List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3754764/publications.pdf Version: 2024-02-01

		201674	254184
104	2,402	27	43
papers	citations	h-index	g-index
		110	
112	112	112	2322
all docs	docs citations	times ranked	citing authors

DETED D TESKE

#	Article	IF	CITATIONS
1	The Last Two Remaining Populations of the Critically Endangered Estuarine Pipefish Are Inbred and Not Genetically Distinct. Frontiers in Marine Science, 2022, 8, .	2.5	4
2	Comparative phylogeography in a marine biodiversity hotspot provides novel insights into evolutionary processes across the Atlanticâ€Indian Ocean transition. Diversity and Distributions, 2022, 28, 2622-2636.	4.1	8
3	Conservation priorities in an endangered estuarine seahorse are informed by demographic history. Scientific Reports, 2021, 11, 4205.	3.3	1
4	The complete mitogenome of Leptestheria brevirostris Barnard, 1924, a rock pool clam shrimp (Branchiopoda: Spinicaudata) from Central District, Botswana. Mitochondrial DNA Part B: Resources, 2021, 6, 608-610.	0.4	6
5	Transcriptomic Diversity in the Livers of South African Sardines Participating in the Annual Sardine Run. Genes, 2021, 12, 368.	2.4	2
6	Development of genetic tools for the redbait species Pyura herdmani and P. stolonifera, important bioengineers along African coastlines. African Journal of Marine Science, 2021, 43, 251-257.	1.1	0
7	Genomeâ€wide analysis of European sea bass provides insights into the evolution and functions of singleâ€exon genes. Ecology and Evolution, 2021, 11, 6546-6557.	1.9	0
8	Mitochondrial genome announcements need to consider existing short sequences from closely related species to prevent taxonomic errors. Conservation Genetics Resources, 2021, 13, 359-365.	0.8	4
9	Hundreds of new DNA barcodes for South African sponges. Systematics and Biodiversity, 2021, 19, 747-769.	1.2	3
10	Coastal dunefields maintain preâ€Holocene genetic structure in a rocky shore red alga. Journal of Phycology, 2021, 57, 1542-1553.	2.3	2
11	Genomics-informed models reveal extensive stretches of coastline under threat by an ecologically dominant invasive species. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
12	A New Non-invasive Method for Collecting DNA From Small Mammals in the Field, and Its Application in Simultaneous Vector and Disease Monitoring in Brushtail Possums. Frontiers in Environmental Science, 2021, 9, .	3.3	4
13	Genomic divergence and differential gene expression between crustacean ecotypes across a marine thermal gradient. Marine Genomics, 2021, 58, 100847.	1.1	1
14	The sardine run in southeastern Africa is a mass migration into an ecological trap. Science Advances, 2021, 7, eabf4514.	10.3	10
15	Limitations of DNA barcoding in determining the origin of smuggled seahorses and pipefishes. Forensic Science International Animals and Environments, 2021, 1, 100006.	0.8	2
16	A survey of the oral cavity microbiome of New Zealand fur seal pups (Arctocephalus forsteri). Marine Mammal Science, 2020, 36, 334-343.	1.8	3
17	Environmental DNA Metabarcoding as a Means of Estimating Species Diversity in an Urban Aquatic Ecosystem. Animals, 2020, 10, 2064.	2.3	3
18	Oral Microbiome Metabarcoding in Two Invasive Small Mammals from New Zealand. Diversity, 2020, 12, 278.	1.7	2

#	Article	IF	CITATIONS
19	A globally threatened shark, Carcharias taurus, shows no population decline in South Africa. Scientific Reports, 2020, 10, 17959.	3.3	2
20	Discovery of populations endemic to a marine biogeographical transition zone. Diversity and Distributions, 2020, 26, 1825-1832.	4.1	8
21	The complete mitogenome of an undescribed clam shrimp of the genus Gondwanalimnadia (Branchiopoda: Spinicaudata), from a temporary wetland in Central District, Botswana. Mitochondrial DNA Part B: Resources, 2020, 5, 1238-1240.	0.4	7
22	The complete mitogenome of the fairy shrimpÂ <i>Streptocephalus cafer</i> (Lovén, 1847) (Crustacea:) Tj E Part B: Resources, 2020, 5, 623-625.	TQq0 0 0 rg 0.4	gBT /Overlock 9
23	Rejection of the genetic implications of the "Abundant Centre Hypothesis―in marine mussels. Scientific Reports, 2020, 10, 604.	3.3	23
24	De Novo Transcriptome Assembly and Annotation of Liver and Brain Tissues of Common Brushtail Possums (Trichosurus vulpecula) in New Zealand: Transcriptome Diversity after Decades of Population Control. Genes, 2020, 11, 436.	2.4	8
25	New Latrunculiidae (Demospongiae, Poecilosclerida) from the Agulhas ecoregion of temperate southern Africa. Zootaxa, 2020, 4896, zootaxa.4896.3.4.	0.5	5
26	Intraspecific mitochondrial gene variation can be as low as that of nuclear rRNA. F1000Research, 2020, 9, 339.	1.6	7
27	Intraspecific mitochondrial gene variation can be as low as that of nuclear rRNA. F1000Research, 2020, 9, 339.	1.6	3
28	The complete mitogenome of the springtail Tullbergia bisetosa: a subterranean springtail from the sub-Antarctic region. Mitochondrial DNA Part B: Resources, 2019, 4, 1594-1596.	0.4	4
29	The complete mitogenome of <i>Isotomurus maculatus</i> : a widespread species that is invading the sub-Antarctic region. Mitochondrial DNA Part B: Resources, 2019, 4, 1706-1708.	0.4	0
30	Reproductive philopatry in a coastal shark drives age-related population structure. Marine Biology, 2019, 166, 1.	1.5	19
31	Genomic resources for the spotted ragged-tooth shark <i>Carcharias taurus</i> . African Journal of Marine Science, 2019, 41, 115-118.	1.1	2
32	Thermal selection as a driver of marine ecological speciation. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182023.	2.6	63
33	The complete mitochondrial genome of Africa's largest freshwater copepod, <i>Lovenula raynerae</i> . Mitochondrial DNA Part B: Resources, 2019, 4, 725-727.	0.4	5
34	The complete mitogenome of the springtail <i>Cryptopygus antarcticus travei</i> provides evidence for speciation in the Sub-Antarctic region. Mitochondrial DNA Part B: Resources, 2019, 4, 1195-1197.	0.4	9
35	Is the Wild Coast in eastern South Africa a distinct marine bioregion?. Helgoland Marine Research, 2018, 72, .	1.3	10
36	Mitochondrial DNA is unsuitable to test for isolation by distance. Scientific Reports, 2018, 8, 8448.	3.3	76

#	Article	IF	CITATIONS
37	Conservation implications of significant population differentiation in an endangered estuarine seahorse. Biodiversity and Conservation, 2017, 26, 1275-1293.	2.6	18
38	A new species of habitat–forming Suberites (Porifera, Demospongiae, Suberitida) in the Benguela upwelling region (South Africa). Zootaxa, 2017, 4254, 49-81.	0.5	7
39	Evolution of foraging behaviour: Deep intra-generic genetic divergence between territorial and non-territorial southern African patellid limpets. Molecular Phylogenetics and Evolution, 2017, 117, 95-101.	2.7	5
40	Life-histories explain the conservation status of two estuary-associated pipefishes. Biological Conservation, 2017, 212, 256-264.	4.1	16
41	Characterization of 14 polymorphic microsatellite loci developed for an Afrotherian species endemic to southern Africa, Elephantulus myurus (Macroscelidea: Macroscelididae). Applied Entomology and Zoology, 2017, 52, 139-145.	1.2	1
42	An overview of Australia's temperate marine phylogeography, with new evidence from highâ€dispersal gastropods. Journal of Biogeography, 2017, 44, 217-229.	3.0	26
43	Comparative genetic structure in two high-dispersal prawn species from the south-west Indian Ocean. African Journal of Marine Science, 2017, 39, 467-474.	1.1	5
44	Ecological Dominance Along Rocky Shores, with a Focus on Intertidal Ascidians. , 2017, , 55-85.		12
45	Range-wide fragmentation in a threatened fish associated with post-European settlement modification in the Murray–Darling Basin, Australia. Conservation Genetics, 2016, 17, 1377-1391.	1.5	29
46	Oceanography promotes self-recruitment in a planktonic larval disperser. Scientific Reports, 2016, 6, 34205.	3.3	32
47	Diversification and coevolution of the ghrelin/growth hormone secretagogue receptor system in vertebrates. Ecology and Evolution, 2016, 6, 2516-2535.	1.9	9
48	No divergent evolution, despite restricted connectivity, between Atlantic and Indian Ocean goby populations. Marine Biodiversity, 2016, 46, 465-471.	1.0	10
49	A comparison of genetic structure in two low-dispersal crabs from the Wild Coast, South Africa. African Journal of Marine Science, 2015, 37, 345-351.	1.1	9
50	Low genetic diversity in pygmy blue whales is due to climate-induced diversification rather than anthropogenic impacts. Biology Letters, 2015, 11, 20141037.	2.3	24
51	Historical demography of southern African patellid limpets: congruence of population expansions, but not phylogeography. African Journal of Marine Science, 2015, 37, 11-20.	1.1	22
52	The subspecies of Antarctic Terns (<i>Sterna vittata</i>) wintering on the South African coast: evidence from morphology, genetics and stable isotopes. Emu, 2015, 115, 223-236.	0.6	3
53	Contrasting signals of genetic diversity and historical demography between two recently diverged marine and estuarine fish species. Marine Ecology - Progress Series, 2015, 526, 157-167.	1.9	8
54	On-shelf larval retention limits population connectivity in a coastal broadcast spawner. Marine Ecology - Progress Series, 2015, 532, 1-12.	1.9	40

#	Article	IF	CITATIONS
55	Invasion success of a habitat-forming marine invertebrate is limited by lower-than-expected dispersal ability. Marine Ecology - Progress Series, 2015, 536, 221-227.	1.9	5
56	Passive dispersal against an ocean current. Marine Ecology - Progress Series, 2015, 539, 153-163.	1.9	17
57	Connectivity in solitary ascidians: Is a 24-h propagule duration sufficient to maintain large-scale genetic homogeneity?. Marine Biology, 2014, 161, 2681-2687.	1.5	7
58	Larval development reflects biogeography in two formerly synonymised southern African coastal crabs. African Journal of Aquatic Science, 2014, 39, 347-350.	1.1	14
59	Mitonuclear discordance in genetic structure across the Atlantic/Indian Ocean biogeographical transition zone. Journal of Biogeography, 2014, 41, 392-401.	3.0	25
60	Can novel genetic analyses help to identify lowâ€dispersal marine invasive species?. Ecology and Evolution, 2014, 4, 2848-2866.	1.9	19
61	Cryptic diversity in coastal Australasia: a morphological and mitonuclear genetic analysis of habitat-forming sibling species. Zoological Journal of the Linnean Society, 2013, 168, 597-611.	2.3	27
62	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2012–30 November 2012. Molecular Ecology Resources, 2013, 13, 341-343.	4.8	33
63	Marine dispersal and barriers drive Atlantic seahorse diversification. Journal of Biogeography, 2013, 40, 1839-1849.	3.0	47
64	Identification of a uniquely southern African clade of coastal pipefishes <i>Syngnathus</i> spp. Journal of Fish Biology, 2013, 82, 2045-2062.	1.6	14
65	Two sides of the same coin: extinctions and originations across the Atlantic/Indian Ocean boundary as consequences of the same climate oscillation. Frontiers of Biogeography, 2013, 5, .	1.8	5
66	Two sides of the same coin: extinctions and originations across the Atlantic/Indian Ocean boundary as consequences of the same climate oscillation. Frontiers of Biogeography, 2013, 5, .	1.8	17
67	Dispersal barriers and stochastic reproductive success do not explain small-scale genetic structure in a broadcast spawning marine mussel. Marine Ecology - Progress Series, 2013, 482, 133-140.	1.9	3
68	Mitochondrial DNA paradox: sex-specific genetic structure in a marine mussel – despite maternal inheritance and passive dispersal. BMC Genetics, 2012, 13, 45.	2.7	12
69	A revision of the Pyura stolonifera species complex (Tunicata, Ascidiacea), with a description of a new species from Australia. Zootaxa, 2011, 2754, .	0.5	20
70	Climate-driven genetic divergence of limpets with different life histories across a southeast African marine biogeographic disjunction: different processes, same outcome. Molecular Ecology, 2011, 20, 5025-5041.	3.9	39
71	"Nested" cryptic diversity in a widespread marine ecosystem engineer: a challenge for detecting biological invasions. BMC Evolutionary Biology, 2011, 11, 176.	3.2	39
72	A review of marine phylogeography in southern Africa. South African Journal of Science, 2011, 107, .	0.7	132

#	Article	IF	CITATIONS
73	Connectivity between marine reserves and exploited areas in the philopatric reef fish Chrysoblephus laticeps (Teleostei: Sparidae). Marine Biology, 2010, 157, 2029-2042.	1.5	39

Isolation and characterisation of microsatellite loci in the Australian freshwater catfish (Tandanus) Tj ETQq0 0 0 rgBT $_{0.8}^{10}$ Voerlock 10 Tf 50

75	Genetic characterization of native and introduced populations of the neotropical cichlid genus Cichla in Brazil. Genetics and Molecular Biology, 2009, 32, 601-607.	1.3	14
76	Evolution of seahorses' upright posture was linked to Oligocene expansion of seagrass habitats. Biology Letters, 2009, 5, 521-523.	2.3	59
77	A tropical/subtropical biogeographic disjunction in southeastern Africa separates two Evolutionarily Significant Units of an estuarine prawn. Marine Biology, 2009, 156, 1265-1275.	1.5	34
78	Tri-locus sequence data reject a "Gondwanan origin hypothesis―for the African/South Pacific crab genus Hymenosoma. Molecular Phylogenetics and Evolution, 2009, 53, 23-33.	2.7	28
79	Intronâ€spanning primers for the amplification of the nuclear ANT gene in decapod crustaceans. Molecular Ecology Resources, 2009, 9, 774-776.	4.8	14
80	Microsatellite markers for the roman, <i>Chrysoblephus laticeps</i> (Teleostei: Sparidae), an overexploited seabream from South Africa. Molecular Ecology Resources, 2009, 9, 1162-1164.	4.8	8
81	Molecular dating and biogeography of the neritic krill Nyctiphanes. Marine Biology, 2008, 155, 243-247.	1.5	23
82	Oceanic dispersal barriers, adaptation and larval retention: an interdisciplinary assessment of potential factors maintaining a phylogeographic break between sister lineages of an African prawn. BMC Evolutionary Biology, 2008, 8, 341.	3.2	66
83	Coastal topography drives genetic structure in marine mussels. Marine Ecology - Progress Series, 2008, 368, 189-195.	1.9	46
84	Phylogeographic structure of the caridean shrimp <i>Palaemon peringueyi</i> in South Africa: further evidence for intraspecific genetic units associated with marine biogeographic provinces. African Journal of Marine Science, 2007, 29, 253-258.	1.1	30
85	Does the endangered Knysna seahorse, Hippocampus capensis, have a preference for aquatic vegetation type, cover or height?. African Zoology, 2007, 42, 23-30.	0.4	10
86	Lack of genetic differentiation among four sympatric southeast African intertidal limpets (Siphonariidae): phenotypic plasticity in a single species?. Journal of Molluscan Studies, 2007, 73, 223-228.	1.2	34
87	Morphological and genetic analyses suggest that southern African crown crabs, Hymenosoma orbiculare, represent five distinct species. Crustaceana, 2007, 80, 667-683.	0.3	22
88	Does the endangered Knysna seahorse, Hippocampus capensis, have a preference for aquatic vegetation type, cover or height?. African Zoology, 2007, 42, 23-30.	0.4	25
89	Hippocampus queenslandicus Horne, 2001 - a new seahorse species or yet another synonym?. Australian Journal of Zoology, 2007, 55, 139.	1.0	11
90	Climate Change, Genetics or Human Choice: Why Were the Shells of Mankind's Earliest Ornament Larger in the Pleistocene Than in the Holocene?. PLoS ONE, 2007, 2, e614.	2.5	28

#	Article	IF	CITATIONS
91	Isolation of microsatellite markers for the endangered Knysna seahorseHippocampus capensisand their use in the detection of a genetic bottleneck. Molecular Ecology Notes, 2007, 7, 638-640.	1.7	15
92	Signatures of seaway closures and founder dispersal in the phylogeny of a circumglobally distributed seahorse lineage. BMC Evolutionary Biology, 2007, 7, 138.	3.2	46
93	Phylogeographic structure of Octopus vulgaris in South Africa revisited: identification of a second lineage near Durban harbour. Marine Biology, 2007, 151, 2119-2122.	1.5	34
94	Implications of life history for genetic structure and migration rates of southern African coastal invertebrates: planktonic, abbreviated and direct development. Marine Biology, 2007, 152, 697-711.	1.5	90
95	Unexpected genetic structure of mussel populations in South Africa: indigenous Perna perna and invasive Mytilus galloprovincialis. Marine Ecology - Progress Series, 2007, 337, 135-144.	1.9	106
96	The distribution and abundance of the endangered Knysna seahorse <i>Hippocampus capensis</i> (Pisces: Syngnathidae) in South African estuaries. African Journal of Aquatic Science, 2006, 31, 275-283.	1.1	31
97	Impacts of marine biogeographic boundaries on phylogeographic patterns of three South African estuarine crustaceans. Marine Ecology - Progress Series, 2006, 314, 283-293.	1.9	75
98	Molecular evidence for long-distance colonization in an Indo-Pacific seahorse lineage. Marine Ecology - Progress Series, 2005, 286, 249-260.	1.9	78
99	The evolutionary history of seahorses (Syngnathidae: Hippocampus): molecular data suggest a West Pacific origin and two invasions of the Atlantic Ocean. Molecular Phylogenetics and Evolution, 2004, 30, 273-286.	2.7	82
100	Affinities of some common estuarine macroinvertebrates to salinity and sediment type: empirical data from Eastern Cape estuaries, South Africa. African Zoology, 2004, 39, 183-192.	0.4	29
101	What limits the distribution of subtidal macrobenthos in permanently open and temporarily open/closed South African estuaries? Salinity vs. sediment particle size. Estuarine, Coastal and Shelf Science, 2003, 57, 225-238.	2.1	104
102	Population genetics of the endangered Knysna seahorse, Hippocampus capensis. Molecular Ecology, 2003, 12, 1703-1715.	3.9	55
103	Title is missing!. Hydrobiologia, 2001, 464, 227-243.	2.0	75
104	Molecular insights into species recognition within southern Africa's endemic <i>Tricolia</i> radiation (Vetigastropoda: Phasianellidae). Journal of Molluscan Studies, 0, , eyv037.	1.2	2