Jiyu Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3756366/publications.pdf

Version: 2024-02-01

28	994	19	26
papers	citations	h-index	g-index
28	28	28	1046
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Research on Dynamic Measurement Method of Flow Rate in Tea Processing. Sensors, 2022, 22, 4294.	2.1	O
2	Natural P-gp inhibitor EGCG improves the acteoside absorption in Caco-2Âcell monolayers and increases the oral bioavailability of acteoside in rats. Food and Chemical Toxicology, 2020, 146, 111827.	1.8	6
3	Fast Quantification of Honey Adulteration with Laser-Induced Breakdown Spectroscopy and Chemometric Methods. Foods, 2020, 9, 341.	1.9	22
4	An Approach for in-Line Control of Moisture Content During Green Tea Processing. IEEE Access, 2020, 8, 59701-59714.	2.6	5
5	Fast Classification of Geographical Origins of Honey Based on Laser-Induced Breakdown Spectroscopy and Multivariate Analysis. Sensors, 2020, 20, 1878.	2.1	22
6	Fast visualization of distribution of chromium in rice leaves by re-heating dual-pulse laser-induced breakdown spectroscopy and chemometric methods. Environmental Pollution, 2019, 252, 1125-1132.	3.7	28
7	High-Sensitivity Determination of Nutrient Elements in Panax notoginseng by Laser-induced Breakdown Spectroscopy and Chemometric Methods. Molecules, 2019, 24, 1525.	1.7	26
8	High-accuracy and fast determination of chromium content in rice leaves based on collinear dual-pulse laser-induced breakdown spectroscopy and chemometric methods. Food Chemistry, 2019, 295, 327-333.	4.2	24
9	Rapid Identification of Kudzu Powder of Different Origins Using Laser-Induced Breakdown Spectroscopy. Sensors, 2019, 19, 1453.	2.1	19
10	Rapid Identification of Genetically Modified Maize Using Laser-Induced Breakdown Spectroscopy. Food and Bioprocess Technology, 2019, 12, 347-357.	2.6	26
11	Deep Learning Associated with Laser-Induced Breakdown Spectroscopy (LIBS) for the Prediction of Lead in Soil. Applied Spectroscopy, 2019, 73, 565-573.	1.2	38
12	Rapid Determination of Cadmium Contamination in Lettuce Using Laser-Induced Breakdown Spectroscopy. Molecules, 2018, 23, 2930.	1.7	28
13	Quantitative Analysis of Cadmium in Tobacco Roots Using Laser-Induced Breakdown Spectroscopy With Variable Index and Chemometrics. Frontiers in Plant Science, 2018, 9, 1316.	1.7	18
14	Quantitative Determination of Cd in Soil Using Laser-Induced Breakdown Spectroscopy in Air and Ar Conditions. Molecules, 2018, 23, 2492.	1.7	22
15	Non-destructive Determination of Shikimic Acid Concentration in Transgenic Maize Exhibiting Glyphosate Tolerance Using Chlorophyll Fluorescence and Hyperspectral Imaging. Frontiers in Plant Science, 2018, 9, 468.	1.7	26
16	Comparative Study of the Detection of Chromium Content in Rice Leaves by 532 nm and 1064 nm Laser-Induced Breakdown Spectroscopy. Sensors, 2018, 18, 621.	2.1	26
17	Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis. Sensors, 2018, 18, 705.	2.1	44
18	Quantitative Analysis of Nutrient Elements in Soil Using Single and Double-Pulse Laser-Induced Breakdown Spectroscopy. Sensors, 2018, 18, 1526.	2.1	52

#	Article	IF	CITATIONS
19	Fast Determination of Copper Content in Tobacco (<i>Nicotina tabacum</i> L.) Leaves Using Laser-Induced Breakdown Spectroscopy with Univariate and Multivariate Analysis. Transactions of the ASABE, 2018, 61, 821-829.	1.1	5
20	Origin Discrimination of <scp><i>Osmanthus fragrans</i></scp> var. <i>thunbergii</i> Flowers using GC–MS and UPLCâ€PDA Combined with Multivariable Analysis Methods. Phytochemical Analysis, 2017, 28, 305-315.	1.2	7
21	Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy. Scientific Reports, 2017, 7, 44551.	1.6	42
22	Moisture Influence Reducing Method for Heavy Metals Detection in Plant Materials Using Laser-Induced Breakdown Spectroscopy: A Case Study for Chromium Content Detection in Rice Leaves. Analytical Chemistry, 2017, 89, 7593-7600.	3.2	59
23	Varietal classification and antioxidant activity prediction of Osmanthus fragrans Lour. flowers using UPLC–PDA/QTOF–MS and multivariable analysis. Food Chemistry, 2017, 217, 490-497.	4.2	33
24	Fast Detection of Striped Stem-Borer (Chilo suppressalis Walker) Infested Rice Seedling Based on Visible/Near-Infrared Hyperspectral Imaging System. Sensors, 2017, 17, 2470.	2.1	33
25	Rapid Identification of Varieties of Walnut Powder Based on Laser-Induced Breakdown Spectroscopy. Transactions of the ASABE, 2017, 60, 19-28.	1.1	10
26	Signal Enhancement in Collinear Double-pulse Laser-induced Breakdown Spectroscopy Applied to the Soils of Magnesium Element. , 2017, , .		1
27	Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review. TrAC - Trends in Analytical Chemistry, 2016, 85, 260-272.	5.8	107
28	Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors, 2015, 15, 11889-11927.	2.1	265