Jose M Carcione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3755214/publications.pdf

Version: 2024-02-01

362 papers 10,980 citations

²⁶⁶²⁶
56
h-index

88 g-index

375 all docs

375 docs citations

times ranked

375

3822 citing authors

#	Article	IF	CITATIONS
1	Wave propagation simulation in a linear viscoelastic medium. Geophysical Journal International, 1988, 95, 597-611.	2.4	280
2	P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties. Geophysics, 2006, 71, O1-O8.	2.6	236
3	Seismic modeling. Geophysics, 2002, 67, 1304-1325.	2.6	233
4	A Simulation of a COVID-19 Epidemic Based on a Deterministic SEIR Model. Frontiers in Public Health, 2020, 8, 230.	2.7	216
5	Wave propagation simulation in a linear viscoacoustic medium. Geophysical Journal International, 1988, 93, 393-401.	2.4	215
6	Bottomâ€simulating reflectors: Seismic velocities and AVO effects. Geophysics, 2000, 65, 54-67.	2.6	186
7	Rock anelasticity due to patchy saturation and fabric heterogeneity: A double doubleâ€porosity model of wave propagation. Journal of Geophysical Research: Solid Earth, 2017, 122, 1949-1976.	3.4	179
8	Elastic velocity models for gas-hydrate-bearing sediments-a comparison. Geophysical Journal International, 2004, 159, 573-590.	2.4	174
9	Cross-property relations between electrical conductivity and the seismic velocity of rocks. Geophysics, 2007, 72, E193-E204.	2.6	165
10	Time-domain Modeling of Constant- Q Seismic Waves Using Fractional Derivatives. Pure and Applied Geophysics, 2002, 159, 1719-1736.	1.9	161
11	Wave propagation in anisotropic linear viscoelastic media: theory and simulated wavefields. Geophysical Journal International, 1990, 101, 739-750.	2.4	158
12	Numerical simulation of interface waves by highâ€order spectral modeling techniques. Journal of the Acoustical Society of America, 1994, 95, 681-693.	1.1	155
13	Computational poroelasticity â€" A review. Geophysics, 2010, 75, 75A229-75A243.	2.6	150
14	Biot-Rayleigh theory of wave propagation in double-porosity media. Journal of Geophysical Research, 2011, 116, .	3.3	149
15	Physics and Seismic Modeling for Monitoring CO2 Storage. Pure and Applied Geophysics, 2006, 163, 175-207.	1.9	145
16	Wave propagation in anisotropic, saturated porous media: Planeâ€wave theory and numerical simulation. Journal of the Acoustical Society of America, 1996, 99, 2655-2666.	1.1	143
17	SOME ASPECTS OF THE PHYSICS AND NUMERICAL MODELING OF BIOT COMPRESSIONAL WAVES. Journal of Computational Acoustics, 1995, 03, 261-280.	1.0	140
18	Viscoacoustic wave propagation simulation in the earth. Geophysics, 1988, 53, 769-777.	2.6	136

#	Article	IF	CITATIONS
19	Groundâ€penetrating radar: Wave theory and numerical simulation in lossy anisotropic media. Geophysics, 1996, 61, 1664-1677.	2.6	136
20	White's model for wave propagation in partially saturated rocks: Comparison with poroelastic numerical experiments. Geophysics, 2003, 68, 1389-1398.	2.6	134
21	A generalization of the Fourier pseudospectral method. Geophysics, 2010, 75, A53-A56.	2.6	133
22	Seismic modeling in viscoelastic media. Geophysics, 1993, 58, 110-120.	2.6	125
23	Estimation of gas hydrate concentration from multi-component seismic data at sites on the continental margins of NW Svalbard and the Storegga region of Norway. Marine and Petroleum Geology, 2008, 25, 744-758.	3.3	114
24	A model for seismic velocity and attenuation in petroleum source rocks. Geophysics, 2000, 65, 1080-1092.	2.6	111
25	Constitutive model and wave equations for linear, viscoelastic, anisotropic media. Geophysics, 1995, 60, 537-548.	2.6	109
26	Acoustic properties of sediments saturated with gas hydrate, free gas and water. Geophysical Prospecting, 2003, 51, 141-158.	1.9	105
27	Approximating constantâ€ <i>Q</i> seismic propagation in the time domain. Geophysical Prospecting, 2013, 61, 931-940.	1.9	105
28	Theory and modelling of constant-Q P- and S-waves using fractional spatial derivatives. Geophysical Journal International, 2014, 196, 1787-1795.	2.4	103
29	Theory and modeling of constant- $\langle i \rangle Q \langle i \rangle$ P- and S-waves using fractional time derivatives. Geophysics, 2009, 74, T1-T11.	2.6	88
30	Compressional wave dispersion due to rock matrix stiffening by clay squirt flow. Geophysical Research Letters, 2016, 43, 6186-6195.	4.0	88
31	Viscoelastic effective rheologies for modelling wave propagation in porous media. Geophysical Prospecting, 1998, 46, 249-270.	1.9	83
32	Source-rock seismic-velocity models: Gassmann versus Backus. Geophysics, 2011, 76, N37-N45.	2.6	83
33	On the acoustic-electromagnetic analogy. Wave Motion, 1995, 21, 149-162.	2.0	81
34	Longâ€wave anisotropy in stratified media: A numerical test. Geophysics, 1991, 56, 245-254.	2.6	79
35	A spectral scheme for wave propagation simulation in 3-D elasticâ€anisotropic media. Geophysics, 1992, 57, 1593-1607.	2.6	77
36	A generalized Biot-Gassmann model for the acoustic properties of shaley sandstones1. Geophysical Prospecting, 2000, 48, 539-557.	1.9	77

#	Article	IF	CITATIONS
37	Velocity and attenuation in partially saturated rocks: poroelastic numerical experiments. Geophysical Prospecting, 2003, 51, 551-566.	1.9	77
38	Rock-physics templates for clay-rich source rocks. Geophysics, 2015, 80, D481-D500.	2.6	77
39	Numerical Solution of the Poroviscoelastic Wave Equation on a Staggered Mesh. Journal of Computational Physics, 1999, 154, 520-527.	3.8	76
40	ANISOTROPIC Q AND VELOCITY DISPERSION OF FINELY LAYERED MEDIA1. Geophysical Prospecting, 1992, 40, 761-783.	1.9	75
41	The wave equation in generalized coordinates. Geophysics, 1994, 59, 1911-1919.	2.6	75
42	Wave Simulation in Frozen Porous Media. Journal of Computational Physics, 2001, 170, 676-695.	3.8	74
43	Differential form and numerical implementation of Biot's poroelasticity equations with squirt dissipation. Geophysics, 2011, 76, N55-N64.	2.6	74
44	3-D groundâ€penetrating radar simulation and planeâ€wave theory in anisotropic media. Geophysics, 2000, 65, 1527-1541.	2.6	73
45	AVO effects of a hydrocarbon sourceâ€rock layer. Geophysics, 2001, 66, 419-427.	2.6	68
46	Gas-hydrate concentration estimated from P- and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada. Journal of Applied Geophysics, 2004, 56, 73-78.	2.1	68
47	3-D wave simulation in anelastic media using the Kelvin–Voigt constitutive equation. Journal of Computational Physics, 2004, 196, 282-297.	3.8	68
48	Reflection and transmission of qP-qSplane waves at a plane boundary between viscoelastic transversely isotropic media. Geophysical Journal International, 1997, 129, 669-680.	2.4	67
49	WAVE-PROPAGATION SIMULATION IN AN ELASTIC ANISOTROPIC (TRANSVERSELY ISOTROPIC) SOLID. Quarterly Journal of Mechanics and Applied Mathematics, 1988, 41, 319-346.	1.3	66
50	Full frequency-range transient solution for compressional waves in a fluid-saturated viscoacoustic porous medium1. Geophysical Prospecting, 1996, 44, 99-129.	1.9	64
51	Acoustic and electromagnetic properties of soils saturated with salt water and NAPL. Journal of Applied Geophysics, 2003, 52, 177-191.	2.1	64
52	A rheological model for anelastic anisotropic media with applications to seismic wave propagation. Geophysical Journal International, 1994, 119, 338-348.	2.4	61
53	Attenuation tomography: An application to gasâ€hydrate and freeâ€gas detection. Geophysical Prospecting, 2007, 55, 655-669.	1.9	61
54	Angular and Frequency-Dependent Wave Velocity and Attenuation in Fractured Porous Media. Pure and Applied Geophysics, 2013, 170, 1673-1683.	1.9	61

#	Article	IF	CITATIONS
55	Estimation of glacier thicknesses and basal properties using the horizontal-to-vertical component spectral ratio (HVSR) technique from passive seismic data. Journal of Glaciology, 2017, 63, 229-248.	2.2	61
56	An accurate and efficient scheme for wave propagation in linear viscoelastic media. Geophysics, 1990, 55, 1366-1379.	2.6	59
57	Staggered mesh for the anisotropic and viscoelastic wave equation. Geophysics, 1999, 64, 1863-1866.	2.6	59
58	Wave propagation in partially saturated porous media: simulation of a second slow wave. Wave Motion, 2004, 39, 227-240.	2.0	59
59	Seismic and ultrasonic velocities in permafrost. Geophysical Prospecting, 1998, 46, 441-454.	1.9	58
60	Physics and Simulation of Wave Propagation in Linear Thermoporoelastic Media. Journal of Geophysical Research: Solid Earth, 2019, 124, 8147-8166.	3.4	58
61	Numerical simulation of the Biot slow wave in waterâ€saturated Nivelsteiner Sandstone. Geophysics, 2001, 66, 890-896.	2.6	56
62	Estimation of pore microstructure by using the static and dynamic moduli. International Journal of Rock Mechanics and Minings Sciences, 2019, 113, 24-30.	5.8	56
63	A spectral numerical method for electromagnetic diffusion. Geophysics, 2006, 71, 11-19.	2.6	54
64	The physics and simulation of wave propagation at the ocean bottom. Geophysics, 2004, 69, 825-839.	2.6	52
65	Energy balance and fundamental relations in anisotropic-viscoelastic media. Wave Motion, 1993, 18, 11-20.	2.0	51
66	Wave Simulation in Biologic Media Based on the Kelvin-Voigt Fractional-Derivative Stress-Strain Relation. Ultrasound in Medicine and Biology, 2011, 37, 996-1004.	1.5	50
67	Modeling anelastic singular surface waves in the earth. Geophysics, 1992, 57, 781-792.	2.6	48
68	Simulation of stress waves in attenuating drill strings, including piezoelectric sources and sensors. Journal of the Acoustical Society of America, 2000, 108, 53-64.	1.1	48
69	Wave simulation in partially frozen porous media with fractal freezing conditions. Journal of Applied Physics, 2003, 94, 7839.	2.5	48
70	Simulation of wave propagation in linear thermoelastic media. Geophysics, 2019, 84, T1-T11.	2.6	48
71	Domain decomposition for wave propagation problems. Journal of Scientific Computing, 1991, 6, 453-472.	2.3	47
72	Wave velocities and attenuation of shaley sandstones as a function of pore pressure and partial saturation. Geophysical Prospecting, 2002, 50, 615-627.	1.9	47

#	Article	IF	CITATIONS
73	Estimation of porosity and fluid saturation in carbonates from rock-physics templates based on seismic <i>Q</i> . Geophysics, 2019, 84, M25-M36.	2.6	47
74	Effects of attenuation and anisotropy on reflection amplitude versus offset. Geophysics, 1998, 63, 1652-1658.	2.6	46
75	Pore pressure estimation in reservoir rocks from seismic reflection data. Geophysics, 2003, 68, 1569-1579.	2.6	46
76	Estimation of gas-hydrate concentration and free-gas saturation at the Norwegian-Svalbard continental margin. Geophysical Prospecting, 2005, 53, 803-810.	1.9	46
77	P-wave seismic attenuation by slow-wave diffusion: Numerical experiments in partially saturated rocks. Geophysics, 2007, 72, N11-N21.	2.6	45
78	Anisotropic poroelasticity and wave-induced fluid flow: harmonic finite-element simulations. Geophysical Journal International, 2011, 186, 1245-1254.	2.4	45
79	Cross-hole electromagnetic and seismic modeling for CO2 detection and monitoring in a saline aquifer. Journal of Petroleum Science and Engineering, 2012, 100, 162-172.	4.2	45
80	Gas generation and overpressure: Effects on seismic attributes. Geophysics, 2000, 65, 1769-1779.	2.6	44
81	Multiscale rock-physics templates for gas detection in carbonate reservoirs. Journal of Applied Geophysics, 2013, 93, 77-82.	2.1	41
82	Anisotropy and crystalline fabric of Whillans Ice Stream (West Antarctica) inferred from multicomponent seismic data. Journal of Geophysical Research: Solid Earth, 2015, 120, 4237-4262.	3.4	41
83	Ultrasonic wave attenuation dependence on saturation in tight oil siltstones. Journal of Petroleum Science and Engineering, 2019, 179, 1114-1122.	4.2	41
84	SIMULATION OF WAVES IN PORO-VISCOELASTIC ROCKS SATURATED BY IMMISCIBLE FLUIDS: NUMERICAL EVIDENCE OF A SECOND SLOW WAVE. Journal of Computational Acoustics, 2004, 12, 1-21.	1.0	39
85	Elastic surface waves in crystals. Part 1: Review of the physics. Ultrasonics, 2011, 51, 653-660.	3.9	39
86	Forbidden directions for inhomogeneous pure shear waves in dissipative anisotropic media. Geophysics, 1995, 60, 522-530.	2.6	38
87	Elastodynamics of a non-ideal interface: Application to crack and fracture scattering. Journal of Geophysical Research, 1996, 101, 28177-28188.	3.3	38
88	A model for wave propagation in a composite solid matrix saturated by a single-phase fluid. Journal of the Acoustical Society of America, 2004, 115, 2749-2760.	1.1	38
89	Theory and simulation of time-fractional fluid diffusion in porous media. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 345501.	2.1	38
90	Wave Propagation in Infinitupleâ€Porosity Media. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021266.	3.4	38

#	Article	lF	CITATIONS
91	Estimation of gas-hydrate concentration and free-gas saturation from log and seismic data. The Leading Edge, 2001, 20, 200-203.	0.7	37
92	Theory of borehole stability when drilling through salt formations. Geophysics, 2006, 71, F31-F47.	2.6	36
93	An electromagnetic modelling tool for the detection of hydrocarbons in the subsoil. Geophysical Prospecting, 2000, 48, 231-256.	1.9	35
94	A viscoelastic representation of wave attenuation in porous media. Computers and Geosciences, 2010, 36, 44-53.	4.2	35
95	Rayleigh waves in isotropic viscoelastic media. Geophysical Journal International, 1992, 108, 453-464.	2.4	34
96	Simulation of surface waves in porous media. Geophysical Journal International, 2010, 183, 820-832.	2.4	34
97	Seismic attenuation due to heterogeneities of rock fabric and fluid distribution. Geophysical Journal International, 2015, 202, 1843-1847.	2.4	34
98	Poisson's ratio at high pore pressure. Geophysical Prospecting, 2002, 50, 97-106.	1.9	33
99	On the evaluation of plane-wave reflection coefficients in anelastic media. Geophysical Journal International, 2008, 175, 94-102.	2.4	33
100	Highâ€order spectral element method for elastic wave modeling. , 1992, , .		31
101	Wavefronts in dissipative anisotropic media. Geophysics, 1994, 59, 644-657.	2.6	31
102	A constitutive equation and generalized Gassmann modulus for multimineral porous media. Geophysics, 2005, 70, N17-N26.	2.6	31
103	Amplitude variations with offset of pressureâ€seal reflections. Geophysics, 2001, 66, 283-293.	2.6	31
104	A new insight into the reciprocity principle. Geophysics, 2000, 65, 1604-1612.	2.6	30
105	Seismic Rheological Model and Reflection Coefficients of the Brittle–Ductile Transition. Pure and Applied Geophysics, 2013, 170, 2021-2035.	1.9	30
106	Reflection and Transmission of Plane Elastic Waves at an Interface Between Two Double-Porosity Media: Effect of Local Fluid Flow. Surveys in Geophysics, 2020, 41, 283-322.	4.6	30
107	Attenuation and quality factor surfaces in anisotropic-viscoelastic media. Mechanics of Materials, 1995, 19, 311-327.	3.2	29
108	The seismic response to overpressure: a modelling study based on laboratory, well and seismic data. Geophysical Prospecting, 2001, 49, 523-539.	1.9	29

#	Article	IF	CITATIONS
109	<i>Q</i> â€anisotropy in finelyâ€layered media. Geophysical Research Letters, 2010, 37, .	4.0	29
110	Sensitivity of seismic properties to temperature variations in a geothermal reservoir. Geothermics, 2018, 76, 149-163.	3.4	29
111	On the Kramers-Kronig relations. Rheologica Acta, 2019, 58, 21-28.	2.4	29
112	Ground radar simulation for archaeological applications 1. Geophysical Prospecting, 1996, 44, 871-888.	1.9	28
113	Joint PP and PS Pre-stack Seismic Inversion for Stratified Models Based on the Propagator Matrix Forward Engine. Surveys in Geophysics, 2020, 41, 987-1028.	4.6	28
114	Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure. Journal of the Acoustical Society of America, 2003, 113, 1801-1811.	1.1	27
115	Numerical simulation of ultrasonic waves in reservoir rocks with patchy saturation and fractal petrophysical properties. Computational Geosciences, 2005, 9, 1-27.	2.4	27
116	A poroelastic model for wave propagation in partially frozen orange juice. Journal of Food Engineering, 2007, 80, $11\text{-}17$.	5.2	27
117	Simulation of upscaling effects due to wave-induced fluid flow in Biot media using the finite-element method. Journal of Applied Geophysics, 2007, 62, 193-203.	2.1	27
118	Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model. Geophysical Journal International, 2016, 205, 22-37.	2.4	27
119	On the Green function of the Lord–Shulman thermoelasticity equations. Geophysical Journal International, 2020, 220, 393-403.	2.4	27
120	Effects of pressure and saturating fluid on wave velocity and attenuation in anisotropic rocks. International Journal of Rock Mechanics and Minings Sciences, 2003, 40, 389-403.	5.8	26
121	The velocity of energy through a dissipative medium. Geophysics, 2010, 75, T37-T47.	2.6	26
122	Numerical simulation of wave-induced fluid flow seismic attenuation based on the Cole-Cole model. Journal of the Acoustical Society of America, 2017, 142, 134-145.	1.1	26
123	Seismic Wave Propagation in Partially Saturated Rocks With a Fractal Distribution of Fluidâ€Patch Size. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	26
124	Energy balance and fundamental relations in dynamic anisotropic poro-viscoelasticity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2001, 457, 331-348.	2.1	25
125	Numerical test of the Schoenberg-Muir theory. Geophysics, 2012, 77, C27-C35.	2.6	25
126	Fracture-Induced Anisotropic Attenuation. Rock Mechanics and Rock Engineering, 2012, 45, 929.	5.4	25

#	Article	IF	CITATIONS
127	A memory model of sedimentation in water reservoirs. Journal of Hydrology, 2013, 476, 426-432.	5.4	25
128	Rock-physics templates based on seismic <i>Q</i> . Geophysics, 2019, 84, MR13-MR23.	2.6	25
129	Hysteresis cycles and fatigue criteria using anelastic models based on fractional derivatives. Rheologica Acta, 2011, 50, 107-115.	2.4	24
130	Seismic modeling to monitor CO ₂ geological storage: The Atzbachâ€Schwanenstadt gas field. Journal of Geophysical Research, 2012, 117, .	3.3	24
131	Poroâ€acoustoelasticity of fluidâ€saturated rocks. Geophysical Prospecting, 2013, 61, 599-612.	1.9	24
132	A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition. Journal of Computational Physics, 2013, 235, 846-864.	3.8	24
133	Comparison of <i>P</i> â€wave attenuation models of waveâ€induced flow. Geophysical Prospecting, 2015, 63, 378-390.	1.9	24
134	Joint PP and PS pre-stack AVA inversion for VTI medium based on the exact Graebner equation. Journal of Petroleum Science and Engineering, 2020, 194, 107416.	4.2	24
135	Canonical analytical solutions of wave-induced thermoelastic attenuation. Geophysical Journal International, 2020, 221, 835-842.	2.4	24
136	GPR modeling study in a contaminated area of Krzywa Air Base (Poland). Geophysics, 2000, 65, 521-525.	2.6	23
137	Modeling wave propagation in cracked porous media with penny-shaped inclusions. Geophysics, 2019, 84, WA141-WA151.	2.6	23
138	Estimation of microfracture porosity in deep carbonate reservoirs based on 3D rock-physics templates. Interpretation, 2020, 8, SP43-SP52.	1.1	23
139	Reflection and transmission coefficients of a fracture in transversely isotropic media. Studia Geophysica Et Geodaetica, 2012, 56, 307-322.	0.5	22
140	Reverse time imaging of ground-penetrating radar and SH-seismic data including the effects of wave loss. Geophysics, 2016, 81, H21-H32.	2.6	22
141	Hybrid multiplicative time-reversal imaging reveals the evolution of microseismic events: Theory and field-data tests. Geophysics, 2019, 84, KS71-KS83.	2.6	22
142	Green's function of the Lord–Shulman thermo-poroelasticity theory. Geophysical Journal International, 2020, 221, 1765-1776.	2.4	22
143	Wave reflection at an anelastic transversely isotropic ocean bottom. Geophysics, 2007, 72, SM139-SM146.	2.6	21
144	A physical solution for plane SH waves in anelastic media. Geophysical Journal International, 2017, 209, 661-671.	2.4	21

#	Article	IF	CITATIONS
145	Wavefronts in dissipative anisotropic media: Comparison of the planeâ€wave theory with numerical modeling. Geophysics, 1996, 61, 857-861.	2.6	20
146	Non-equilibrium compaction and abnormal pore-fluid pressures: effects on rock properties 1. Geophysical Prospecting, 2000, 48, 521-537.	1.9	20
147	Kerogen to oil conversion in source rocks. Pore-pressure build-up and effects on seismic velocities. Journal of Applied Geophysics, 2011, 74, 229-235.	2.1	20
148	Numerical experiments of fracture-induced velocity and attenuation anisotropy. Geophysical Journal International, 0 , , .	2.4	20
149	Reflection and transmission coefficients of a single layer in poroelastic media. Journal of the Acoustical Society of America, 2014, 135, 3151-3162.	1.1	20
150	Differential poroelasticity model for wave dissipation in self-similar rocks. International Journal of Rock Mechanics and Minings Sciences, 2020, 128, 104281.	5.8	20
151	Modeling Extreme-Event Precursors with the Fractional Diffusion Equation. Fractional Calculus and Applied Analysis, 2015, 18, 208-222.	2.2	19
152	On energy definition in electromagnetism: An analogy with viscoelasticity. Journal of the Acoustical Society of America, 1999, 105, 626-632.	1.1	18
153	On the Acoustic-Electromagnetic Analogy for the Reflection-Refraction Problem. Studia Geophysica Et Geodaetica, 2002, 46, 321-346.	0.5	18
154	Optimal seismic-data acquisition in very shallow waters: Surveys in the Venice lagoon. Geophysics, 2008, 73, Q59-Q63.	2.6	18
155	Theory and numerical simulation of fluid-pressure diffusion in anisotropic porous media. Geophysics, 2009, 74, N31-N39.	2.6	18
156	A pseudospectral method for the simulation of 3-D ultrasonic and seismic waves in heterogeneous poroelastic borehole environments. Geophysical Journal International, 2014, 196, 1134-1151.	2.4	18
157	Radiation patterns for 2-D GPR forward modeling. Geophysics, 1998, 63, 424-430.	2.6	17
158	Sound velocity of drilling mud saturated with reservoir gas. Geophysics, 2000, 65, 646-651.	2.6	17
159	Fresnel reflection coefficients for GPRâ€AVA analysis and detection of seawater and NAPL contaminants. Near Surface Geophysics, 2006, 4, 253-263.	1.2	17
160	Viscoelastic-stiffness tensor of anisotropic media from oscillatory numerical experiments. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 896-904.	6.6	17
161	Cross-well seismic and electromagnetic tomography for CO2 detection and monitoring in a saline aquifer. Journal of Petroleum Science and Engineering, 2015, 133, 245-257.	4.2	17
162	Two-dimensional simulation of Rayleigh waves with staggered sine/cosine transforms and variable grid spacing. Geophysics, 2010, 75, T133-T140.	2.6	16

#	Article	IF	Citations
163	Evaluation of the stiffness tensor of a fractured medium with harmonic experiments. Computer Methods in Applied Mechanics and Engineering, 2012, 247-248, 130-145.	6.6	16
164	Generalized Thermo-poroelasticity Equations and Wave Simulation. Surveys in Geophysics, 2021, 42, 133-157.	4.6	16
165	GPR modelling by the Fourier method: improvement of the algorithm. Geophysical Prospecting, 1999, 47, 1015-1029.	1.9	15
166	Seismic modeling study of the Earth's deep crust. Geophysics, 2003, 68, 656-664.	2.6	15
167	3D seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame. Physics of the Earth and Planetary Interiors, 2018, 279, 67-78.	1.9	15
168	The Burgers/squirt-flow seismic model of the crust and mantle. Physics of the Earth and Planetary Interiors, 2018, 274, 14-22.	1.9	15
169	Plane-layered models for the analysis of wave propagation in reservoir environments 1. Geophysical Prospecting, 1996, 44, 3-26.	1.9	14
170	Forbidden directions for TM waves in anisotropic conducting media. IEEE Transactions on Antennas and Propagation, 1997, 45, 133-139.	5.1	14
171	Nonlinear and dispersive acoustic wave propagation. Geophysics, 2004, 69, 840-848.	2.6	14
172	Simulation of seismic waves at the earth's crust (brittle–ductile transition) based on the Burgers model. Solid Earth, 2014, 5, 1001-1010.	2.8	14
173	Waves at fluid–solid interfaces: explicit versus implicit formulation of the boundary condition. Geophysical Journal International, 2018, 215, 37-48.	2.4	14
174	Dispersion and attenuation of compressional waves in tight oil reservoirs: Experiments and simulations. Applied Geophysics, 2019, 16, 33-45.	0.6	14
175	Seismic attenuation in partially molten rocks. Physics of the Earth and Planetary Interiors, 2020, 309, 106568.	1.9	14
176	Thermoelasticity and P-wave simulation based on the Cole-Cole model. Journal of Thermal Stresses, 2020, 43, 512-527.	2.0	14
177	A telegrapher equation for electric - telemetering in drill strings. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40, 1047-1053.	6.3	13
178	Vector attenuation: elliptical polarization, raypaths and the Rayleigh-window effect. Geophysical Prospecting, 2006, 54, 399-407.	1.9	13
179	Seismic lowâ€frequency anomalies in multiple reflections from thinly layered poroelastic reservoirs. , 2007, , .		13
180	Synthetic logs of multipole sources in boreholes based on the Kelvin-Voigt stress-strain relation. Geophysical Journal International, 2008, 174, 808-814.	2.4	13

#	Article	IF	CITATIONS
181	Rock-physics analysis of clay-rich source rocks on the Norwegian Shelf. The Leading Edge, 2015, 34, 1340-1348.	0.7	13
182	Squirt-flow seismic dispersion models: a comparison. Geophysical Journal International, 2020, 222, 2068-2082.	2.4	13
183	Simulation of thermoelastic waves based on the Lord-Shulman theory. Geophysics, 2021, 86, T155-T164.	2.6	13
184	Dataâ€Driven Design of Waveâ€Propagation Models for Shaleâ€Oil Reservoirs Based on Machine Learning. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022665.	3.4	13
185	Babinet's principle for elastic waves: A numerical test. Journal of the Acoustical Society of America, 1999, 105, 1485-1492.	1.1	12
186	Fast monostatic GPR modeling. Geophysics, 2004, 69, 466-471.	2.6	12
187	SIMULATION OF ELECTROMAGNETIC DIFFUSION IN ANISOTROPIC MEDIA. Progress in Electromagnetics Research B, 2010, 26, 425-450.	1.0	12
188	Effect of soil and bedrock anelasticity on the $<$ i>S $<$ /i>-wave amplification function. Geophysical Journal International, 2017, 208, 424-431.	2.4	12
189	Effects of ellipsoidal heterogeneities on wave propagation in partially saturated double-porosity rocks. Geophysics, 2018, 83, WC71-WC81.	2.6	12
190	Effect of Clay and Mineralogy on Permeability. Pure and Applied Geophysics, 2019, 176, 2581-2594.	1.9	12
191	Effects of Fluid Rheology and Pore Connectivity on Rock Permeability Based on a Network Model. Journal of Geophysical Research: Solid Earth, 2020, 125, no.	3.4	12
192	Temperature, differential pressure, and porosity inversion for ultradeep carbonate reservoirs based on 3D rock-physics templates. Geophysics, 2021, 86, M77-M89.	2.6	12
193	Ground-penetrating radar and geo-electrical simulations of data from the Floridablanca archaeological site. Archaeological Prospection, 2005, 12, 19-30.	2.2	11
194	Determining the dilation factor in 4D monitoring of compacting reservoirs by rock-physics models. Geophysical Prospecting, 2007, 55, 793-804.	1.9	11
195	Simulation of axis-symmetric seismic waves in fluid-filled boreholes in the presence of a drill string. Computational Geosciences, 2008, 12, 593-604.	2.4	11
196	Anomalous polarization in anisotropic media. European Journal of Mechanics, A/Solids, 2009, 28, 704-711.	3.7	11
197	Rock physics modeling of heterogeneous carbonate reservoirs: porosity estimation and hydrocarbon detection. Applied Geophysics, 2014, 11, 9-22.	0.6	11
198	A model for CO2 storage and seismic monitoring combining multiphase fluid flow and wave propagation simulators. The Sleipner-field case. Computational Geosciences, 2017, 21, 223-239.	2.4	11

#	Article	IF	CITATIONS
199	A nodal discontinuous Galerkin finite element method for the poroelastic wave equation. Computational Geosciences, 2019, 23, 595-615.	2.4	11
200	A Hierarchical Prestack Seismic Inversion Scheme for VTI Media Based on the Exact Reflection Coefficient. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	6. 3	11
201	Reflection tomography versus stacking velocity analysis. Journal of Applied Geophysics, 1996, 35, 1-13.	2.1	10
202	Modeling fluid injection induced microseismicity in shales. Journal of Geophysics and Engineering, 2018, 15, 234-248.	1.4	10
203	Wave simulation in double-porosity media based on the Biot-Rayleigh theory. Geophysics, 2019, 84, WA11-WA21.	2.6	10
204	Reflection of inhomogeneous plane waves at the surface of a thermo-poroelastic medium. Geophysical Journal International, 2020, 224, 1621-1639.	2.4	10
205	P- and S-wave simulation using a Cole–Cole model to incorporate thermoelastic attenuation and dispersion. Journal of the Acoustical Society of America, 2021, 149, 1946-1954.	1.1	10
206	On the Normal-Incidence Reflection Coefficient in Porous Media. Surveys in Geophysics, 2021, 42, 923-942.	4.6	10
207	Elastic-Electrical Rock-Physics Template for the Characterization of Tight-Oil Reservoir Rocks. Lithosphere, 2021, 2021, .	1.4	10
208	Simulation of seismograms in a 2-D viscoelastic Earth by pseudospectral methods. Geofisica International, 2005, 44, 123-142.	0.2	10
209	Acoustic velocity of seismicâ€whileâ€drilling (SWD) borehole guided waves. Geophysics, 2002, 67, 921-927.	2.6	9
210	Elastic surface waves in crystals – Part 2: Cross-check of two full-wave numerical modeling methods. Ultrasonics, 2011, 51, 878-889.	3.9	9
211	Modeling techniques to study CO 2 -injection induced micro-seismicity. International Journal of Greenhouse Gas Control, 2015, 42, 246-257.	4.6	9
212	Finite-element harmonic experiments to model fractured induced anisotropy in poroelastic media. Computer Methods in Applied Mechanics and Engineering, 2015, 283, 1189-1213.	6.6	9
213	Nearly perfectly matched layer absorber for viscoelastic wave equations. Geophysics, 2019, 84, T335-T345.	2.6	9
214	Rock Anelasticity, Pore Geometry and the Biot–Gardner Effect. Rock Mechanics and Rock Engineering, 2020, 53, 3969-3981.	5.4	9
215	Characterization of Gas Saturation in Tight-Sandstone Reservoirs with Rock-Physics Templates Based on Seismic Q. Journal of Energy Engineering - ASCE, 2021, 147, .	1.9	9
216	Low-frequency dispersion and attenuation in anisotropic partially saturated rocks. Geophysical Journal International, 2017, 209, 1572-1584.	2.4	9

#	Article	lF	CITATIONS
217	The generalized SHâ€wave equation. Geophysics, 1995, 60, 549-555.	2.6	8
218	Electric drill-string telemetry. Journal of Computational Physics, 2003, 186, 596-609.	3.8	8
219	Seismic modelling study of a subglacial lake. Geophysical Prospecting, 2003, 51, 501-515.	1.9	8
220	Sensitivity analysis from single-well ERT simulations to image CO ₂ migrations along wellbores. The Leading Edge, 2013, 32, 504-512.	0.7	8
221	Simulation of flexural waves in drill pipes including the effects of the gravitational field. Wave Motion, 2013, 50, 310-325.	2.0	8
222	Seismic velocity and Q anisotropy in fractured poroelastic media. International Journal of Rock Mechanics and Minings Sciences, 2014, 70, 212-218.	5.8	8
223	The Gassmann–Burgers Model to Simulate Seismic Waves at the Earth Crust And Mantle. Pure and Applied Geophysics, 2017, 174, 849-863.	1.9	8
224	Seismic attenuation, normal moveout stretch, and lowâ€frequency shadows underlying bottom simulating reflector events. Geophysical Prospecting, 2018, 66, 857-871.	1.9	8
225	Seismic properties in conductive and convective hot and super-hot geothermal systems. Geothermics, 2019, 82, 16-33.	3.4	8
226	Modeling the wave propagation in viscoacoustic media: An efficient spectral approach in time and space domain. Computers and Geosciences, 2019, 126, 31-40.	4.2	8
227	Retrieving shallow shear-wave velocity profiles from 2D seismic-reflection data with severely aliased surface waves. Journal of Applied Geophysics, 2019, 161, 15-25.	2.1	8
228	Seismic Q of inhomogeneous plane waves in porous media. Geophysics, 2020, 85, T209-T224.	2.6	8
229	A rock-physics model to determine the pore microstructure of cracked porous rocks. Geophysical Journal International, 2020, 223, 622-631.	2.4	8
230	Bounds and averages of seismic quality factor Q. Studia Geophysica Et Geodaetica, 2020, 64, 100-113.	0.5	8
231	A semianalytical solution for the propagation of electromagnetic waves in 3â€D lossy orthotropic media. Geophysics, 2001, 66, 1141-1148.	2.6	8
232	Elastic medium equivalent to Fresnel's double-refraction crystal. Journal of the Acoustical Society of America, 2008, 124, 2053-2060.	1.1	7
233	Oscillatory numerical experiments in finely layered anisotropic viscoelastic media. Computers and Geosciences, 2012, 43, 83-89.	4.2	7
234	Validation of the boundary conditions to model the seismic response of fractures. Geophysical Prospecting, 2016, 64, 1149-1165.	1.9	7

#	Article	lF	CITATIONS
235	On the relation between sources and initial conditions for the wave and diffusion equations. Computers and Mathematics With Applications, 2017, 73, 906-913.	2.7	7
236	Broad-band viscoacoustic Q-factor imaging by seismic tomography and instantaneous frequency. Geophysical Journal International, 2018, 214, 672-686.	2.4	7
237	Effect of capillarity and relative permeability on Q anisotropy of hydrocarbon source rocks. Geophysical Journal International, 2019, 218, 1199-1209.	2.4	7
238	Waves at a fluid-solid interface: Explicit versus implicit formulation of boundary conditions using a discontinuous Galerkin method. Journal of the Acoustical Society of America, 2020, 147, 3136-3150.	1.1	7
239	Time-domain Modeling of Constant-Q Seismic Waves Using Fractional Derivatives. , 2002, , 1719-1736.		7
240	Multi-Objective Petrophysical Seismic Inversion Based on the Double-Porosity Biot–Rayleigh Model. Surveys in Geophysics, 2022, 43, 1117-1141.	4.6	7
241	Time-dependent boundary conditions for the 2-D linear anisotropic-viscoelastic wave equation. Numerical Methods for Partial Differential Equations, 1994, 10, 771-791.	3.6	6
242	Torsional waves in lossy cylinders. Journal of the Acoustical Society of America, 1998, 103, 760-766.	1.1	6
243	Weak elastic anisotropy by perturbation theory. Geophysics, 2006, 71, D45-D58.	2.6	6
244	Flexural waves in drillâ€string tubulars with variable loads. Geophysical Prospecting, 2013, 61, 955-972.	1.9	6
245	A rheological equation for anisotropic–anelastic media and simulation of field seismograms. Wave Motion, 2014, 51, 743-757.	2.0	6
246	On Fermat's principle and Snell's law in lossy anisotropic media. Geophysics, 2016, 81, T107-T116.	2.6	6
247	A squirt-flow theory to model wave anelasticity in rocks containing compliant microfractures. Physics of the Earth and Planetary Interiors, 2020, 301, 106450.	1.9	6
248	Wave Properties of Gas-Hydrate Bearing Sediments Based on Poroelasticity. Frontiers in Earth Science, 2021, 9, .	1.8	6
249	Estimation of the Pore Microstructure of Tight-Gas Sandstone Reservoirs with Seismic Data. Frontiers in Earth Science, 2021, 9, .	1.8	6
250	3-D radiation pattern of the drilling bit source in finely stratified media. Geophysical Research Letters, 1992, 19, 717-720.	4.0	5
251	On the group velocity of guided waves in drill strings. Journal of the Acoustical Society of America, 2001, 109, 1743-1746.	1.1	5
252	Electromagnetic diffusion in anisotropic media. Radio Science, 2011, 46, .	1.6	5

#	Article	IF	CITATIONS
253	Attenuation effects on the seismic response of a bottom-simulating reflector. Journal of Natural Gas Science and Engineering, 2015, 24, 510-517.	4.4	5
254	Simultaneous inversion for velocity model and microseismic sources in layered anisotropic media. Journal of Petroleum Science and Engineering, 2019, 173, 1453-1463.	4.2	5
255	Thermoelastic Dispersion and Attenuation of <i>P</i> and <i>SV</i> Wave Scattering by Aligned Fluidâ€Saturated Cracks of Finite Thickness in an Isothermal Elastic Medium. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019942.	3.4	5
256	Fluid Discrimination in Ultra-Deep Reservoirs Based on a Double Double-Porosity Theory. Frontiers in Earth Science, $2021, 9, .$	1.8	5
257	Poroacoustoelasticity for rocks with a dual-pore structure. Geophysics, 2021, 86, MR17-MR25.	2.6	5
258	Effect of local fluid flow on the reflection and transmission of elastic waves at an interface between an elastic solid and a double-porosity medium. Geophysics, 2020, 85, T237-T256.	2.6	5
259	Boundary conditions for wave propagation problems. Finite Elements in Analysis and Design, 1994, 16, 317-327.	3.2	4
260	The Messina-Reggio earthquake of December 28, 1908. Studia Geophysica Et Geodaetica, 2008, 52, 661-672.	0.5	4
261	On optimal NMO and generalised Dix equations for velocity determination and depth conversion. Journal of Applied Geophysics, 2014, 101, 136-141.	2.1	4
262	Numerical simulation of two-phase fluid flow. Journal of Petroleum Exploration and Production, 2014, 4, 233-243.	2.4	4
263	On the Earthquake-Source Numerical Implementation in the Seismic Wave Equation. Journal of Earthquake Engineering, 2015, 19, 48-59.	2.5	4
264	Imaging septaria geobody in the Boom Clay using a <i>Q</i> -compensated reverse-time migration. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2016, 95, 283-291.	0.9	4
265	Seismic spectrograms of an anelastic layer with different source-receivers configurations. Arabian Journal of Geosciences, 2016, 9, 1.	1.3	4
266	Synthetic waveforms of axial motion in a borehole with drill string. Journal of the Acoustical Society of America, 2017, 141, 828-839.	1.1	4
267	Numerical modelling of GPR electromagnetic fields for locating burial sites. E3S Web of Conferences, 2017, 24, 01002.	0.5	4
268	Backus and Wyllie Averages for Seismic Attenuation. Pure and Applied Geophysics, 2018, 175, 165-170.	1.9	4
269	Geophysical signature of a World War I tunnel-like anomaly in the Forni Glacier (Punta Linke, Italian) Tj ETQq $1\ 1$	0.784314 2.2	rgBT /Overlo
270	Finite-element numerical simulations of seismic attenuation in finely layered rocks. Journal of the Acoustical Society of America, 2020, 148, 1978-1983.	1.1	4

#	Article	IF	CITATIONS
271	Seismic pre-stack AVA inversion scheme based on lithology constraints. Journal of Geophysics and Engineering, 2020, 17, 411-428.	1.4	4
272	Existence and uniqueness of solutions of thermo-poroelasticity. Journal of Mathematical Analysis and Applications, 2021, 499, 124907.	1.0	4
273	Microcrack Porosity Estimation Based on Rock Physics Templates: A Case Study in Sichuan Basin, China. Energies, 2021, 14, 7225.	3.1	4
274	Reflection and transmission of thermoelastic waves in multilayered media. Geophysics, 2022, 87, MR117-MR128.	2.6	4
275	Temperature-Dependent Wave Velocities of Heavy Oil-Saturated Rocks. Lithosphere, 2022, 2021, .	1.4	4
276	Rock Acoustics of Diagenesis and Cementation. Pure and Applied Geophysics, 2022, 179, 1919-1934.	1.9	4
277	Modeling elastic waves in the presence of a borehole and free surface. , 1994, , .		3
278	25. Wave Theory, Simulation, and Determination of Gas-Hydrate Content in Sediments., 2010, , 349-372.		3
279	Analysis of capillary pressure effect on the seismic response of a CO 2 -storage site applying multiphase flow and wave propagation simulators. International Journal of Greenhouse Gas Control, 2015, 39, 335-348.	4.6	3
280	Porosity and permeability of the overburden from wireline logs: a case study from offshore Malaysia. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6, 1.	2.9	3
281	Basis Pursuit Anisotropic Inversion Based on the <i>L</i> ₁ – <i>L</i> ₂ -Norm Regularization. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	3
282	A Born–WKBJ Pre-Stack Seismic Inversion Based on a 3-D Structural-Geology Model Building. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	3
283	Wave Simulation in Partially Saturated Porothermoelastic Media. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	3
284	On the instantaneous frequency and quality factor. Geophysical Journal International, 2021, 227, 735-745.	2.4	3
285	Effective viscoelastic representation of gas-hydrate bearing sediments from finite-element harmonic experiments. Computational Geosciences, 0 , , 1 .	2.4	3
286	Seismic estimation of fluid saturation based on rock physics: A case study of the tight-gas sandstone reservoirs in Ordos Basin. Interpretation, 0, , 1-47.	1.1	3
287	Scattering of elastic waves by single anelastic cracks and fractures. , 1996, , .		3
288	Analysis of mesoscopic loss effects in anisotropic poroelastic media using harmonic finite element simulations. , $2011, \ldots$		3

#	Article	IF	Citations
289	Two-Phase Flow Effects on Seismic Wave Anelasticity in Anisotropic Poroelastic Media. Energies, 2021, 14, 6528.	3.1	3
290	EFFECT OF CAPILLARY PRESSURE ON SEISMIC VELOCITIES AND ATTENUATION. Journal of Porous Media, 2019, 22, 447-466.	1.9	3
291	P-wave scattering by randomly distributed aligned cracks in fractal media. Geophysical Journal International, 0, , .	2.4	3
292	Quality Factor of Inhomogeneous Plane Waves. Acoustical Physics, 2020, 66, 598-603.	1.0	3
293	Analytical solution of thermoelastic attenuation in fine layering for random variations of the $Gr\tilde{A}^{1}/4$ neisen ratio. Journal of Thermal Stresses, 2022, 45, 630-640.	2.0	3
294	The wave equation in generalized coordinates. , 1993, , .		2
295	Mesaverde and Green River shale anisotropies by wavefront folds and interference patterns. , 1997, , .		2
296	Observations and results of GPR modelling of sinkholes in Upper Silesia (Poland). Acta Geodaetica Et Geophysica Hungarica, 2001, 36, 377-389.	0.4	2
297	CNN-UM based transversely isotropic elastic wave propagation simulation. , 2007, , .		2
298	Approximating constant- Q seismic propagation in the time domain., 2012,,.		2
299	Modeling hydraulic fracturing and induced seismicity in unconventional reservoirs using multiphase fluid-flow simulations. , 2015, , .		2
300	Seismic wave propagation in geothermal hot rocks: a review of simulation analysis and results based on Burgers models. , 2017 , , .		2
301	Effect of pressure and fluid on pore geometry and anelasticity of dolomites. Rheologica Acta, 2020, 59, 707-716.	2.4	2
302	Wave simulation in anisotropic, saturated porous media., 1995,,.		2
303	Threeâ€dimensional wave propagation simulation in elastic — Anisotropic media. , 1989, , .		2
304	Influence of capillary pressure on CO ₂ storage and monitoring., 2014,,.		2
305	Rock Physics Template Analysis of Norwegian Shelf Clay-rich Source Rocks. , 2015, , .		2
306	Mathematical analogies in physics. Thin-layer wave theory. Annals of Geophysics, 2014, 57, .	1.0	2

#	Article	IF	Citations
307	SH-TM mathematical analogy for the two-layer case. A magnetotellurics application. Advanced Electromagnetics, 2017, 6, 29.	1.0	2
308	Reflection and Transmission of Inhomogeneous Plane Waves in Thermoelastic Media. Frontiers in Earth Science, 2022, 10 , .	1.8	2
309	To: "Bottom simulating reflectors: Seismic velocities and AVO effects,―J. M. Carcione and U. Tinivella (GEOPHYSICS, 65, 54–67). Geophysics, 2001, 66, 984-984.	2.6	1
310	Determination of the stiffness tensor of transversely isotropic viscoelastic media using numerical oscillatory experiments. , 2010, , .		1
311	A pseudo-spectral method for simulating poro-elastic seismic wave propagation in complex borehole environments., 2012,,.		1
312	Numerical investigation of the seismic detectability of carbonate thin beds in the Boom Clay formation. Geophysical Journal International, 2016, 206, 63-84.	2.4	1
313	Geophoneâ€ground coupling with flat bases. Geophysical Prospecting, 2016, 64, 255-267.	1.9	1
314	Determination of a Transversely Isotropic Medium Equivalent to a Fractured Fluid-Saturated Poroelastic Medium. A Finite Element Approach. SIAM Journal of Scientific Computing, 2017, 39, 8244-8271.	2.8	1
315	Microseismicity caused by injection of water in a gas-saturated reservoir. Geophysics, 2019, 84, KS183-KS189.	2.6	1
316	On the seismic response of a periodic sequence of three thin layers saturated by two-phase fluids. Geophysics, 2021, 86, T401-T410.	2.6	1
317	Fracture-Induced Anisotropic Attenuation. , 2012, 45, 929.		1
318	Characteristic porosity for wave dispersion in rocks. Proceedings of Meetings on Acoustics, 2019, , .	0.3	1
319	Estimation of gas hydrate concentration and free gas saturation from log and seismic data. , 2000, , .		1
320	Twoâ€dimensional and threeâ€dimensional forward modeling in isotropicâ€viscoelastic media. , 1989, , .		1
321	3-D Rock-Physics Templates for the Seismic Prediction of Pore Microstructure in Ultra-Deep Carbonate Reservoirs. Arabian Journal for Science and Engineering, 0 , 1 .	3.0	1
322	Radiation patterns for GPR forward modeling. , 1996, , .		1
323	Monitoring the largest North Korean nuclear explosion 2017, through Indian Seismological Network. Annals of Geophysics, 2019, 62, .	1.0	1
324	A New Anelasticity Model for Wave Propagation in Partially Saturated Rocks. Energies, 2021, 14, 7619.	3.1	1

#	ARTICLE	IF	CITATIONS
325	Estimation of the Squirt-Flow Length Based on Crack Properties in Tight Sandstones. Lithosphere, 2022, 2021, .	1.4	1
326	Wave-induced thermal flux and scattering of P waves in a medium with aligned circular cracks. Geophysics, 2022, 87, MR209-MR218.	2.6	1
327	Classical semimicroscopic model applied to doubly even titanium isotopes. Physical Review C, 1979, 19, 1535-1543.	2.9	0
328	Wavefronts in dissipative anisotropic media., 1992,,.		O
329	Babinet's principle in acoustics. , 1998, , .		O
330	ABSORBING LAYER VIA WAVE-EQUATION SPLITTING. Journal of Computational Acoustics, 2001, 09, 1347-1354.	1.0	0
331	Low-frequency anomalies of seismic-wave reflections from poroelastic layers., 2007,,.		O
332	18. Seismic Modeling and Wave Propagation. , 2010, , 425-441.		0
333	Correction to "Q-anisotropy in finely-layered media― Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	O
334	Determination of the stiffness tensor of a fractured medium using finite-element simulations , 2012, , .		0
335	Rock Physics Templates in Heterogeneous Gas Reservoir: An Application of the Biot-Rayleigh Theory. , 2013, , .		O
336	A numerical procedure to model and monitor CO2 sequestration in aquifers. Journal of Physics: Conference Series, 2013, 410, 012085.	0.4	0
337	Simulation of Poro-Elastic Seismic Wave Propagation in Complex Borehole Environments Using a Pseudo-Spectral Approach. , 2013, , .		O
338	Aligned fractures modeled as boundary conditions within saturated porous media and induced anisotropy. A finite element approach. , 2015 , , .		0
339	Wave Propagation and Attenuation in Heterogeneous Reservoir Rocks. , 2015, , 9-43.		O
340	Fine Layering and Fractures: Effective Seismic Anisotropy. , 2015, , 77-155.		0
341	A Brief Overview on Seismic Attenuation. , 2019, , .		0
342	Analysis of Carbonate Rock-Physics Template Based on Seismic Q. , 2019, , .		0

#	Article	IF	CITATIONS
343	An SEIR Epidemic Model of Fractional Order to Analyze the Evolution of the Covid-19 Epidemic in Argentina. Infosys Science Foundation Series, 2021, , 539-557.	0.6	O
344	Canonical solutions for wave anelasticity in rocks composed of two frames. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7, 1.	2.9	0
345	Effective wave dispersion and attenuation in three-periodic thin poroelastic layers saturated by two-phase fluids. , 2021, , .		0
346	Numerical study of pulse delay effects in a poroâ€acoustic wave equation. , 2000, , .		0
347	Estimation of pore pressure by AVO inversion. , 2001, , .		0
348	Acoustic properties of an overpressured sandstone saturated by immiscible fluids., 2001,,.		0
349	Reply by the authors to the discussion by A. T. de Hoop. Geophysics, 2001, 66, 975-975.	2.6	0
350	Explicit imaging expressions for weak horizontal transverse isotropy., 2002,,.		0
351	Seismic methods to detect and quantify gas hydrate in sediments. , 2006, , .		0
352	Stoneley Wave Modeling in Heterogeneous Porous Media with Viscous Pore Fluids. , 2010, , .		0
353	Longâ€wave anisotropy in periodically layered media: A numerical test. , 1990, , .		0
354	Twoâ€dimensional forward modeling in anisotropicâ€viscoelastic media. , 1990, , .		0
355	Groundâ€penetrating radar: Wave theory and numerical simulation in lossy anisotropic media. , 1995, , .		0
356	Multifold GPR techniques for the exploration of archaeological sites. , 1996, , .		0
357	Near-Surface Characterization of the Llancanelo Lake Region (Argentina) by Surface-Wave Analysis of 2D Reflection Data. , 2018, , .		0
358	An efficient fully spectral method for constant-Q seismic-wave propagation. , 2018, , .		0
359	Effect of differential pressure on the pore structure and wave response of tight sandstones. , 2019, , .		0
360	P-wave attenuation characteristics of experimental observation and theoretical simulation in tight oil rocks. , $2019, , .$		0

#	Article	IF	CITATIONS
361	Effective P- and S- wave moduli in finely layered thermoelastic media. , 2020, , .		O
362	Effect of mesoscopic-flow loss on seismic reflections in media with penny-shaped inclusions. Geophysical Journal International, 0, , .	2.4	0