23-31.e4.	11.0	308
8	Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science, 2021, 371, .	12.6	49
9	D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction. Cell Reports, 2021, 34, 108630.	6.4	263
10	HIV mRNA Vaccines—Progress and Future Paths. Vaccines, 2021, 9, 134.	4.4	45
11	Vaccine Innovations — Past and Future. New England Journal of Medicine, 2021, 384, 393-396.	27.0	23
12	A New Vaccine to Battle Covid-19. New England Journal of Medicine, 2021, 384, 470-471.	27.0	50
13	Protein/AS01B vaccination elicits stronger, more Th2-skewed antigen-specific human T follicular helper cell responses than heterologous viral vectors. Cell Reports Medicine, 2021, 2, 100207.	6.5	26
14	Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates. Npj Vaccines, 2021, 6, 50.	6.0	46
15	SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host and Microbe, 2021, 29, 529-539.e3.	11.0	324
16	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	27.8	199
17	Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells. Cell Reports, 2021, 35, 109179.	6.4	63
18	Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell, 2021, 184, 2955-2972.e25.	28.9	57

#	Article	IF	CITATIONS
19	New SHIVs and Improved Design Strategy for Modeling HIV-1 Transmission, Immunopathogenesis, Prevention, and Cure. Journal of Virology, 2021, 95, .	3.4	21
20	Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Reports Medicine, 2021, 2, 100313.	6.5	56
21	Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated non-human primates. PLoS Pathogens, 2021, 17, e1009624.	4.7	2
22	SARS-CoV-2 and HIV-1 — a tale of two vaccines. Nature Reviews Immunology, 2021, 21, 543-544.	22.7	7
23	HIV envelope antigen valency on peptide nanofibers modulates antibody magnitude and binding breadth. Scientific Reports, 2021, 11, 14494.	3.3	6
24	Rapid selection of HIV envelopes that bind to neutralizing antibody B cell lineage members with functional improbable mutations. Cell Reports, 2021, 36, 109561.	6.4	9
25	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	28.9	228
26	Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science, 2021, 373, 991-998.	12.6	144
27	The transcription factor CREB1 is a mechanistic driver of immunogenicity and reduced HIV-1 acquisition following ALVAC vaccination. Nature Immunology, 2021, 22, 1294-1305.	14.5	20
28	Cold sensitivity of the SARS-CoV-2 spike ectodomain. Nature Structural and Molecular Biology, 2021, 28, 128-131.	8.2	65
29	Structural basis of glycan276-dependent recognition by HIV-1 broadly neutralizing antibodies. Cell Reports, 2021, 37, 109922.	6.4	5
30	Selection of HIV Envelope strains for standardized assessments of vaccine-elicited antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. Journal of Virology, 2021, , JVI0164321.	3.4	7
31	Strategies for eliciting multiple lineages of broadly neutralizing antibodies to HIV by vaccination. Current Opinion in Virology, 2021, 51, 172-178.	5.4	13
32	Strategies for induction of HIVâ€1 envelopeâ€reactive broadly neutralizing antibodies. Journal of the International AIDS Society, 2021, 24, e25831.	3.0	19
33	Preexisting memory CD4+ T cells contribute to the primary response in an HIV-1 vaccine trial. Journal of Clinical Investigation, 2021, 131, .	8.2	6
34	Prospects for a safe COVID-19 vaccine. Science Translational Medicine, 2020, 12, .	12.4	204
35	Immunogenicity, safety, and efficacy of sequential immunizations with an SIV-based IDLV expressing CH505 Envs. Npj Vaccines, 2020, 5, 107.	6.0	11
36	Recognition Patterns of the C1/C2 Epitopes Involved in Fc-Mediated Response in HIV-1 Natural Infection and the RV114 Vaccine Trial. MBio, 2020, 11, .	4.1	6

#	Article	IF	CITATIONS
37	A Single Immunization with Nucleoside-Modified mRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice. Immunity, 2020, 53, 724-732.e7.	14.3	267
38	Antigenicity and Immunogenicity of HIV-1 Envelope Trimers Complexed to a Small-Molecule Viral Entry Inhibitor. Journal of Virology, 2020, 94, .	3.4	5
39	How Does HIV Env Structure Informs Vaccine Design?. Microscopy and Microanalysis, 2020, 26, 574-575.	0.4	0
40	Therapeutic vaccination with IDLV-SIV-Gag results in durable viremia control in chronically SHIV-infected macaques. Npj Vaccines, 2020, 5, 36.	6.0	12
41	Co-immunization of DNA and Protein in the Same Anatomical Sites Induces Superior Protective Immune Responses against SHIV Challenge. Cell Reports, 2020, 31, 107624.	6.4	43
42	Maternal Broadly Neutralizing Antibodies Can Select for Neutralization-Resistant, Infant-Transmitted/Founder HIV Variants. MBio, 2020, 11, .	4.1	25
43	Pandemic Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19. Cell, 2020, 181, 1458-1463.	28.9	92
44	Conditional antibody expression to avoid central B cell deletion in humanized HIV-1 vaccine mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7929-7940.	7.1	10
45	Subordinate Effect of -21M HLA-B Dimorphism on NK Cell Repertoire Diversity and Function in HIV-1 Infected Individuals of African Origin. Frontiers in Immunology, 2020, 11, 156.	4.8	6
46	Induction of Neutralizing Responses against Autologous Virus in Maternal HIV Vaccine Trials. MSphere, 2020, 5, .	2.9	2
47	Immune checkpoint modulation enhances HIV-1 antibody induction. Nature Communications, 2020, 11, 948.	12.8	27
48	Neonatal Rhesus Macaques Have Distinct Immune Cell Transcriptional Profiles following HIV Envelope Immunization. Cell Reports, 2020, 30, 1553-1569.e6.	6.4	21
49	Disruption of the HIV-1 Envelope allosteric network blocks CD4-induced rearrangements. Nature Communications, 2020, 11, 520.	12.8	42
50	Aberrant B cell repertoire selection associated with HIV neutralizing antibody breadth. Nature Immunology, 2020, 21, 199-209.	14.5	68
51	HIV vaccine delayed boosting increases Env variable region 2–specific antibody effector functions. JCI Insight, 2020, 5, .	5.0	18
52	Improved killing of HIV-infected cells using three neutralizing and non-neutralizing antibodies. Journal of Clinical Investigation, 2020, 130, 5157-5170.	8.2	22
53	-Deficient Mice Exhibit Cytokine-Related Transcriptomic Signatures. ImmunoHorizons, 2020, 4, 713-728.	1.8	0
54	HLA class II-Restricted CD8+ T cells in HIV-1 Virus Controllers. Scientific Reports, 2019, 9, 10165.	3.3	7

#	Article	IF	CITATIONS
55	Parallel Induction of CH505 B Cell Ontogeny-Guided Neutralizing Antibodies and tHIVconsvX Conserved Mosaic-Specific T Cells against HIV-1. Molecular Therapy - Methods and Clinical Development, 2019, 14, 148-160.	4.1	4
56	Difficult-to-neutralize global HIV-1 isolates are neutralized by antibodies targeting open envelope conformations. Nature Communications, 2019, 10, 2898.	12.8	35
57	Multiple roles for HIV broadly neutralizing antibodies. Science Translational Medicine, 2019, 11, .	12.4	144
58	Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008026.	4.7	56
59	Star nanoparticles delivering HIV-1 peptide minimal immunogens elicit near-native envelope antibody responses in nonhuman primates. PLoS Biology, 2019, 17, e3000328.	5.6	33
60	The Chimpanzee SIV Envelope Trimer: Structure and Deployment as an HIV Vaccine Template. Cell Reports, 2019, 27, 2426-2441.e6.	6.4	35
61	Consistent elicitation of cross-clade HIV-neutralizing responses achieved in guinea pigs after fusion peptide priming by repetitive envelope trimer boosting. PLoS ONE, 2019, 14, e0215163.	2.5	41
62	Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Immunity, 2019, 50, 677-691.e13.	14.3	77
63	Characterization of HIV-1 Nucleoside-Modified mRNA Vaccines in Rabbits and Rhesus Macaques. Molecular Therapy - Nucleic Acids, 2019, 15, 36-47.	5.1	79
64	Selection of immunoglobulin elbow region mutations impacts interdomain conformational flexibility in HIV-1 broadly neutralizing antibodies. Nature Communications, 2019, 10, 654.	12.8	34
65	Contribution of proteasome-catalyzed peptide <i>cis</i> -splicing to viral targeting by CD8 ⁺ T cells in HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24748-24759.	7.1	48
66	Cross-Reactivity to Kynureninase Tolerizes B Cells That Express the HIV-1 Broadly Neutralizing Antibody 2F5. Journal of Immunology, 2019, 203, 3268-3281.	0.8	12
67	Cooperation between somatic mutation and germline-encoded residues enables antibody recognition of HIV-1 envelope glycans. PLoS Pathogens, 2019, 15, e1008165.	4.7	5
68	Targeted selection of HIV-specific antibody mutations by engineering B cell maturation. Science, 2019, 366, .	12.6	118
69	HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host and Microbe, 2019, 25, 59-72.e8.	11.0	124
70	Self-tolerance curtails the B cell repertoire to microbial epitopes. JCI Insight, 2019, 4, .	5.0	32
71	Vaccine induction of antibodies and tissue-resident CD8+ T cells enhances protection against mucosal SHIV-infection in young macaques. JCI Insight, 2019, 4, .	5.0	50
72	HIV-1 Envelope Glycoproteins from Diverse Clades Differentiate Antibody Responses and Durability among Vaccinees. Journal of Virology, 2018, 92, .	3.4	46

#	Article	IF	CITATIONS
73	Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates. Journal of Virology, 2018, 92, .	3.4	10
74	HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis. Journal of Virology, 2018, 92, .	3.4	45
75	HIV envelope V3 region mimic embodies key features of a broadly neutralizing antibody lineage epitope. Nature Communications, 2018, 9, 1111.	12.8	30
76	What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029397.	5.5	10
77	Combination Adenovirus and Protein Vaccines Prevent Infection or Reduce Viral Burden after Heterologous Clade C Simian-Human Immunodeficiency Virus Mucosal Challenge. Journal of Virology, 2018, 92, .	3.4	24
78	IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells. Communications Biology, 2018, 1, 134.	4.4	26
79	HIV-1 envelope glycan modifications that permit neutralization by germline-reverted VRC01-class broadly neutralizing antibodies. PLoS Pathogens, 2018, 14, e1007431.	4.7	36
80	Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. Immunity, 2018, 49, 1162-1174.e8.	14.3	61
81	RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell, 2018, 175, 387-399.e17.	28.9	78
82	Single-Cell Analysis of Quiescent HIV Infection Reveals Host Transcriptional Profiles that Regulate Proviral Latency. Cell Reports, 2018, 25, 107-117.e3.	6.4	79
83	Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines Neutralization Breadth. Cell Reports, 2018, 25, 893-908.e7.	6.4	91
84	Route of immunization defines multiple mechanisms of vaccine-mediated protection against SIV. Nature Medicine, 2018, 24, 1590-1598.	30.7	129
85	Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection. Nature Communications, 2018, 9, 1928.	12.8	83
86	Glycoengineering HIV-1 Env creates †̃supercharged' and †̃hybrid' glycans to increase neutralizing antibody potency, breadth and saturation. PLoS Pathogens, 2018, 14, e1007024.	4.7	22
87	Correlation Between Anti-gp41 Antibodies and Virus Infectivity Decay During Primary HIV-1 Infection. Frontiers in Microbiology, 2018, 9, 1326.	3.5	13
88	Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. Journal of Experimental Medicine, 2018, 215, 1571-1588.	8.5	366
89	Functional Relevance of Improbable Antibody Mutations for HIV Broadly Neutralizing Antibody Development. Cell Host and Microbe, 2018, 23, 759-765.e6.	11.0	98
90	A CD4-mimetic compound enhances vaccine efficacy against stringent immunodeficiency virus challenge. Nature Communications, 2018, 9, 2363.	12.8	46

#	Article	IF	CITATIONS
91	Systemic administration of an HIV-1 broadly neutralizing dimeric IgA yields mucosal secretory IgA and virus neutralization. Mucosal Immunology, 2017, 10, 228-237.	6.0	34
92	Resistance to type 1 interferons is a major determinant of HIV-1 transmission fitness. Proceedings of the United States of America, 2017, 114, E590-E599.	7.1	137
93	The quest for an antibodyâ€based <scp>HIV</scp> vaccine. Immunological Reviews, 2017, 275, 5-10.	6.0	91
94	Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543, 248-251.	27.8	699
95	Antibodyâ€virus coâ€evolution in <scp>HIV</scp> infection: paths for <scp>HIV</scp> vaccine development. Immunological Reviews, 2017, 275, 145-160.	6.0	160
96	Host controls of <scp>HIV</scp> broadly neutralizing antibody development. Immunological Reviews, 2017, 275, 79-88.	6.0	65
97	Immunodominance of Antibody Recognition of the HIV Envelope V2 Region in Ig-Humanized Mice. Journal of Immunology, 2017, 198, 1047-1055.	0.8	7
98	Influence of the Envelope gp120 Phe 43 Cavity on HIV-1 Sensitivity to Antibody-Dependent Cell-Mediated Cytotoxicity Responses. Journal of Virology, 2017, 91, .	3.4	52
99	Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers. Journal of Virology, 2017, 91, .	3.4	73
100	BCR and Endosomal TLR Signals Synergize to Increase AID Expression and Establish Central B Cell Tolerance. Cell Reports, 2017, 18, 1627-1635.	6.4	49
101	Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Science Immunology, 2017, 2, .	11.9	119
102	Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Reports, 2017, 18, 2175-2188.	6.4	69
103	Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. Cell Reports, 2017, 19, 719-732.	6.4	160
104	Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nature Communications, 2017, 8, 15711.	12.8	137
105	Staged induction of HIV-1 glycan–dependent broadly neutralizing antibodies. Science Translational Medicine, 2017, 9, .	12.4	212
106	Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Science Translational Medicine, 2017, 9, .	12.4	81
107	Developing an HIV vaccine. Science, 2017, 355, 1129-1130.	12.6	89
108	HIV-1 Consensus Envelope-Induced Broadly Binding Antibodies. AIDS Research and Human Retroviruses, 2017, 33, 859-868.	1.1	18

#	Article	IF	CITATIONS
109	HIV-1 gp120 and Modified Vaccinia Virus Ankara (MVA) gp140 Boost Immunogens Increase Immunogenicity of a DNA/MVA HIV-1 Vaccine. Journal of Virology, 2017, 91, .	3.4	23
110	Development of a recombinant yellow fever vector expressing a HIV clade C founder envelope gp120. Journal of Virological Methods, 2017, 249, 85-93.	2.1	2
111	Monoclonal Antibodies, Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HVEM Binding Domain of Herpes Simplex Virus (HSV) Clycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice from Ocular Challenge with HSV-1. Journal of Virology, 2017, 91.	3.4	19
112	Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8614-8619.	7.1	42
113	HIV DNA-Adenovirus Multiclade Envelope Vaccine Induces gp41 Antibody Immunodominance in Rhesus Macaques. Journal of Virology, 2017, 91, .	3.4	20
114	Short Communication: Small-Molecule CD4 Mimetics Sensitize HIV-1-Infected Cells to Antibody-Dependent Cellular Cytotoxicity by Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Nonhuman Primates. AIDS Research and Human Retroviruses, 2017, 33, 428-431.	1.1	26
115	Broadly Neutralizing Antibodies Display Potential for Prevention of HIV-1 Infection of Mucosal Tissue Superior to That of Nonneutralizing Antibodies. Journal of Virology, 2017, 91, .	3.4	29
116	Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models. Cell Reports, 2017, 21, 3681-3690.	6.4	97
117	Structure and Diversity of the Rhesus Macaque Immunoglobulin Loci through Multiple De Novo Genome Assemblies. Frontiers in Immunology, 2017, 8, 1407.	4.8	66
118	Antibody to HSV gD peptide induced by vaccination does not protect against HSV-2 infection in HSV-2 seronegative women. PLoS ONE, 2017, 12, e0176428.	2.5	12
119	Initiation of HIV neutralizing B cell lineages with sequential envelope immunizations. Nature Communications, 2017, 8, 1732.	12.8	76
120	Computational analysis of antibody dynamics identifies recent HIV-1 infection. JCI Insight, 2017, 2, .	5.0	11
121	Immunization with an SIV-based IDLV Expressing HIV-1 Env 1086 Clade C Elicits Durable Humoral and Cellular Responses in Rhesus Macaques. Molecular Therapy, 2016, 24, 2021-2032.	8.2	41
122	Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection. EBioMedicine, 2016, 14, 97-111.	6.1	47
123	HIV-1 gp140 epitope recognition is influenced by immunoglobulin DH gene segment sequence. Immunogenetics, 2016, 68, 145-155.	2.4	18
124	Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design. Journal of Virology, 2016, 90, 5899-5914.	3.4	62
125	A Therapeutic Antibody for Cancer, Derived from Single Human B Cells. Cell Reports, 2016, 15, 1505-1513.	6.4	43
126	Induction of HIV Neutralizing Antibody Lineages in Mice with Diverse Precursor Repertoires. Cell, 2016, 166, 1471-1484.e18.	28.9	198

#	Article	IF	CITATIONS
127	Novel Monoclonal Antibodies for Studies of Human and Rhesus Macaque Secretory Component and Human J-Chain. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2016, 35, 217-226.	1.6	9
128	HIV-1 Envelope Mimicry of Host Enzyme Kynureninase Does Not Disrupt Tryptophan Metabolism. Journal of Immunology, 2016, 197, 4663-4673.	0.8	6
129	Latency reversal and viral clearance to cure HIV-1. Science, 2016, 353, aaf6517.	12.6	194
130	Initiation of immune tolerance–controlled HIV gp41 neutralizing B cell lineages. Science Translational Medicine, 2016, 8, 336ra62.	12.4	86
131	Immune perturbations in HIV-1–infected individuals who make broadly neutralizing antibodies. Science Immunology, 2016, 1, aag0851.	11.9	120
132	Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain. Nature Medicine, 2016, 22, 1465-1469.	30.7	104
133	Amino Acid Changes in the HIV-1 gp41 Membrane Proximal Region Control Virus Neutralization Sensitivity. EBioMedicine, 2016, 12, 196-207.	6.1	34
134	Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3413-22.	7.1	170
135	Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds. Journal of Virology, 2016, 90, 5031-5046.	3.4	38
136	HIV-Host Interactions: Implications for Vaccine Design. Cell Host and Microbe, 2016, 19, 292-303.	11.0	143
137	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	28.9	305
138	Combined HIV-1 Envelope Systemic and Mucosal Immunization of Lactating Rhesus Monkeys Induces a Robust Immunoglobulin A Isotype B Cell Response in Breast Milk. Journal of Virology, 2016, 90, 4951-4965.	3.4	23
139	Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nature Structural and Molecular Biology, 2016, 23, 81-90.	8.2	162
140	Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site. Cell Reports, 2016, 14, 43-54.	6.4	45
141	New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency. Journal of Virology, 2016, 90, 76-91.	3.4	205
142	Generation and Characterization of a Bivalent HIV-1 Subtype C gp120 Protein Boost for Proof-of-Concept HIV Vaccine Efficacy Trials in Southern Africa. PLoS ONE, 2016, 11, e0157391.	2.5	33
143	Developmental Pathway of the MPER-Directed HIV-1-Neutralizing Antibody 10E8. PLoS ONE, 2016, 11, e0157409.	2.5	44
144	Immunogenic Stimulus for Germline Precursors of Antibodies that Engage the Influenza Hemagglutinin Receptor-Binding Site. Cell Reports, 2015, 13, 2842-2850.	6.4	67

#	Article	IF	CITATIONS
145	Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) Identifies Immune-Selected HIV Variants. Viruses, 2015, 7, 5443-5475.	3.3	26
146	Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques. PLoS Pathogens, 2015, 11, e1005042.	4.7	145
147	New approaches to HIV vaccine development. Current Opinion in Immunology, 2015, 35, 39-47.	5.5	77
148	Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.	28.9	305
149	Inhibitory Effect of Individual or Combinations of Broadly Neutralizing Antibodies and Antiviral Reagents against Cell-Free and Cell-to-Cell HIV-1 Transmission. Journal of Virology, 2015, 89, 7813-7828.	3.4	35
150	Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost. Journal of Virology, 2015, 89, 6462-6480.	3.4	40
151	Diversion of HIV-1 vaccine–induced immunity by gp41-microbiota cross-reactive antibodies. Science, 2015, 349, aab1253.	12.6	191
152	Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors. Vaccine Journal, 2015, 22, 726-741.	3.1	16
153	Broadly Neutralizing Antibodies and the Development of Vaccines. JAMA - Journal of the American Medical Association, 2015, 313, 2419.	7.4	15
154	Viral Receptor-Binding Site Antibodies with Diverse Germline Origins. Cell, 2015, 161, 1026-1034.	28.9	151
155	CD4 mimetics sensitize HIV-1-infected cells to ADCC. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2687-94.	7.1	118
156	Designing synthetic vaccines for HIV. Expert Review of Vaccines, 2015, 14, 815-831.	4.4	28
157	Eliminating antibody polyreactivity through addition of <i>N</i> â€linked glycosylation. Protein Science, 2015, 24, 1019-1030.	7.6	11
158	Immune correlates of vaccine protection against HIV-1 acquisition. Science Translational Medicine, 2015, 7, 310rv7.	12.4	179
159	Structural analysis of the unmutated ancestor of the HIV-1 envelope V2 region antibody CH58 isolated from an RV144 vaccine efficacy trial vaccinee. EBioMedicine, 2015, 2, 713-722.	6.1	13
160	Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses. Cell Host and Microbe, 2015, 18, 354-362.	11.0	66
161	Potent Immune Responses in Rhesus Macaques Induced by Nonviral Delivery of a Self-amplifying RNA Vaccine Expressing HIV Type 1 Envelope With a Cationic Nanoemulsion. Journal of Infectious Diseases, 2015, 211, 947-955.	4.0	140
162	Infection of monkeys by simian-human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes. Virology, 2015, 475, 37-45.	2.4	25

#	Article	IF	CITATIONS
163	Polyreactivity and Autoreactivity among HIV-1 Antibodies. Journal of Virology, 2015, 89, 784-798.	3.4	154
164	Improving Mycobacterium bovis Bacillus Calmette-Guèrin as a Vaccine Delivery Vector for Viral Antigens by Incorporation of Glycolipid Activators of NKT Cells. PLoS ONE, 2014, 9, e108383.	2.5	24
165	Immune System Regulation in the Induction of Broadly Neutralizing HIV-1 Antibodies. Vaccines, 2014, 2, 1-14.	4.4	25
166	Progress in HIV-1 vaccine development. Journal of Allergy and Clinical Immunology, 2014, 134, 3-10.	2.9	62
167	Aggregate complexes of HIV-1 induced by multimeric antibodies. Retrovirology, 2014, 11, 78.	2.0	26
168	Preexisting compensatory amino acids compromise fitness costs of a HIV-1ÂT cell escape mutation. Retrovirology, 2014, 11, 101.	2.0	12
169	Recombinant Mycobacterium bovis Bacillus Calmette-Guérin Vectors Prime for Strong Cellular Responses to Simian Immunodeficiency Virus Gag in Rhesus Macaques. Vaccine Journal, 2014, 21, 1385-1395.	3.1	13
170	HIV-1 Envelope gp41 Broadly Neutralizing Antibodies: Hurdles for Vaccine Development. PLoS Pathogens, 2014, 10, e1004073.	4.7	26
171	Reconstructing a B-Cell Clonal Lineage. II. Mutation, Selection, and Affinity Maturation. Frontiers in Immunology, 2014, 5, 170.	4.8	104
172	Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10275-10280.	7.1	73
173	HIV-1 Vaccine-Induced C1 and V2 Env-Specific Antibodies Synergize for Increased Antiviral Activities. Journal of Virology, 2014, 88, 7715-7726.	3.4	169
174	Antibody Light-Chain-Restricted Recognition of the Site of Immune Pressure in the RV144 HIV-1 Vaccine Trial Is Phylogenetically Conserved. Immunity, 2014, 41, 909-918.	14.3	65
175	Induction of Antibodies with Long Variable Heavy Third Complementarity Determining Regions by Repetitive Boosting with AIDSVAX® B/E in RV144 Vaccinees. AIDS Research and Human Retroviruses, 2014, 30, A36-A36.	1.1	1
176	IGHV1-69 B Cell Chronic Lymphocytic Leukemia Antibodies Cross-React with HIV-1 and Hepatitis C Virus Antigens as Well as Intestinal Commensal Bacteria. PLoS ONE, 2014, 9, e90725.	2.5	37
177	Low Multiplicity of HIV-1 Infection and No Vaccine Enhancement in VAX003 Injection Drug Users. Open Forum Infectious Diseases, 2014, 1, ofu056.	0.9	19
178	Gene Deletions in Mycobacterium bovis BCG Stimulate Increased CD8 ⁺ T Cell Responses. Infection and Immunity, 2014, 82, 5317-5326.	2.2	13
179	Cross-reactive potential of human T-lymphocyte responses in HIV-1 infection. Vaccine, 2014, 32, 3995-4000.	3.8	4
180	Host Controls of HIV Neutralizing Antibodies. Science, 2014, 344, 588-589.	12.6	63

#	Article	IF	CITATIONS
181	Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody <i>In Vitro</i> Improves Protection against Lentiviral Infection <i>In Vivo</i> . Journal of Virology, 2014, 88, 12669-12682.	3.4	248
182	Immunoglobulin Gene Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive Neutralizing Antibodies. Cell Host and Microbe, 2014, 16, 304-313.	11.0	137
183	Human Responses to Influenza Vaccination Show Seroconversion Signatures and Convergent Antibody Rearrangements. Cell Host and Microbe, 2014, 16, 105-114.	11.0	246
184	Vaccine-Induced HIV-1 Envelope gp120 Constant Region 1-Specific Antibodies Expose a CD4-Inducible Epitope and Block the Interaction of HIV-1 gp140 with Galactosylceramide. Journal of Virology, 2014, 88, 9406-9417.	3.4	16
185	CD4-Mimetic Small Molecules Sensitize Human Immunodeficiency Virus to Vaccine-Elicited Antibodies. Journal of Virology, 2014, 88, 6542-6555.	3.4	55
186	HIV-1 Envelope gp41 Antibodies Can Originate from Terminal Ileum B Cells that Share Cross-Reactivity with Commensal Bacteria. Cell Host and Microbe, 2014, 16, 215-226.	11.0	105
187	Cooperation of B Cell Lineages in Induction of HIV-1-Broadly Neutralizing Antibodies. Cell, 2014, 158, 481-491.	28.9	266
188	Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.	27.8	702
189	Lessons from babies: inducing HIV-1 broadly neutralizing antibodies. Nature Medicine, 2014, 20, 583-585.	30.7	7
190	Redemption of autoreactive B cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9022-9023.	7.1	11
191	The Center for HIV/AIDS Vaccine Immunology (CHAVI) multi-site quality assurance program for cryopreserved Human Peripheral Blood Mononuclear Cells. Journal of Immunological Methods, 2014, 409, 21-30.	1.4	19
192	Chemical Synthesis of Highly Congested gp120 V1V2 <i>N</i> -Glycopeptide Antigens for Potential HIV-1-Directed Vaccines. Journal of the American Chemical Society, 2013, 135, 13113-13120.	13.7	60
193	Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies. Immunity, 2013, 39, 245-258.	14.3	332
194	<scp>HIV</scp> â€l neutralizing antibodies: understanding nature's pathways. Immunological Reviews, 2013, 254, 225-244.	6.0	442
195	Common Tolerance Mechanisms, but Distinct Cross-Reactivities Associated with gp41 and Lipids, Limit Production of HIV-1 Broad Neutralizing Antibodies 2F5 and 4E10. Journal of Immunology, 2013, 191, 1260-1275.	0.8	77
196	Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature, 2013, 496, 469-476.	27.8	961
197	Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity, 2013, 38, 176-186.	14.3	374
198	Progress in HIV-1 vaccine development. Current Opinion in HIV and AIDS, 2013, 8, 1.	3.8	45

12

#	Article	IF	CITATIONS
199	Recognition of synthetic glycopeptides by HIV-1 broadly neutralizing antibodies and their unmutated ancestors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18214-18219.	7.1	73
200	B-cell–lineage immunogen design in vaccine development with HIV-1 as a case study. Nature Biotechnology, 2012, 30, 423-433.	17.5	432
201	Two Distinct Broadly Neutralizing Antibody Specificities of Different Clonal Lineages in a Single HIV-1-Infected Donor: Implications for Vaccine Design. Journal of Virology, 2012, 86, 4688-4692.	3.4	159
202	Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial. New England Journal of Medicine, 2012, 366, 1275-1286.	27.0	1,699
203	Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors. Journal of Virology, 2011, 85, 9998-10009.	3.4	393
204	Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. Journal of Experimental Medicine, 2011, 208, 2237-2249.	8.5	198
205	B cell responses to HIV-1 infection and vaccination: pathways to preventing infection. Trends in Molecular Medicine, 2011, 17, 108-116.	6.7	37
206	Isolation of a Monoclonal Antibody That Targets the Alpha-2 Helix of gp120 and Represents the Initial Autologous Neutralizing-Antibody Response in an HIV-1 Subtype C-Infected Individual. Journal of Virology, 2011, 85, 7719-7729.	3.4	54
207	Isolation of a Human Anti-HIV gp41 Membrane Proximal Region Neutralizing Antibody by Antigen-Specific Single B Cell Sorting. PLoS ONE, 2011, 6, e23532.	2.5	137
208	Is developing an HIV-1 vaccine possible?. Current Opinion in HIV and AIDS, 2010, 5, 362-367.	3.8	28
209	HIV-1 autoreactive antibodies: are they good or bad for HIV-1 prevention?. Nature Structural and Molecular Biology, 2010, 17, 543-545.	8.2	18
210	Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 181-186.	7.1	172
211	Genetic Signatures in the Envelope Glycoproteins of HIV-1 that Associate with Broadly Neutralizing Antibodies. PLoS Computational Biology, 2010, 6, e1000955.	3.2	78
212	High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. Journal of Virological Methods, 2009, 158, 171-179.	2.1	235
213	Glycosylation Site-Specific Analysis of Clade C HIV-1 Envelope Proteins. Journal of Proteome Research, 2009, 8, 4231-4242.	3.7	87
214	Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. Journal of Experimental Medicine, 2009, 206, 1273-1289.	8.5	684
215	Comparison of HPLC/ESI-FTICR MS versus MALDI-TOF/TOF MS for glycopeptide analysis of a highly glycosylated HIV envelope glycoprotein. Journal of the American Society for Mass Spectrometry, 2008, 19, 1209-1220.	2.8	69
216	Critical issues in mucosal immunity for HIV-1 vaccine development. Journal of Allergy and Clinical Immunology, 2008, 122, 3-9.	2.9	68

#	Article	IF	CITATIONS
217	Initial B-Cell Responses to Transmitted Human Immunodeficiency Virus Type 1: Virion-Binding Immunoglobulin M (IgM) and IgG Antibodies Followed by Plasma Anti-gp41 Antibodies with Ineffective Control of Initial Viremia. Journal of Virology, 2008, 82, 12449-12463.	3.4	548
218	HIV-1 Hides an Achilles' Heel in Virion Lipids. Immunity, 2008, 28, 10-12.	14.3	26
219	Glycosylation Site-Specific Analysis of HIV Envelope Proteins (JR-FL and CON-S) Reveals Major Differences in Glycosylation Site Occupancy, Glycoform Profiles, and Antigenic Epitopes' Accessibility. Journal of Proteome Research, 2008, 7, 1660-1674.	3.7	133
220	Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7552-7557.	7.1	1,708
221	High throughput functional analysis of HIV-1 env genes without cloning. Journal of Virological Methods, 2007, 143, 104-111.	2.1	45
222	Aiming to induce broadly reactive neutralizing antibody responses with HIV-1 vaccine candidates. Expert Review of Vaccines, 2006, 5, 347-363.	4.4	90
223	Antibody polyspecificity and neutralization of HIV-1: A hypothesis. Human Antibodies, 2006, 14, 59-67.	1.5	142
224	Analysis of HIV-1 subtype B third variable region peptide motifs for induction of neutralizing antibodies against HIV-1 primary isolates. Virology, 2006, 345, 44-55.	2.4	37
225	Aiming to induce broadly reactive neutralizing antibody responses with HIV-1 vaccine candidates. Expert Review of Vaccines, 2006, 5, 579-595.	4.4	87
226	Cardiolipin Polyspecific Autoreactivity in Two Broadly Neutralizing HIV-1 Antibodies. Science, 2005, 308, 1906-1908.	12.6	704
227	Antibody polyspecificity and neutralization of HIV-1: a hypothesis. Human Antibodies, 2005, 14, 59-67.	1.5	109
228	Thymopoiesis in HIV-Infected Adults after Highly Active Antiretroviral Therapy. AIDS Research and Human Retroviruses, 2001, 17, 1635-1643.	1.1	45
229	Can the thymus win the battle against drug-resistant HIV?. Nature Medicine, 2001, 7, 661-662.	30.7	1
230	The Human Thymus During Aging. Immunologic Research, 2000, 22, 253-262.	2.9	133
231	HIV Vaccine Development at Duke University Medical Center. Immunologic Research, 2000, 22, 263-270.	2.9	0
232	Cytokines and adhesion molecules in the pathogenesis of vasculitis. Current Rheumatology Reports, 2000, 2, 402-410.	4.7	42
233	The Role of the Thymus in Immune Reconstitution in Aging, Bone Marrow Transplantation, and HIV-1 Infection. Annual Review of Immunology, 2000, 18, 529-560.	21.8	430
234	Changes in thymic function with age and during the treatment of HIV infection. Nature, 1998, 396, 690-695	27.8	1,778

14

#	Article	IF	CITATIONS
235	The human thymus. Immunologic Research, 1998, 18, 61-78.	2.9	62
236	The human thymus. Immunologic Research, 1998, 18, 175-192.	2.9	64
237	Normalization of the peripheral blood T cell receptor V beta repertoire after cultured postnatal human thymic transplantation in DiGeorge syndrome. Journal of Clinical Immunology, 1997, 17, 167-175.	3.8	26
238	Conformational Preferences of a Chimeric Peptide HIV-1 Immunogen from the C4â^'V3 Domains of gp120 Envelope Protein of HIV-1 CANOA Based on Solution NMR:  Comparison to a Related Immunogenic Peptide from HIV-1 RF. Biochemistry, 1996, 35, 5158-5165.	2.5	34
239	The mouse CD7 gene: identification of a new element common to the human CD7 and mouse Thy-1 promoters. Immunogenetics, 1996, 44, 108-114.	2.4	1
240	The mouseCD7 gene: Identification of a new element common to the humanCD7 and mouseThy-1 promoters. Immunogenetics, 1996, 44, 108-114.	2.4	6
241	Response : HIV Viral Load Assay. Science, 1996, 271, 1043-1043.	12.6	0
242	<i>Response</i> : HIV Viral Load Assay. Science, 1996, 271, 1043-1043.	12.6	1
243	<i>Response</i> : HIV Quasispecies and Resampling. Science, 1996, 273, 416-416.	12.6	0
244	Distribution of CD44 variant isoforms in human skin: differential expression in components of benign and malignant epithelia. Journal of Cutaneous Pathology, 1995, 22, 536-545.	1.3	18
245	Increase in TCR?? T lymphocytes in synovia from rheumatoid arthritis patients with active synovitis. Journal of Clinical Immunology, 1992, 12, 130-138.	3.8	33
246	In vivo models of human lymphopoiesis and autoimmunity in severe combined immune deficient mice. Journal of Clinical Immunology, 1992, 12, 311-324.	3.8	18
247	Measurement of an adhesion molecule as an indicator of inflammatory disease activity: Upâ€regulation of the receptor for hyaluronate (CD44) in rheumatoid arthritis. Arthritis and Rheumatism, 1991, 34, 1434-1443.	6.7	168
248	Immunohistologic analysis of the distribution of cell adhesion molecules within the inflammatory synovial microenvironment. Arthritis and Rheumatism, 1989, 32, 22-30.	6.7	186
249	Synovial microenvironment-t cell interactions. Arthritis and Rheumatism, 1988, 31, 947-955.	6.7	57
250	Ontogeny of the human thymus during fetal development. Journal of Clinical Immunology, 1987, 7, 81-97.	3.8	141
251	Human Erythrocyte Antigens. Vox Sanguinis, 1987, 52, 236-243.	1.5	50
252	Rheumatoid arthritis and sterile corneal ulceration. Arthritis and Rheumatism, 1984, 27, 606-614.	6.7	18

#	Article	IF	CITATIONS
253	Leukemia-associated arthritis: identification of leukemic cells in synovial fluid using monoclonal and polyclonal antibodies. Arthritis and Rheumatism, 1984, 27, 1306-1308.	6.7	34
254	Analysis of FcÎ ³ receptors on human peripheral blood leukocytes by flow microfluorometry. I. Receptor distributions on monocytes, TÎ ³ cells and cells labeled with the 3A1 anti-T cell monoclonal antibody. European Journal of Immunology, 1982, 12, 474-479.	2.9	23
255	Human T Lymphocyte Antigens as Defined by Monoclonal Antibodies. Immunological Reviews, 1981, 57, 127-161.	6.0	208
256	ÂÂÂÂRapid Selection of HIV Envelopes that Bind to Neutralizing Antibody B Cell Lineage Members with Functional Improbable Mutations. SSRN Electronic Journal, 0, , .	0.4	1