
Stefan Radtke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3756503/publications.pdf Version: 2024-02-01

STEEAN PADTKE

#	Article	IF	CITATIONS
1	Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Translational Medicine, 2015, 4, 1131-1143.	3.3	584
2	Mesenchymal Stromal Cell-Derived Extracellular Vesicles Protect the Fetal Brain After Hypoxia-Ischemia. Stem Cells Translational Medicine, 2016, 5, 754-763.	3.3	223
3	Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain, Behavior, and Immunity, 2017, 60, 220-232.	4.1	218
4	Revision of the Human Hematopoietic Tree: Granulocyte Subtypes Derive from Distinct Hematopoietic Lineages. Cell Reports, 2013, 3, 1539-1552.	6.4	133
5	A distinct hematopoietic stem cell population for rapid multilineage engraftment in nonhuman primates. Science Translational Medicine, 2017, 9, .	12.4	97
6	Therapeutically relevant engraftment of a CRISPR-Cas9–edited HSC-enriched population with HbF reactivation in nonhuman primates. Science Translational Medicine, 2019, 11, .	12.4	88
7	Human hematopoietic stem cell maintenance and myeloid cell development in next-generation humanized mouse models. Blood Advances, 2019, 3, 268-274.	5.2	50
8	A Nonhuman Primate Transplantation Model to Evaluate Hematopoietic Stem Cell Gene Editing Strategies for β-Hemoglobinopathies. Molecular Therapy - Methods and Clinical Development, 2018, 8, 75-86.	4.1	36
9	New relationships of human hematopoietic lineages facilitate detection of multipotent hematopoietic stem and progenitor cells. Cell Cycle, 2013, 12, 3478-3482.	2.6	35
10	Suppression of luteinizing hormone enhances HSC recovery after hematopoietic injury. Nature Medicine, 2018, 24, 239-246.	30.7	34
11	<scp>CD</scp> 133 allows elaborated discrimination and quantification of haematopoietic progenitor subsets in human haematopoietic stem cell transplants. British Journal of Haematology, 2015, 169, 868-878.	2.5	31
12	Purification of Human CD34+CD90+ HSCs Reduces Target Cell Population and Improves Lentiviral Transduction for Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2020, 18, 679-691.	4.1	28
13	Human mesenchymal and murine stromal cells support human lympho-myeloid progenitor expansion but not maintenance of multipotent haematopoietic stem and progenitor cells. Cell Cycle, 2016, 15, 540-545.	2.6	23
14	Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations. Molecular Therapy - Methods and Clinical Development, 2021, 23, 507-523.	4.1	21
15	Safe and efficient inÂvivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors. Molecular Therapy - Methods and Clinical Development, 2022, 24, 127-141.	4.1	19
16	MISTRG mice support engraftment and assessment of nonhuman primate hematopoietic stem and progenitor cells. Experimental Hematology, 2019, 70, 31-41.e1.	0.4	18
17	Autologous bone marrow mononuclear cell therapy improves symptoms in patients with end-stage peripheral arterial disease and reduces inflammation-associated parameters. Cytotherapy, 2014, 16, 1270-1279.	0.7	17
18	Efficient polymer nanoparticle-mediated delivery of gene editing reagents into human hematopoietic stem and progenitor cells. Molecular Therapy, 2022, 30, 2186-2198.	8.2	16

STEFAN RADTKE

#	Article	IF	CITATIONS
19	The frequency of multipotent CD133+CD45RAâ^'CD34+ hematopoietic stem cells is not increased in fetal liver compared with adult stem cell sources. Experimental Hematology, 2016, 44, 502-507.	0.4	10
20	Autologous, Gene-Modified Hematopoietic Stem and Progenitor Cells Repopulate the Central Nervous System with Distinct Clonal Variants. Stem Cell Reports, 2019, 13, 91-104.	4.8	10
21	<i>In Vivo</i> Gene Therapy for Canine SCID-X1 Using Cocal-Pseudotyped Lentiviral Vector. Human Gene Therapy, 2021, 32, 113-127.	2.7	8
22	Mouse models in hematopoietic stem cell gene therapy and genome editing. Biochemical Pharmacology, 2020, 174, 113692.	4.4	7
23	Sorting Out the Best: Enriching Hematopoietic Stem Cells for Gene Therapy and Editing. Molecular Therapy, 2018, 26, 2328-2329.	8.2	4
24	Human multipotent hematopoietic progenitor cell expansion is neither supported in endothelial and endothelial/mesenchymal co-cultures nor in NSG mice. Scientific Reports, 2019, 9, 12914.	3.3	4
25	AMD3100 redosing fails to repeatedly mobilize hematopoietic stem cells in the nonhuman primate and humanized mouse. Experimental Hematology, 2021, 93, 52-60.e1.	0.4	4
26	Intracellular RNase activity dampens zinc finger nuclease-mediated gene editing in hematopoietic stem and progenitor cells. Molecular Therapy - Methods and Clinical Development, 2022, 24, 30-39.	4.1	4
27	Preparation and Gene Modification of Nonhuman Primate Hematopoietic Stem and Progenitor Cells. Journal of Visualized Experiments, 2019, , .	0.3	3
28	Isolation of a Highly Purified HSC-enriched CD34+CD90+CD45RAâ^' Cell Subset for Allogeneic Transplantation in the Nonhuman Primate Large-animal Model. Transplantation Direct, 2020, 6, e579.	1.6	3
29	Bringing gene therapy to where itâ \in Ms needed. Trends in Molecular Medicine, 2022, , .	6.7	2
30	Allogeneic transplantation of peripheral blood stem cell grafts results in a massive decrease of primitive hematopoietic progenitor frequencies in reconstituted bone marrows. Bone Marrow Transplantation, 2020, 55, 100-109.	2.4	1
31	CD133+ CD34+ HSPCs Are Not Significantly Increased in Fetal Liver Compared to Adult or Umbilical Cord HSPCs. Blood, 2015, 126, 2369-2369.	1.4	1
32	The evolution of viral integration site analysis. Blood, 2020, 135, 1192-1193.	1.4	0