Katsuhide Fujita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3754652/publications.pdf

Version: 2024-02-01

63 2,997 30 54
papers citations h-index g-index

64 64 64 4283
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Pulmonary toxicity, cytotoxicity, and genotoxicity of submicron-diameter carbon fibers with different diameters and lengths. Toxicology, 2022, 466, 153063.	4.2	4
2	Genotoxicity assessment of cellulose nanofibrils using a standard battery of in vitro and in vivo assays. Toxicology Reports, 2022, 9, 68-77.	3.3	10
3	Pulmonary inflammation following intratracheal instillation of cellulose nanofibrils in rats: comparison with multi-walled carbon nanotubes. Cellulose, 2021, 28, 7143-7164.	4.9	7
4	Screening of preservatives and evaluation of sterilized cellulose nanofibers for toxicity studies. Journal of Occupational Health, 2020, 62, e12176.	2.1	11
5	A review of pulmonary toxicity studies of nanocellulose. Inhalation Toxicology, 2020, 32, 231-239.	1.6	19
6	Cytotoxicity profiles of multi-walled carbon nanotubes with different physico-chemical properties. Toxicology Mechanisms and Methods, 2020, 30, 477-489.	2.7	26
7	Effect of lower chlorinated hydroxylated-polychlorobiphenyls on development of PC12 cells. Environmental Science and Pollution Research, 2018, 25, 16434-16445.	5.3	3
8	Size-dependent cell uptake of carbon nanotubes by macrophages: A comparative and quantitative study. Carbon, 2018, 127, 93-101.	10.3	60
9	Basic study of intratracheal instillation study of nanomaterials for the estimation of the hazards of nanomaterials. Industrial Health, 2018, 56, 30-39.	1.0	3
10	Assessment of cytotoxicity and mutagenicity of exfoliated graphene. Toxicology in Vitro, 2018, 52, 195-202.	2.4	20
11	Pharyngeal aspiration of single-wall carbon nanotubes aggravates allergic reaction to inhaled ovalbumin in mice. Toxicological and Environmental Chemistry, 2017, 99, 134-147.	1.2	O
12	A 104-week pulmonary toxicity assessment of long and short single-wall carbon nanotubes after a single intratracheal instillation in rats. Inhalation Toxicology, 2017, 29, 471-482.	1.6	18
13	Length effects of single-walled carbon nanotubes on pulmonary toxicity after intratracheal instillation in rats. Journal of Toxicological Sciences, 2017, 42, 367-378.	1.5	19
14	Significance of Intratracheal Instillation Tests for the Screening of Pulmonary Toxicity of Nanomaterials. Journal of UOEH, 2017, 39, 123-132.	0.6	10
15	Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes. Toxicology Letters, 2016, 257, 23-37.	0.8	45
16	Detoxification of hydroxylated polychlorobiphenyls by Sphingomonas sp. strain N-9 isolated from forest soil. Chemosphere, 2016, 165, 173-182.	8.2	21
17	Intratracheal instillation of single-wall carbon nanotubes in the rat lung induces time-dependent changes in gene expression. Nanotoxicology, 2015, 9, 290-301.	3.0	44
18	Effects of Various Carbon Nanotube Suspensions on A549, THP-1, and Peritoneal Macrophage Cells. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 2015, 24, 1-13.	0.5	2

#	Article	IF	Citations
19	Size effects of single-walled carbon nanotubes on <i>in vivo</i> and <i>in vitro</i> pulmonary toxicity. Inhalation Toxicology, 2015, 27, 207-223.	1.6	73
20	The Expression of Inflammatory Cytokine and Heme Oxygenase-1 Genes in THP-1 Cells Exposed to Metal Oxide Nanoparticles. Journal of Nano Research, 2015, 30, 116-127.	0.8	6
21	Evaluation of cellular influences caused by calcium carbonate nanoparticles. Chemico-Biological Interactions, 2014, 210, 64-76.	4.0	33
22	Evaluation of cellular effects of silicon dioxide nanoparticles. Toxicology Mechanisms and Methods, 2014, 24, 196-203.	2.7	8
23	Cellular effects of industrial metal nanoparticles and hydrophilic carbon black dispersion. Journal of Toxicological Sciences, 2014, 39, 897-907.	1.5	13
24	Chromium(III) oxide nanoparticles induced remarkable oxidative stress and apoptosis on culture cells. Environmental Toxicology, 2013, 28, 61-75.	4.0	70
25	In vitro evaluation of cellular influences induced by stable fullerene C70 medium dispersion: Induction of cellular oxidative stress. Chemosphere, 2013, 93, 1182-1188.	8.2	10
26	Evaluation of the biological influence of a stable carbon nanohorn dispersion. Carbon, 2013, 54, 155-167.	10.3	16
27	Dispersant affects the cellular influences of single-wall carbon nanotube: the role of CNT as carrier of dispersants. Toxicology Mechanisms and Methods, 2013, 23, 315-322.	2.7	24
28	Physical properties of single-wall carbon nanotubes in cell culture and their dispersal due to alveolar epithelial cell response. Toxicology Mechanisms and Methods, 2013, 23, 598-609.	2.7	23
29	Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology, 2012, 6, 587-599.	3.0	96
30	Evaluation of cellular influences induced by stable nanodiamond dispersion; the cellular influences of nanodiamond are small. Diamond and Related Materials, 2012, 24, 15-24.	3.9	34
31	Comparison of acute oxidative stress on rat lung induced by nano and fine-scale, soluble and insoluble metal oxide particles: NiO and TiO ₂ . Inhalation Toxicology, 2012, 24, 391-400.	1.6	61
32	Pulmonary toxicity of well-dispersed single-wall carbon nanotubes after inhalation. Nanotoxicology, 2012, 6, 766-775.	3.0	43
33	Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area. Metallomics, 2012, 4, 350.	2.4	156
34	<i>In Vitro</i> Evaluation of Cellular Response Induced by Manufactured Nanoparticles. Chemical Research in Toxicology, 2012, 25, 605-619.	3.3	163
35	Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chemico-Biological Interactions, 2012, 198, 29-37.	4.0	158
36	Biopersistence of inhaled MWCNT in rat lungs in a 4-week well-characterized exposure. Inhalation Toxicology, 2011, 23, 784-791.	1.6	27

#	Article	IF	CITATIONS
37	Pathological features of rat lung following inhalation and intratracheal instillation of C60fullerene. Inhalation Toxicology, 2011, 23, 407-416.	1.6	27
38	Evaluation of cellular influences of platinum nanoparticles by stable medium dispersion. Metallomics, 2011, 3, 1244.	2.4	39
39	Toxicity of Metal Oxides Nanoparticles. Advances in Molecular Toxicology, 2011, 5, 145-178.	0.4	52
40	Evaluation of Acute Oxidative Stress Induced by NiO Nanoparticles <i>In Vivo</i> and <i>In Vitro</i> Journal of Occupational Health, 2011, 53, 64-74.	2.1	93
41	Preparation and characterization of stable dispersions of carbon black and nanodiamond in culture medium for in vitro toxicity assessment. Carbon, 2011, 49, 3989-3997.	10.3	28
42	Cellular responses induced by cerium oxide nanoparticles: induction of intracellular calcium level and oxidative stress on culture cells. Journal of Biochemistry, 2011, 150, 461-471.	1.7	88
43	Identification of potential biomarkers from gene expression profiles in rat lungs intratracheally instilled with C60 fullerenes. Toxicology, 2010, 274, 34-41.	4.2	25
44	Inflammogenic effect of well-characterized fullerenes in inhalation and intratracheal instillation studies. Particle and Fibre Toxicology, 2010, 7, 4.	6.2	57
45	In vitro evaluation of cellular responses induced by stable fullerene C60 medium dispersion. Journal of Biochemistry, 2010, 148, 289-298.	1.7	45
46	Dispersion characteristics of various metal oxide secondary nanoparticles in culture medium for in vitro toxicology assessment. Toxicology in Vitro, 2010, 24, 1009-1018.	2.4	48
47	Cellular responses by stable and uniform ultrafine titanium dioxide particles in culture-medium dispersions when secondary particle size was 100nm or less. Toxicology in Vitro, 2010, 24, 1629-1638.	2.4	49
48	Expression of inflammation-related cytokines following intratracheal instillation of nickel oxide nanoparticles. Nanotoxicology, 2010, 4, 161-176.	3.0	76
49	Characterization of fullerene colloidal suspension in a cell culture medium for in vitro toxicity assessment. Molecular BioSystems, 2010, 6, 1238.	2.9	15
50	Expression of cytokine-induced neutrophil chemoattractant in rat lungs by intratracheal instillation of nickel oxide nanoparticles. Inhalation Toxicology, 2009, 21, 1030-1039.	1.6	59
51	Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology, 2009, 258, 47-55.	4.2	87
52	Ultrafine NiO Particles Induce Cytotoxicity in Vitro by Cellular Uptake and Subsequent Ni(II) Release. Chemical Research in Toxicology, 2009, 22, 1415-1426.	3.3	133
53	Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment. Toxicology in Vitro, 2009, 23, 927-934.	2.4	96
54	Effects of ultrafine TiO2 particles on gene expression profile in human keratinocytes without illumination: Involvement of extracellular matrix and cell adhesion. Toxicology Letters, 2009, 191, 109-117.	0.8	59

KATSUHIDE FUJITA

#	Article	IF	CITATION
55	Protein Adsorption of Ultrafine Metal Oxide and Its Influence on Cytotoxicity toward Cultured Cells. Chemical Research in Toxicology, 2009, 22, 543-553.	3.3	245
56	A Gene Expression Profiling Approach to Study the Influence of Ultrafine Particles on Rat Lungs. , 2009, , 219-227.		5
57	Induction of adaptive response and enhancement of PC12 cell tolerance by lipopolysaccharide primarily through the upregulation of glutathione S-transferase A3 via Nrf2 activation. Free Radical Biology and Medicine, 2008, 45, 1437-1445.	2.9	24
58	The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Research, 2006, 6, 744-750.	2.3	147
59	The cell structural properties of Kocuria rhizophila for aliphatic alcohol exposure. Enzyme and Microbial Technology, 2006, 39, 511-518.	3.2	17
60	Genome-wide expression analysis of yeast response during exposure to $4\hat{A}^{\circ}\text{C}$. Extremophiles, 2006, 10, 117-128.	2.3	88
61	Lcb4p sphingoid base kinase localizes to the Golgi and late endosomes. FEBS Letters, 2002, 532, 97-102.	2.8	23
62	Hsp104 Responds to Heat and Oxidative Stress with Different Intracellular Localization inSaccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 1998, 248, 542-547.	2.1	15
63	Pulmonary Toxicity of Well-Dispersed Single-Wall Carbon Nanotubes Following Intratracheal Instillation. Journal of Nano Research, 0, 18-19, 9-25.	0.8	21