Julien R Serres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3755704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Floor and ceiling mirror configurations to study altitude control in honeybees. Biology Letters, 2022, 18, 20210534.	2.3	3
2	Helicopter Pilots Synchronize Their Altitude with Ship Heave to Minimize Energy When Landing on a Ship's Deck. International Journal of Aerospace Psychology, 2021, 31, 135-148.	0.9	2
3	Ecological design of augmentation improves helicopter ship landing maneuvers: An approach in augmented virtuality. PLoS ONE, 2021, 16, e0255779.	2.5	3
4	Ecological Entomology: How Is Gibson's Framework Useful?. Insects, 2021, 12, 1075.	2.2	4
5	Insect-Inspired Robots: Bridging Biological and Artificial Systems. Sensors, 2021, 21, 7609.	3.8	32
6	Bio-inspired celestial compass yields new opportunities for urban localization. , 2020, , .		2
7	Insect-inspired omnidirectional vision for autonomous localization on-board a hexapod robot. , 2020, , .		Ο
8	Le robot fourmi AntBot. Techniques and Culture, 2020, , 128-141.	0.1	0
9	Optic flow cues help explain altitude control over sea in freely flying gulls. Journal of the Royal Society Interface, 2019, 16, 20190486.	3.4	16
10	Compact and high performance wind actuated venturi triboelectric energy harvester. Nano Energy, 2019, 62, 449-457.	16.0	46
11	An ant-inspired celestial compass applied to autonomous outdoor robot navigation. Robotics and Autonomous Systems, 2019, 117, 40-56.	5.1	42
12	Polarized skylight-based heading measurements: a bio-inspired approach. Journal of the Royal Society Interface, 2019, 16, 20180878.	3.4	25
13	AntBot: A six-legged walking robot able to home like desert ants in outdoor environments. Science Robotics, 2019, 4, .	17.6	97
14	AntBot is able to go home like desert ants. TheScienceBreaker, 2019, 05, .	0.0	0
15	Insect-inspired vision for autonomous vehicles. Current Opinion in Insect Science, 2018, 30, 46-51.	4.4	12
16	Taking Inspiration from Flying Insects to Navigate inside Buildings. , 2018, , .		0
17	A Hexapod Walking Robot Mimicking Navigation Strategies of Desert Ants Cataglyphis. Lecture Notes in Computer Science, 2018, , 145-156.	1.3	5
18	M ² APix: A Bio-Inspired Auto-Adaptive Visual Sensor for Robust Ground Height Estimation. , 2018		3

JULIEN R SERRES

#	Article	IF	CITATIONS
19	Altitude control in honeybees: joint vision-based learning and guidance. Scientific Reports, 2017, 7, 9231.	3.3	26
20	Optic flow-based collision-free strategies: From insects to robots. Arthropod Structure and Development, 2017, 46, 703-717.	1.4	112
21	A bio-inspired celestial compass applied to an ant-inspired robot for autonomous navigation. , 2017, , .		13
22	Toward an insect-inspired event-based autopilot combining both visual and control events. , 2017, , .		5
23	A novel insect-inspired optical compass sensor for a hexapod walking robot. , 2017, , .		14
24	A quasi-panoramic bio-inspired eye for flying parallel to walls. , 2017, , .		3
25	Time-of-Travel Methods for Measuring Optical Flow on Board a Micro Flying Robot. Sensors, 2017, 17, 571.	3.8	15
26	Event-based visual guidance inspired by honeybees in a 3D tapered tunnel. , 2016, , .		2
27	Biomimetic Autopilot Based on Minimalistic Motion Vision for Navigating along Corridors Comprising U-shaped and S-shaped Turns. Journal of Bionic Engineering, 2015, 12, 47-60.	5.0	12
28	A biomimetic vision-based hovercraft accounts for bees' complex behaviour in various corridors. Bioinspiration and Biomimetics, 2014, 9, 036003.	2.9	28
29	INSECT INSPIRED VISUAL MOTION SENSING AND FLYING ROBOTS. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 565-611.	0.1	1
30	A fully-autonomous hovercraft inspired by bees: Wall following and speed control in straight and tapered corridors. , 2012, , .		11
31	Modelling honeybee visual guidance in a 3-D environment. Journal of Physiology (Paris), 2010, 104, 27-39.	2.1	34
32	Insect Inspired Autopilots. Journal of Aero Aqua Bio-mechanisms, 2010, 1, 2-10.	1.0	3
33	Aerial Navigation and Optic Flow SensingA Biorobotic Approach. , 2010, , 451-477.		Ο
34	Field Programmable Gate Array (FPGA) for Bio-Inspired Visuo-Motor Control Systems Applied to Micro-Air Vehicles. , 2009, , .		0
35	Optic Flow Based Autopilots: Speed Control and Obstacle Avoidance. , 2009, , 29-50.		3
36	A bee in the corridor: centering and wall-following. Die Naturwissenschaften, 2008, 95, 1181-1187.	1.6	68

JULIEN R SERRES

#	Article	IF	CITATIONS
37	A vision-based autopilot for a miniature air vehicle: joint speed control and lateral obstacle avoidance. Autonomous Robots, 2008, 25, 103-122.	4.8	80
38	A 3D insect-inspired visual autopilot for corridor-following. , 2008, , .		4
39	Neuromimetic Robots Inspired by Insect Vision. Advances in Science and Technology, 2008, 58, 127-136.	0.2	8
40	Combining sound and optic fow cues to reach a sound source despite lateral obstacles. , 2008, , .		4
41	Fast reproducible identification and large-scale databasing of individual functional cognitive networks. BMC Neuroscience, 2007, 8, 91.	1.9	112
42	A Bio-Inspired Flying Robot Sheds Light on Insect Piloting Abilities. Current Biology, 2007, 17, 329-335.	3.9	157
43	Toward Optic Flow Regulation for Wall-Following and Centring Behaviours. International Journal of Advanced Robotic Systems, 2006, 3, 23.	2.1	39
44	Two optic flow regulators for speed control and obstacle avoidance. , 0, , .		9
45	Optic Flow Based Visual Guidance: From Flying Insects to Miniature Aerial Vehicles. , 0, , .		15